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Abstract

Biometric authentication offers many benefits ranging from strong security guar-
antees to user convenience, but remote authentication poses unique challenges to the
security and privacy of biometric templates. Current schemes use either unprotected
biometric templates, making them directly available to the verifying party, or protected
templates lack adequate privacy protection, revocability, or use techniques which impact
the recognition performance.

We propose an efficient remote authentication protocol that combines possession-
based authentication and biometrics to protect users’ privacy. Since users cannot change
their biometric characteristics, as they can easily do in case of passwords or PINs, our
protocol protects biometric templates by never directly storing or transmitting them
during authentication. The protocol uses a token to store the user’s blinded biometric
template which changes with each authentication, rendering the information stored
on the token useless if stolen. A user successfully authenticates if the verifying party
confirms that the difference between the blinded template and a fresh template as
computed by the token is sufficiently close to 0.

Our approach offers benefits such as protection of biometric data, revocability of
templates, and privacy-protection with respect to users’ biometric identities as well
as actions performed using those identities. Furthermore, our protocol adds negligible
overhead and maintains the recognition performance of the underlying recognition algo-
rithm, which we validate using the CASIA Iris Image Database and two different open
source iris recognition libraries.

1 Introduction

The fast pace of technological advances bringing faster and cheaper computing devices and
nearly constant Internet access have changed the ways in which people utilize online ser-
vices. To provide security in this ever connected world, almost every transaction performed
requires identity verification to ensure only legitimate access to protected resources. There
have been a number of authentication solutions proposed, which can be categorized as
knowledge-based, possession-based, or biometrics depending on the factor used to verify
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the claim of identity [6]. While all three categories of methods have been extensively em-
ployed over the years, biometrics offer exceptional benefits including high level of assurance
that users are who they claim to be, non-repudiation and ease of use. Because biometric
data cannot be lost or forgotten and is constantly available, and biometric characteristics
are unique to a person, they provide an excellent way to define user’s identity. However,
the uniqueness of biometric data poses serious security and privacy concerns if it is ever
compromised.

Many biometric authentication protocols exist. However, frequently the protection of
biometric data is achieved by assuming a trusted verified party or with performance and
complexity costs [51, 5, 55, 29]. This paper proposes a novel remote biometric authentica-
tion protocol, which limits the exposure of biometric data, is theft-resistant with respect to
tokens storing authentication information, privacy-preserving with respect to users’ biomet-
ric identities and the actions performed using those identities, as well as very efficient. The
protocol retains its security properties under a complete compromise of either the proving
or verifying parties, though not both simultaneously. The novelty of this protocol lies in the
way biometric data is handled. Biometric templates are never directly stored, transmitted
or made available to the verifying party. This approach relaxes the trust model typically
required for biometric protocols, which fully entrust the verifying party with biometric
templates.

The protocol builds upon two different kinds of authentication methods, possession-
based authentication and biometrics, to take advantage of the benefits of two factor au-
thentication. During the enrollment phase, the proving and verifying parties exchange a
secret seed, later used to create the same sequence of blinding factors using a backtracking
resistant pseudorandom bit generator. The blinding factors secure the biometric reference
template with the resulting blinded template stored on the user’s token. During verifica-
tion, a user obtains a new template and combines it with her blinded reference template in
a way that results in their difference. The verifying party makes his decision based on this
difference, rather than on the templates themselves. The smaller the difference, the more
likely the user is who she claims to be. Since the user’s identity consists of biometric data
combined with with blinding factors, multiple, independent identities called personas can
be securely established based on the same biometric identity.

Our protocol provides for efficient authentication. We validated this claim using two
different open source iris recognition libraries and compared the recognition performance
of our protocol against using unprotected iris-based templates. Our approach produces
identical comparison results and induces negligible overhead in comparison to the cost of
producing a biometric template. As a result, our protocol has nearly the same efficiency as
protocols offering no template protection.

The rest of the paper is structured as follows. Section 2 gives an overview of secu-
rity and privacy issues in biometric systems, and summarizes other solutions to biometric
authentication. Section 3 details our protocols and Section 4 analyzes its security proper-
ties. Section 6 provides both implementation details and evaluates the performance of our
protocol. Section 7 concludes.
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2 Background and Related Work

2.1 Security and Privacy Issues

The perception and acceptance of biometric systems significantly depends on the security
of biometric data [2, 21]. However, the uniqueness of biometric data, a cherished feature
of biometrics, is also the source of security and privacy concerns. A biometric template
derives from characteristics, which uniquely identify an individual, and unlike passwords
and other knowledge-based factors cannot be changed. The template has the user’s identity
“embedded” into it and therefore there are limited defenses in case of compromise [52].
Typically, the proving party makes the biometric template available to the verifying party
for the purpose of comparison. In case of remote authentication, this poses a risk of serious
attacks in which biometric data is intercepted during transmission, stolen from the verifying
party or even misused by the verifying party.

