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ABSTRACT
Ontologies play a key role in agent communication and the
emerging Semantic Web. Axioms are an important compo-
nent of ontologies to describe the relationships among the
concepts. The current research on ontology mapping and on-
tology translation mainly focuses on how to map and trans-
late the vocabularies and associated data instances from one
ontology to another. However, when extending one ontology
using axioms from another, we must confront the problem of
translating axioms. In this paper, we show that simple sym-
bol replacement will not solve the problem of axiom transla-
tion because of asymmetry of translation. Instead we extend
our inferential ontology translation for facts (ground atomic
formulas) and queries to cover axioms using a method we
call axiom derivation.
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1. INTRODUCTION
Ontologies, which can be defined as the formal specifica-

tion of a vocabulary of concepts and the relationships among
them, play a key role in both agent communication and the
emerging Semantic Web. We can distinguish several differ-
ent semantic heterogeneity problems among multiple agents
and web services, which may use different ontologies.

1. Ontology mapping: Finding correspondences between
the symbols of two ontologies; the correspondences are
often equivalences and subset-superset (or subproperty-
superproperty) relationships.

2. Ontology translation: Translating a dataset (assertions)
or a query expressed using one ontology into a form
that uses a different ontology.
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3. Theory translation: Translating the axioms of one on-
tology into the vocabulary of another, preserving their
validity.

Much previous work (see a survey in [4]) has been in the first
category; ours [2] has been mainly in the second. In this pa-
per we focus on the third, in which the translation approach
for simple assertions by replacing the symbols of one vocab-
ulary with the corresponding symbols from another will not
work for axioms in general. For example, in one genealogy
ontology G1, husband and married are two concepts (proper-
ties) and there may be a first-order logic axiom to describe
their relationship:

(∀x, y)husband(x, y) → married(x, y) (1)

where x and y are universal variables to represent man and
woman respectively. Suppose another genealogy ontology
G2 has male partner and in marriage as corresponding (map-
ping) properties. Some facts (assertions) expressed in the
language of G1, can simply be translated into the language
of G2 by replacing corresponding properties:

husband(John, Mary) Ã male partner(John, Mary)

married(John, Mary) Ã in marriage(John, Mary)

We use a symbol Ã to represent the process of translation.
The translations are correct in terms of the semantics of G1

and G2, where husband can be thought of as a special kind
of male partner. However, if we use the same technique to
translate the axiom (1) of G1 to G2, we will get:

(∀x, y)male partner(x, y) → in marriage(x, y) (2)

It is obvious that (2) is not always true since a man is a part-
ner of a woman doesn’t mean that he must be in a marriage
with her; (2) is not a valid axiom in G2.

What is the reason that the above translation for facts is
correct, and the translation from (1) to (2) is not correct?
Can we find a formal method for translating axioms from
a source ontology to a target ontology that guarantees that
the translations are also true in the target ontology?

In this paper, we will give a formal characterization of
ontology translation that unifies the translation of facts,
queries and axioms in one inferential framework (section 2).
We call the translation of axioms from one ontology to an-
other ontology axiom derivation. We point out that it is the
asymmetry of translation that makes axiom derivation dif-
ficult. In section 3, we will elaborate how to derive axioms
across different ontologies as the extension of our previous
work for translating datasets and queries.



2. FRAMEWORK

2.1 Merged Ontologies & Bridging Axioms
In this section we first briefly review our previous work [2]

on ontology translation. We assume that in order to trans-
late facts from one ontology to another there must be a
merged ontology in which all the relevant symbols are al-
lowed to interact. For example, consider the pair of geneal-
ogy ontologies G1 and G2. The mappings between them can
be represented as first order axioms:

(∀x, y)husband(x, y) → male partner(x, y) (3)

(∀x, y)married(x, y) ↔ in marriage(x, y) (4)

We call these axiomatic mapping rules bridging axioms. We
have developed a strongly typed first-order logic language,
Web-PDDL, to express bridging axioms. These axioms are
embedded in a merged ontology complete with namespace
declarations and type-equivalence rules.

2.2 Inferential Ontology Translation
We will use the symbol Ã to indicate translation: α Ã β

means that β is the translation of α. We call the ontology
Os that α uses the source ontology and Ot, the one β uses,
the target. In the case of sets of assertions (“datasets”), we
stipulate that the translation of αd is simply the strongest
set of assertions, βd, in Ot entailed by αd. A consequence of
this stipulation is that

(KB; αd) Ã βd only if (KB; αd) |= βd

where we have added to the left-hand sides the symbol KB
to refer to the merged ontology with bridging axioms.