From the security point of view, once compromised, biometric data has limited utility
for authentication purposes as it might be used for identity theft. The privacy issues are
two fold. Firstly, a biometric template, in addition to defining a user’s identity, carries
considerable personal information, which often include race, gender and certain medical
conditions [46]. Secondly, a biometric template can be used to identify an individual and
successfully track and link his or her activities performed using the same biometric identity
across different verifying parties.

For these reasons, biometric templates security has become a crucial issue resulting in
a high level of awareness and concern [50]. Users expect that the verifying parties protect
their biometric data and use them only for the purpose provided [5], in order to prevent
identity theft, information linkage across different providers, and secondary uses of supplied
information [45].

2.2 Related Work

Our protocol is a hybrid approach which merges two-factor authentication (possession-based
and biometrics) and a template transformation technique which belong to a class of template
protection systems.

2.2.1 Template Protection Systems

There are two main categories of schemes for protecting templates: biometric cryptosystems
and template transformation [29, 47].

Biometric cryptosystems (BC) [19] use a template as well as helper data to extract a
cryptographic key, with the resulting key validated by verifying its correctness. Helper data
generally consists of a biometric template (secure sketches and fuzzy extractors [19, 18]) and
optionally an external key (fuzzy vaults [33] and fuzzy commitments [34]). The helper data
in BC systems, however, unavoidably leaks data [26, 20]. BC techniques heavily rely on error
correction codes limiting their recognition performance to the error-correcting capability
of employed code [29, 55]. Furthermore, BC has not been designed with reusability and
revocability in mind [29, 47]. Attacks on multiple records in BC may lead to a full recovery
of the secret key and/or the biometric template [10, 57, 58]. To achieve reusability and
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revocability, BC schemes must be strengthened by adding auxiliary information, for example
passwords [49, 3]. This adds to their complexity, limits user convenience, and in some
cases may still be insufficient [25]. While BC offers additional features such as reliable
cryptographic key generation, they come at the cost of performance and complexity.

Template transformation schemes use a transformation function, either invertible (Bio-
Hashing [32]) or non-invertible (cancelable biometrics [54]), and applies it to biometric data
during the enrollment phase. Verification applies the same transformation and compares
the resulting template against the reference template. In case of invertible transforma-
tions, users need to supply, and therefore remember or keep secure, a password or a key
which impacts user’s convenience. A compromise of this additional information can yield
further vulnerabilities [37, 43]. In case of non-invertible transformations, the recognition
performance is affected because the matching is applied to transformed templates [55],
however, revocability and unlinkability can be achieved [29, 47]. Finally, it has been shown
that in some cases it is possible to recover biometric data from transformed biometric tem-
plates [24, 1, 56]. Additionally, both schemes are vulnerable to intrusion and linkage attacks
using information recovered from transformed templates [48].

2.2.2 Two-factor Schemes

Combining biometric and possession-based authentication is a popular approach to remote
biometric authentication. Some schemes, in addition to biometrics and a smart card, require
additional knowledge-based authentication factors. An early scheme combined biometrics
with a smart card and a password [38]. However, this scheme succumbed to masquerade [42]
and conspiring [11] attacks. A later scheme [42] remained vulnerable to server spoofing
attacks [36]. The scheme was further improved by [39] but it requires to keep a secret
system’s key. Another, more efficient scheme [40] enabled users to change their passwords
and removed the requirement of a synchronized clock between the proving and verifying
parties. The scheme, however, did not to provide proper authentication and was susceptible
to the man-in-the-middle attacks [41]. The resulting scheme was broken and then again
improved upon by [31].

3 Protocol Description

In this section we describe the trust model, detail our protocol and specify the required
cryptographic primitives.

3.1 Trust Model

The authentication process is performed between a proving party (Peggy, the user) and
a verifying party (Victor, the authentication server). Peggy and Victor interact over a
network possibly in the presence of a computationally bounded adversary (Mallory, the
malicious adversary).

Peggy’s goal is to convince Victor of her identity by providing sufficient information to
prove her claim of identity. In a typical case of a biometric remote authentication protocol,
the verifying party needs to know the reference template in order to compare it with the
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template submitted during each authentication request. For this reason it must be assumed
that templates are transmitted over a network. Furthermore, the verifying party must be
fully trusted to adequately store, protect, and not to misuse the templates.

Our goal is to relax this assumption. In our protocol, Victor does not need nor have
access to an unprotected template at any point. During each authentication he receives
sufficient amount of information about Peggy’s biometric data required to make a valid
decision about her identity. Since Victor does not have direct access to Peggy’s biometric
template, he need not be fully trusted. However, he needs to protect his internal authenti-
cation state because it can be used to impersonate Peggy to gain access to his system. This
is a reasonable assumption as Victor is ultimately responsible for protecting access to his
own resources. We further assume that Victor successfully authenticates Peggy whenever
she sufficiently proves her identity.

3.2 Enrollment Phase

A biometric authentication protocol consists of two phases, the enrollment phase and the
verification phase [14]. The enrollment phase is a one-time process while the verification
phase occurs each time Peggy wants to prove her identity to Victor.

During the enrollment phase (Figure 1) Peggy and Victor must cooperate to create
Peggy’s credentials and establish the shared authentication information. The public in-
formation includes the choice of a biometric characteristic, a feature extractor and an ap-
propriate matching metric. Our protocol makes use of biometric template in binary form
that uses an exclusive-OR (XOR) for matching two templates with the Hamming distance
between the two to produce a difference score: the closer to 0 the more likely the two
templates match. Section 6 discusses our iris-based implementation of the protocol which
meets these requirements.

Our protocol is a two-factor scheme. Therefore, in addition to her biometric sample,
Peggy needs to obtain a token which she will use to store her protected biometric template
and authentication information. Section 5.4 discusses the issue of obtaining tokens. Peggy
and Victor need to decide on an appropriate pseudorandom bit generator G and securely
establish a shared secret z of the length m to seed the generator. The generator consists
of a tuple G = (m,n, S, ι, δ, ρ), which defines the length of the seed, the length of the
output sequence, the finite set of states of the generator, the initial-state function, the
next-state function, and the output function respectively. We assume a cryptographically
secure and backtracking resistant incremental pseudorandom bit generator. Details and
requirements for the generator as well as possible solutions for a secure seed exchange are
given in Section 3.5.

After agreeing on the secret seed z, Peggy and Victor initialize their generators using
the seed. Peggy commits to her token by providing a biometric sample to generate a refer-
ence template (Section 5.2 discusses template generation). Then, she blinds the reference
template with the first blinding factor generated using G. This process binds Peggy’s bio-
metric identity to the secret established with Victor. Peggy can obtain a biometric sample
using an external sensor or a sensor built into the token depending on the kind of token
she chose as described in Section 5.4. Algorithm 1 shows the steps of the enrollment pro-
cess in detail. We assume the enrollment phase concludes with Peggy in possession of a
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Algorithm 1 Enrollment Phase

1. Peggy obtains a token. Peggy and Victor agree on non-secret authentication informa-
tion: the choice of G = (m,n, S, ι, δ, ρ).

2. Peggy and Victor securely exchange a random seed z ∈ {0, 1}m.

3. Peggy and Victor initialize their generator G and obtain the initial state s0 = ι(z).

4. Victor sets R0 = r0, where r0 = ρ(s0) and keeps s1 = δ(s0), the next state of G.

5. Peggy obtains a biometric template P and creates a blinded template T0 = P ⊕ r0,
where |P | = |r0|, r0 = ρ(s0) and ⊕ is a bit-wise exclusive-OR operation.

6. Peggy securely erases z, P and r0, and keeps the blinded template T0 and the next
state of G, s1 = δ(s0). Victor securely erases z.

After the enrollment phase:

• Peggy’s token stores T0 = P ⊕ r0 and s1.

• Victor retains R0 = r0 and s1.

token bound to her biometric identity. The token stores her blinded biometric template, the
current state of the generator as well as other non-secret authentication information (for
example, Peggy’s identifier, information required by the underlying biometric recognition
protocol, etc.). Additionally, we assume that the secret seed z is securely erased on both
sides, Peggy’s unprotected template and the first blinding factor r0 are securely erased as
well, and none of the secret information (z, P, r0) have been compromised.

Peggy Victor

Token z

P
s0 = ι(z)

T0 = P ⊕ r0

r0 = ρ(z)
s0 = ι(z)
r0 = ρ(z)
R0 = r0

Figure 1: Enrollment Phase

3.3 Verification Phase

Our protocol requires two authentication factors in order to prove a claim of identity. There-
fore, Peggy must be in possession of the token issued to her upon the enrollment into the
system and obtain a fresh biometric sample. A feature extractor can use the biometric sam-
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ple to produce a biometric template for verification. We assume that the produced template
is of good quality and is a representation of an appropriate biometric characteristic. More
specifically, we discard every template which does not meet these requirements to ensure
that only an actual template is used and not, for example, an empty or random binary
vector.

In order to authenticate, Peggy obtains a new biometric sample and generates a fresh
template P ′i . Then, she uses her token to recover the blinded reference template Ti−1 and
calculates an authentication message Wi = P ′i ⊕ Ti−1. The process can continue up to k
times, where k depends on n, the number of bits that can be safely generated using G.
Peggy sends Wi, the blinded difference between the two biometric templates, to Victor for
verification. After each authentication attempt, successful or not, she updates the blinded
verification template stored on the token with a newly generated blinding factor to ensure
that the same sequence of blinding factors is never used twice. Algorithm 2 details the steps
Peggy performs during verification.

Algorithm 2 Verification Phase: Steps performed by Peggy

1. Peggy obtains a biometric sample and generates a fresh biometric template P ′i .

2. Peggy calculates calculate Wi = Ti−1 ⊕ P ′i and sends Wi to Victor.

3. Peggy updates the blinded reference template T : Ti = Ti−1 ⊕ ri, where ri = ρ(si−1).

4. Peggy securely erases P ′,Wi, Ti−1 and ri.

Upon receiving Wi from Peggy, Victor unblinds the difference between the two templates
using Ri−1. Victor computes Vi = Ri−1⊕Wi checks if Vi ≈ 0. If the authentication attempts
is successful, Victor updates his Ri−1 by adding the next blinding factor generated by G.
Algorithm 3 specifics Victor’s steps during verification.