If αq is a query in Os, its translation is a query βq in
Ot such that any answer (set of bindings) to βq is also an
answer to αq. In other words:

(KB + DBβ ; αq) Ã βq only if (KB + DBβ ; θ(βq)) |= θ(αq)

for any substitution θ, where KB +DBβ now includes both
the merged ontology and the facts from the target data in-
stances. The point is that βq need not be (and seldom is)
equivalent to αq, in the sense that any answer to one is an
answer to the other. All we need is that any answer to βq

be an answer to αq. If we take Os to be G2 and Ot to be G1

(section 2.1), and assume (for now) that G1 has no symbol
for wife, the query spouse(?x, ?y) in G2 will be translated
into the query husband(?x, ?y) in G1. But the set of all
husbands is not equivalent to the set of all spouses.

2.3 Asymmetry of Translation
Given our approach, translation exhibits certain asymme-

tries that one must be wary of. We will subscript the symbol
Ã with a “Q” to indicate the query translation (ÃQ), and
with a “D” (for “data”) to indicate the assertion or dataset
translation(ÃD). (We leave the subscript off in those cases
where the context allows either reading.) The asymmetry
is: if βt is the translation of αs: (KB; αs) Ã βt that doesn’t
mean αs is the translation of βt: (KB; βt) Ã αs.

Slightly less obviously, if (KB; P ) Ã Q we can’t conclude
(KB;¬P ) Ã ¬Q.

Instead (not surprisingly), negation ends up involving the
same duality as query translation. Assume that R is an
expression which can be derived from KB and ¬Ps by in-
ference. Using the deduction theorem in first-order logic and

considering that ¬Ps → R is an equivalent to ¬R → Ps, we
know that

(KB;¬Ps) ` R ⇔ KB ` (¬Ps → R)

⇔ KB ` (¬R → Ps)

⇔ (KB;¬R) ` Ps

This gives us a way to translate negations. We can think
of Ps as a “ground query” (θ(Ps) = Ps): Given Ps, try to

find a Q
′
t, which satisfies (KB; Q

′
t) ` Ps. But this is just

the problem of translating the query Ps: (KB; Ps) ÃQ?.

Therefore, if the query translation of Ps is Q
′
t, ¬Q

′
t can

be derived from KB and ¬Ps and vice versa:

(KB; Ps) ÃQ Q
′
t ⇒ (KB;¬Ps) ÃD ¬Q

′
t

(KB; Ps) ÃD Q
′
t ⇒ (KB;¬Ps) ÃQ ¬Q

′
t

Axioms are usually more complex than a typical dataset
element, and it would be useful if we could attack this com-
plexity by translating the pieces of a complex formula and
composing the results. For conjunctions and disjunctions,
composition of translation is straightforward. Translating
implications includes an algorithm for translating negations.

3. OUR APPROACH

3.1 Conditional Facts and ICF Axioms
To explain our approach to theory (axiom) translation,

we first show how to translate conditional facts using our
inference engine, OntoEngine [2]. A conditional fact is a
formula of the form:

P1 ∧ · · · ∧ Pi · · · ∧ Pn → Q1 ∧ · · · ∧Qj ∧ · · · ∧Qm

where all Pi(1 ≤ i ≤ n) and Qj(1 ≤ j ≤ m) are ground
atomic formulas (facts). All axioms, such as axioms 1, can
be put in this form which we called ICF (Implicative Con-
junction Form), but of course axioms have quantified vari-
ables. It is unusual, but not unheard of, for people to need
to express that some facts are true only if some other facts
are also true:

precedes(deathof(Roosevelt), endof(WW2)) →
president(Truman, endof(WW2))

“If Roosevelt died before the end of World War 2, then
Truman was president at the end of World War 2.”

3.2 Conditional Fact Translation
Conditional fact translation is the translation of a condi-

tional fact from the source ontology to the target ontology.
It is not as simple as translating both the antecedent and
conclusion in the source ontology to the antecedent and con-
clusion in the target ontology by forward chaining. This is
a typical example which we need to consider asymmetry of
translation since the translation of implications actually in-
cludes the translation of negations and disjunctions, which
has been discussed in section 2. For example, suppose we
have a simple conditional fact:

@Onto1 : P(A, B) → @Onto1 : Q(A, B)

where @Onto1:P means predicate P from Onto1. We want to
translate this conditional fact to Onto2. Suppose @Onto1:P(A,B)
can be translated to @Onto2:R(A,B) and @Onto1:Q(A,B) can



be translated to @Onto2:S(A,B), both by forward chaining.
It doesn’t mean that

@Onto2 : R(A, B) → @Onto2 : S(A, B)

is true. However, if there exists @Onto2:R’(A,B) satisfies:

@Onto2 : R′(A, B) → @Onto1 : P(A, B)

then we know that

@Onto2 : R′(A, B) → @Onto2 : S(A, B)

is a true statement in Onto2. To get this, we need to do
backward chaining from @Onto1:P(A,B) to a corresponding
expression in the target ontology, such as @Onto2:R’(A,B).