Assuming that Peggy’s and Victor’s generators are in sync,

Ri−1 = r0 ⊕ · · · ⊕ ri−1
Ti−1 = r0 ⊕ · · · ⊕ ri−1 ⊕ P
Wi = Ti−1 ⊕ P ′i
Vi = Ri−1 ⊕Wi

Vi = r0 ⊕ · · · ⊕ ri ⊕ P ⊕ r0 ⊕ · · · ⊕ ri−1 ⊕ P ′i = P ⊕ P ′i ,
Vi = ∆(P ′i , P ).

If at any point Victor and Peggy get out of sync, Victor’s generator can catch up to
Peggy’s using a simple approach sketched in Section 5.3.

We write ∆(P, P ′i ) to denote the difference between P and P ′i using the difference func-
tion ∆. While Victor learns ∆(P, P ′i ) the individual templates are never available to Victor.
Because Vi is a binary vector, ∆ can be expressed as the Hamming distance of Vi. The lower
the Hamming distance, then the closer the difference is to 0.

Victor’s goal is to establish whether the authentication message Wi came from Peggy.
If two templates are created based on a biometric sample from the same user, they will be

7



very similar. Therefore, if ∆(P, P ′i ) is sufficiently “small” according to a security threshold
τ (∆(P, P ′i ) < τ) then authentication succeeds and Victor accepts Peggy’s claim of identity.
The parameter τ defines how “small” or how close to 0 the difference between two samples
should be. We write ∆(P, P ′i ) ≈ 0 to express that the difference between P and P ′i is
sufficiently close to 0 in terms of the parameter τ , that is ∆(P, P ′i ) ≈ 0 if ∆(P, P ′i ) < τ .

Section 3.4 further discusses the issue of making the verification decision.

Algorithm 3 Verification Phase: Steps performed by Victor

1. Victor calculates Vi = Wi ⊕Ri−1.

2. Victor Verifies that Vi ≈ 0 and if yes, accept Peggy’s claim of identity.

3. If verification succeeded, he updates R: Ri = Ri−1 ⊕ ri, where ri = ρ(si−1).

4. Victor securely erase Wi, Ri−1 and ri.

Peggy Victor

Token

Wi

Ack

P'i
Wi = Ti ⊕ P'i

Vi = Wi ⊕ Ri
Vi ≈ 0 if valid user

Figure 2: Verification Phase

3.4 Verification Decision

In biometric systems, a matcher and a decision module are the two components directly
involved in making the verification decision [30]. A matcher takes two biometric templates
created using a feature extractor, the reference template created in the enrollment phase
and the freshly obtained template from the verification phase, as input. Then, it calculates a
match score which shows how similar the two templates are [28]. The In case of our protocol,
the matcher functionality is embedded into the protocol. When Victor unblinds Peggy’s
authentication message, he receives a difference of two templates under an appropriate
difference function ∆ which in our case is an exclusive-OR. Therefore, Victor can apply a
proper metric to Vi = ∆(P, P ′i ) to evaluate the difference between two biometric templates.
Because Vi is a binary vector and δ is an exclusive-OR operation, the Hamming distance
(or alternatively a fractional Hamming distance) is a proper metric to obtain the difference
score between two binary templates.
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In other biometric authentication protocols, the authentication decision is based on the
match score while in our it is based on the difference score. To express the difference score
in terms of the match score we can say that the smaller the difference of Vi, the higher the
match score is.

The decision module takes a match score (in our case a difference score) as input and
based on a predefined threshold parameter τ decides whether the two templates were created
based on biometric samples from the same person. If the match score is greater than a
predefined threshold τ , user’s identity if verified. In our protocol, if the difference score if
lower than τ , then the two templates are accepted as coming from the same user.

Choosing a proper value for τ is a challenging task. To have a high level of confidence
that two templates were created based on samples from the same user, the difference should
be very low. Hence, the value chosen for τ should reflect the desired level of security as well
as the sensor and feature extractor’s capabilities to create accurate templates. The goal
is to balance the false rejection (FRR) and false acceptance (FAR) rates while ensuring a
proper level of security and user experience.

In case of our protocol, the template comparison function is an exclusive-OR operation
as the templates are binary vectors. Therefore, a low difference score will correspond to
a low Hamming distance of the resulting vector Vi. Section 5.2 contains a more detailed
discussion of the meaning of different values of the difference score for a concrete example
of iris-based templates.

3.5 Cryptographic Primitives

Secure seed exchange

The protocol relies on the parties’ ability to establish a secret seed for pseudorandom bit
generation. The seed needs to be established in a secure manner in order to keep the
sequences of blinding factors secret and the blinded template secure.

The secret seed can be exchanged using one of the schemes to establish a shared secret,
for example a key agreement protocol [23]. Alternatively, the seed can be sent through a
secure channel.

Pseudorandom number generation

A pseudorandom bit generator (PRBG) (sometimes called a deterministic random bit gen-
erator (DRBG) [4]), is a deterministic polynomial-time algorithm G that maps a random
seed z of length m to an output string r of length n > m.

In practice, pseudorandom bits are generated on demand and the output string is built
incrementally.

An incremental PRBG (iPRBG) G is defined by a tuple (m,n, S, ι, δ, ρ). m is the length
of the seed, n is the length of the output sequence, S is a finite set of states of the generator,
and ι, δ, and ρ are functions. The initial-state function ι maps a seed to an initial state
s0 ∈ S. The next-state function δ is a permutation on S. The output function ρ maps S to
{0, 1}. Starting with a seed z ∈ {0, 1}m, G computes a sequence of states s0, s1, . . . , sn and
a sequence of bits r0r1 . . . rn−1, where s0 = ι(z), sk = δ(sk−1) for 1 ≤ k ≤ n, and rk = ρ(sk)
for 0 ≤ k ≤ n− 1. The output G(z) = r0r1 . . . rn−1.
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In case of an incremental PRBG, its state can be explicitly defined, saved, and later on
retrieved to resume the generation of random bits. Any pseudorandom bit generator can
be easily expressed as an iPRBG. For example, a Blum-Blum-Shub (B.B.S.) [7] which is an
elegant and provably secure pseudorandom bit generator. Algorithm 4 shows how it can
adapted as an iPRBG.

Algorithm 4 Blum-Blum-Shub iPRBG

Input: Random seed s ∈R [1, N − 1], where N is a product of two sufficiently large Blum
primes.
Output: r0, r1, r2 . . . , rn−2

1. Initial state: s0 = ι(s) = s2 mod N .

2. Next-state: si = δ(si−1) = s2i−1 mod N .

3. Output bit: ri = ρ(si) = parity(xi).

We require the pseudorandom bit generator to be cryptographically secure and back-
tracking resistant.

To be cryptographically secure, the ensemble of output strings G(Um) should be compu-
tationally indistinguishable from Un, where Um and Un are the uniform distributions over
strings of length m and n, respectively. The notion of computational indistinguishability,
introduced by Yao [63], means that any probabilistic polynomial-time algorithm behaves
essentially the same whether supplied with inputs from the one distribution or the other.
See Goldreich [22] for further details.

A backtracking attack applies to an iPRBG G whose internal state has been compro-
mised. We assume that an adversary compromises the internal state of G at stage i after
ri−1 has been produced and the internal state has been replaced by si. Informally, we say
that G is backtracking resistant if the bit string r0 . . . ri−1 is judge-indistinguishable from a
truly random string of the same length. This implies that a polynomially-bounded adver-
sary has only a negligible advantage at guessing any of the bits produced by G before the
attack.

Backtracking resistance implies that knowing a state of the generator gives the adversary
no useful information about the previous output bits. This property is needed to prevent an
adversary who gains access to the token at stage i from recovering the sequence of blinding
factors (specifically the last blinding factor ri−1) that protects the blinded reference template
P . The adversary gains all of the information stored on the card at the time of the attack,
including the state si of G. We also have to assume that the adversary might have obtained
r0, . . . , ri−2 from observing and using the values Wi going over the channel. This information
might be used for a backtracking attack to be carried out in an attempt to recover ri−1.

While it seems likely that many cryptographically strong pseudorandom number gener-
ators are resistant to a previous-outputs backtracking attack, we are not aware of any such
generator that has been proven to enjoy this property.
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4 Security Properties

Our main goal and concern is the security of biometric data, not only under normal use of the
protocol, but also in case of complete compromise of either Peggy’s token or Victor’s entire
internal state. In addition, our protocol prevents an attacker who compromises Peggy’s
token from impersonating her to Victor.

We note that if an attacker compromises both Peggy and Victor then Peggy’s biometric
template is easily obtained. Peggy’s token contains her blinded template. Victor has the in-
formation needed to unblind the difference between Peggy’s reference and sample templates,
but this same information will also unblind the template stored on the token.

4.1 Assumptions

We assume that all communication occurs over an unsecured channel and Mallory can record
all messages sent between Peggy and Victor. Therefore, after k authentication attempts,
Mallory will see a series of authentication messages W1, . . . ,Wk, which are blinded differ-
ences between pairs of biometric templates. Thus, Mallory has the following information.

W1 =P ′1 ⊕ T1 =P ′1 ⊕ P ⊕ r0
W2 =P ′2 ⊕ T2 =P ′2 ⊕ P ⊕ r0 ⊕ r1
W3 =P ′3 ⊕ T3 =P ′3 ⊕ P ⊕ r0 ⊕ r1 ⊕ r2
· · · =
Wk =P ′k ⊕ Tk =P ′k ⊕ P ⊕ r0 ⊕ · · · ⊕ rk−1

The security of our protocol depends critically on the pseudorandom bit generator.
We assume that the secret seed z and the original unprotected template P are securely
erased after enrollment and are not available to Mallory. We assume the generator is
cryptographically secure and backtracking resistant, and that Peggy and Victor never use
more than n pseudorandom bits, where n is the maximum length of the output sequence of
G. Thus, Peggy never reuses the same blinding factors.