It should be obvious that this process yields a valid re-
sult, in the sense that the translated fact follows from the
original fact and the axioms. If backward chaining from the
antecedent fails to find any goals in the target ontology, then
the antecedent of the translated conditional fact will be the
empty, or false, making the translation itself equivalent to
true — and hence useless.

3.3 Axiom Derivation
Axiom derivation for ICF axioms still can be thought of

as an inference process, if we can transform the axioms to
conditional facts and transform the conditional facts back to
axioms. The idea is to substitute Skolem constants for the
variables temporarily. (A similar technique was used in [3].)
In general, axiom derivation can be broken into three steps:

From ICF axioms to conditional facts: we can use
Universal Elimination and Existential Elimination to trans-
form ICF axioms to conditional facts. For instance, suppose
we have the axiom in source ontology O s:

(∀x, y)@O s : P(x, y) → (∃z)@O s : Q(x, z) ∧@O s : R(z, y)

We can substitute the universal quantified variables with
constants (e.g., Atx and Bty) and substitute the existen-
tial quantified variables with uniquified Skolem terms (e.g.,
Skz01):

@O s : P(Atx, Bty) →
@O s : Q(Atx, Skz01) ∧@O s : R(Skz01, Bty)

Conditional facts translation: suppose that the target
ontology is O t and we already have the merged ontology of
O s and O t. The conditional fact in O s can be translated
to O t.

By backward chaining from @O s:P(Atx,Bty) and forward
chaining from @O s:Q(Atx,Skz01) and @O s:R(Skz01,Bty),
suppose we finally get a conditional fact in O t:

@O t : S′(Atx, Ctc) ∧@O t : T′(Ctc, Bty) →
@O t : U(Atx, Skz01) ∧@O t : V(Skz01, Skd02)

∧@O t : W(Bty, Skz01)

where Ctc is a constant and Skd02 is a new generated Skolem
term by forward chaining.

From conditional facts to ICF axioms: we can use
Universal Generalization [3] and Existential Introduction to
transform conditional facts back to ICF axioms.

For example, considering the above translated conditional
fact in O t, we can use Universal Generalization to replace
all constants which have substituted universal variables with
universal variables. Atx, Bty and Ctc can be replaced by x,
y and c. We also can use Existential Introduction to replace

all Skolem terms with existential variables. Skz01 and Skd02
can be replaced by z and d. Therefore, the generated ICF
axiom looks thus:

(∀x, y, c)@O t : S′(x, c) ∧@O t : T′(c, y) →
(∃z, d)@O t : U(x, z) ∧@O t : V(z, d) ∧@O t : W(y, z)

It’s not so obvious that this procedure works, but we have
proved that it does. The detail proof can be found at a long
version of our paper1.

3.4 Axiom Derivation for Time Ontologies
We have evaluated our axiom derivation algorithm in some

real application scenarios, in which complex ontologies al-
ways have large sets of axioms. There are several time on-
tologies in current popular knowledge bases and (semantic)
web resources, such as Cyc time 2, SUMO time and OWL-
Time (formerly DAML-Time) 3. They describe the temporal
concepts, such as Instant, Interval and durationOf, and their
relationships, which are represented as sets of logic axioms
(e.g. OWL-Time has around 180 first order axioms.)

Researchers have manually built some mappings among
the concepts of some time ontologies, but have not talked
about how to represent the axioms in different ontologies.
The axioms in the Cyc time ontology can be automatically
translated to the OWL-Time ontology with our algorithm.

4. RELATED WORK AND CONCLUSION
To the best of our knowledge, the only other work on ax-

iom (theory) translation is [1]. This work presents a formal-
ism for knowledge translation based on the theory of con-
texts [3]. The authors define knowledge translation in terms
of truth, and propose, as we do, using a theorem prover to
perform the translations. However, the paper does not say
exactly how the theorem-proving process would work.

Based on the inferential ontology translation framework,
our paper has pointed out the asymmetry of translation and
described an algorithm for theory translation from one on-
tology to another, which we call axiom derivation. Although
our algorithm is provably correct, practical application re-
quires further work on problems of incompleteness and re-
dundancy, because our algorithm does not by itself guar-
antee that the axioms we produce are sufficient, nor does
it avoid producing axioms that are already present in the
target ontology.
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