Furthermore, we assume that the sensor Peggy uses to obtain biometric samples does not
directly reveal her biometric data to Mallory, prior to his possible compromise of Peggy’s
token. We also assume that Peggy does not use her token after it has been compromised.
Similarly, we assume that the communication channel between the sensor and the token is
trusted.

We assume that at the time of compromise, Victor is in possession of only the blinding
factor Ri and the next state of the generator si+1. Similarly, Peggy’s token stores only her
blinded reference template Ti and the next state of the generator si+1. We further assume
that Peggy’s token is not compromised at the moment she is using it, since for a brief
interval, the token contains her unprotected biometric template as well as data from both
stage i− 1 and stage i.

4.2 Security of Biometric Templates

4.2.1 Mallory compromises Victor

If Mallory compromises Victor, she gets the current blinding factor Ri and the next state of
the generator si+1 in addition to the sequence of messages sent up to this point W1, . . . ,Wi−1
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and future messagesWi, . . . ,Wk. Knowing the next state ofG, Mallory can obtain the future
blinding factors too ri+1, ri+2, . . . , rk−1.

Wi =P ′ ⊕ Ti−1 =P ′ ⊕ P ⊕ r0 ⊕ · · · ⊕ ri−1
Wi+1 =P ′ ⊕ Ti =P ′ ⊕ P ⊕ r0 ⊕ · · · ⊕ ri−1 ⊕ ri
Wi+2 =P ′ ⊕ Ti+1 =P ′ ⊕ P ⊕ r0 ⊕ · · · ⊕ ri−1 ⊕ ri ⊕ ri+1

· · · =
Wk =P ′ ⊕ Tn−1 =P ′ ⊕ P ⊕ r0 ⊕ · · · ⊕ ri ⊕ · · · ⊕ rk−1

By knowing the future blinding factors, Mallory will be able to unblind messagesWi+2, . . . ,Wk.
This way Mallory recovers exact same information that Victor receives from Peggy, the dif-
ference between two templates.

4.2.2 Mallory compromises Peggy

When Mallory obtains access to Peggy’s token, she learns the current blinded reference
template

Ti = P ⊕ r0 ⊕ r1 ⊕ · · · ⊕ ri−1 ⊕ ri
and the next state of the generator si+1. This new information is in addition to all authen-
tication messages W1, . . . ,Wi sent up to that point which we assume she already knew.

Ti looks random to Mallory because of the blinding factor ri, which he does not know.
It was securely erased from the token when Ti was updated, and it was never included
in any of the messages sent. Additionally, ri cannot by recovered using the stored state
si+1 of G and r0, . . . , ri−1 (assuming they are known) since G is backtracking resistant
and cryptographically secure. Thus, neither Ti nor si+1 give Mallory any additional useful
information about P .

4.3 Impersonation

4.3.1 Mallory compromises Victor

As before, when Mallory compromises Victor, she gets Ri and si+1. Ri is the sequence of
all blinding factors needed to unblind the next authentication message. Therefore, Mallory
can prepare a fake message W ′i+1 that is close to Ri so that verification will succeed from
Victor’s point of view as follows. Assume that W ′ ≈ Ri. Then, Vi+1 = Ri ⊕W ′i+1 ≈ 0 and
Victor will successfully authenticate Mallory.

4.3.2 Mallory compromises Peggy

In order to impersonate Peggy, Mallory must send a message W ′i+1 that Victor will accept
as valid. Looking at Victor’s protocol, this will happen exactly when W ′i+1 ≈ Ri.

If Mallory has also compromised Peggy’s token, he knows Ti and si+1. Since Ti = P⊕Ri,
this would enable him to find Peggy’s unblinded template P . But we argued in Section 4.2
that Mallory’s compromise of Peggy’s token is insufficient for him to obtain her template,
so it must also be insufficient for him to find a good approximation of the blinding factor
Ri.
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4.4 Leakage of Information

During each authentication attempt, Victor receives a difference between two biometric
templates. If he has been compromised, then Mallory also receives this information. Un-
like the case of a compromise of Peggy, we assume that the compromise of Victor might
be undetected so that Mallory can collect data over time from legitimate authentication
requests.

After a number of such authentications, Mallory has a set of differences between Peggy’s
templates. Those differences are binary vectors of differences between Peggy’s reference
template and the sample template used on a given authentication. A difference bit of
1 indicates a discrepancy between the reference and the sample templates. In a perfect
biometric system, the differences would always be zero.

The frequency of 1’s in any given bit position represents the unreliability in that position
of the template. A low-frequency position indicate a reliable bit; a high frequency position
means that little useful information is being carried by that bit. Mallory can compute
these frequencies and thereby learn about the reliability of each bit in the template. What
information these frequencies carry about the actual reference template or Peggy’s raw
biometric data depends in detailed properties of the sensor as well as the feature exaction
algorithm. Analyzing this kind of information leakage for any particular sensor and feature
extractor is beyond the scope of this paper, it is well to keep in mind this possibility in
designing biometric systems.

Low-frequency bits can arise equally well from 0’s in both reference and sample templates
or from 1’s in both, so knowing that it is low frequency says little about the actual template
bit. With a good feature extractor, we expect most difference bits to be low-frequency, so
information leakage would seem to be minimized with good quality biometric systems.

5 Usage Considerations

5.1 Suitable Biometrics

There are two main categories of biometric characteristics used in biometric systems: phys-
iological (e.g., a fingerprint or iris pattern) and behavioral (e.g., voice print or signature).
Characteristics must be universal (everyone has it), unique (different for every person),
permanent (it does not change with time), and collectable (it can be quantitatively mea-
sured) [14]. In practice, fingerprints, face geometry, and iris patterns have been popular
choices as they can be obtained easily and non-intrusively using a simple camera. Finger-
prints tend to be prone to spoofing, however, and the accuracy of facial recognition may be
impacted by pose, expression, or lighting [16, 28]. An iris, on the other hand, exhibits many
highly desirable properties. Its pattern varies greatly among different people, even identical
twins, and persists over a lifetime. The iris tend to be relative easy to locate and isolate
to create a size-invariant representation, making them well-suited for biometric systems.
Iris-based recognition systems have been widely deployed by many organizations including
British Telecom, US Sandia Labs, UK National Physical Lab, NBTC, Panasonic, LG, Oki,
EyeTicket, and IBM SchipholGroup [15, 9].
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5.2 Template Generation and Matching

A feature extractor obtains a biometric sample in order to generate a biometric template.
The feature extraction process identifies the key features of the biometric sample and en-
codes them in the form of a template. The template quality directly impacts the perfor-
mance of a biometric system [30]. Our protocol perserves the the recognition performance
of the underlying feature extractor. Therefore feature extractors should produce templates
of high quality, such that sample from the same individual should be “sufficiently” similar to
be suitable for authentication purposes, an acceptable false rejection rate (FRR). Likewise,
two templates created from two different users should be “sufficiently” different, ensuring a
low false acceptance rate (FAR).

An iris produces a template using an iris pattern represented as a binary vector. Fin-
gerprint templates use the fingerprint texture as a real-valued fixed length vector. Finally
facial features use facial features represented again as a real-valued fixed length vector. A
match can be performed by calculating the hamming distance (or alternatively a fractional
Hamming distance) for binary vectors, while a Euclidian distance for real-valued vectors
with the points defined by the set difference. While our current protocol assumes binary
biometric templates, a binarization technique [35, 12, 53] can convert data into a binary
vector.

We chose to use an iris-based template for our implementation, described in Section 6.
These templates typically consist of 2048 bits to represent the iris pattern with any bit
equally likely to be either 1 or 0. The templates also include a mask, which can be used
during the matching phase to exclude bits from calculating the score. On average half of all
the bits will disagree between the templates of two different people. Therefore, the difference
score expressed as a fractional Hamming distance (a fraction of all disagreeing bits to all
bits) is expected to be around 0.5. [15] showed the average fractional Hamming distance
of p = 0.499 with standard deviation σ = 0.0317 with the minimum of p = 0.329 and
maximum of 0.546 based on 9.1 million comparisons between different pairings of iris images.
[15] concludes that it is extremely improbable that two different irises might disagree fewer
than at least a third of their bits. In other words, if two irises disagree on more than 30% of
all bits, they likely come from two different people. Table 1 shows the relationship between
a fractional Hamming distance (the difference score) and a probability of a false match.
Consequently, if a difference score is less than 0.32, then a positive match is statistically
“guaranteed”.

5.3 Resynchronization

Victor’s ability to verify Peggy’s identity depends on his ability to “unblind” the difference
between her two templates, which requires the two pseudorandom number generators to be
in sync. Unfortunately, desynchronizations can occur as a result of either a poor feature
extraction by Peggy, Viktor’s not storing the updated template before going offline, or as a
result of intentional malicious attempts from Mallory.

Because Peggy updates her blinded template Tu after each authentication attempt and
Victor does so only after a successful authentication, if the generators are out of sync,
Peggy’s generator will be ahead of Victor’s. The simple solution is for Victor to search
forward in the sequence produced by G for some predefined distance n looking for a value
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Difference Score False Match

0.26 1 in 1013

0.27 1 in 1012

0.28 1 in 1011

0.29 1 in 13 billion
0.30 1 in 1.5 billion
0.31 1 in 185 million
0.32 1 in 26 million
0.33 1 in 4 million
0.34 1 in 690,000
0.35 1 in 133,000

Table 1: The relation between the difference score and odds of a false match [15]

of Ts that is the blinding factor. After finding the correct value of Ts, both generators will
be in sync. To make the process easier, Peggy can keep the stage her generator is at and
send it to Victor along with her authentication message.

5.4 Tokens

There are four typical locations for storing biometric templates: portable tokens, central
databases, sensors, and individual workstations [51], with the former two being the most
popular. A token allows users to secure their biometric templates physically and gives
them a sense of control over their personal data. However, issues arise when tokens are
lost or stolen and their content is unsecured. A central database makes it possible for
users to authenticate from multiple locations easily as templates are constantly available
for verification. On the other hand, the database may become a target of attacks because
of its valuable content. Furthermore, central storage of templates raises privacy concerns
because all authentication attempts go through a single point, allowing the verifying party
to track and link users’ actions.

Since our protocol has been designed with privacy protection in mind, we use tokens to
store biometric templates but ensure that their content is protected in case of loss or theft.
There are two different approaches to utilizing tokens depending on the token’s ability to
obtain biometric samples.

A token with a built-in sensor

Obtaining a biometric sample is a crucial part of the authentication process. Ideally, a
token has a built-in sensor, removing security concerns related to the sensor and the com-
munication channel between the token and the sensor.

Mobile devices are an obvious choice for such tokens. Most modern phones, PDAs, or
tablets, are equipped with a high resolution camera capable of capturing images suitable for
authentication using several biometric characteristics such as a fingerprint, facial geometry,
or iris pattern [28]. Additionally, mobile devices make it possible to take advantage of less
frequently utilized characteristics like voiceprint, keystroke or handwriting patterns, service
utilization [13] or even gait [17].
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A token without a sensor

In this case, the token is only used to store authentication information and to perform
computations. It must be paired with an external sensor to obtain a biometric sample. This
implies certain level of trust that the sensor is not compromised. However, this approach
makes it easy to utilize virtually any biometric characteristic.

Smart cards are the most obvious choice for such tokens. They have been extensively
used for authentication and are relatively cheap, small, and convenient to use [59]. Most
smart cards offer enough computational power to perform the required operations, given
that the computational requirements of our protocol are modest.

5.4.1 Obtaining and Managing Tokens

The main drawback of possession-based authentication is the need to obtain and manage
tokens. Eddie, an enrolling agent, can be responsible for issuing tokens and performing
the enrollment phase, ensuring a successful bond between a token and a biometric identity.
Depending on the application-specific security requirements, Eddie can be an independent,
trusted enrollment center, Victor can assume Eddie’s role, or Eddie’s role can be delegated
to users. In the first scenario, Eddie’s services can be offered by an organization such as
VeriSign [61]. This approach would provide a good way to issue and manage a variety
of tokens. VeriSign already provides similar services and issues security credentials (VIP
Security Token and VIP Security Card [62]).

5.5 Personas

Privacy protection stems from how the user’s identity is established with the verifying party.
The identity created is based on user’s unprotected biometric template with respect to the
blinding factors known to the verifying party. This results in two benefits. First, the veri-
fying party does not need to have direct access to biometric data. Second, a user can create
multiple identities based on the same biometric template and different blinding factors.
This approach allows users to create multiple, fully independent personas. Each persona is
based on the same biometric identity but a different secret shared with a verifying party.
Therefore, a persona represents user’s unique identity as seen by the verifying party. Users
can create different personas to deal with multiple verifying parties, or use personas for
different transactions with the same verifying party. This creates a separation and unlink-
ability of biometric identities and transaction performed using those identities. The user
must perform the enrollment process once for each persona, so the policies and procedures
controlling this enrollment process determine how many and what type of personas a user
may acquire.

6 Evaluation

In this section, we analyze our prototype implementation to observe the performance char-
acteristics of our protocol in comparison to using unprotected templates. We then analyze
the behavior of the feature extraction libraries to determine their usefulness and potential
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overheads in this scheme. We used the CASIA Iris Image Database [27] as input into our
system.

6.1 Implementation

We have implemented our biometric protocol system in C++ using the Qt framework and
Crypto++ cryptographic libraries. For feature extraction or obtaining biometric templates,
we have employed two different Iris recognition libraries: Project Iris [8] and Libor Masek’s
Iris Recognition [44] which both utilize John Daugman’s approach [15] for extracting an iris
template. Project Iris also uses C++ and the Qt framework; however, for Masek’s library,
we constructed a C++ to Octave1 interface.

During enrollment, the proving party, Peggy, provides the verifying party, Victor, with
a Diffie-Hellman public key and commits to a feature extraction scheme, the size of the
template, and the number of samples to be transmitted during each authentication attempt.
Victor obtains his shared secret with Peggy by completing the Diffie-Hellman protocol, and
uses the result as input into a deterministic pseudorandom bit generator (PRBG) (AES256-
CBC) to obtain the inputs into a Blum Blum Shub incremental pseudorandom bit generator
(iPRBG). Furthermore, Victor computes the first blinding factor, R0, by considering the
size of the feature extraction scheme and the number of parallel attempts. Upon storing this
to a SQLite database along with a randomly generated unique identifier, Victor responds
to Peggy with her unique identifier and his Diffie-Hellman public key. Peggy completes
enrollment by obtaining a set of templates using the feature extraction scheme, constructing
her iPRBG as Victor did and then using it to blind her template, T0. Finally she stores the
iPRBG state, her blinded template, and her unique identifier to her smart card.

During authentication, Peggy uses the feature extractor to obtain a new template, P ′i .
Using the protocol described earlier and elaborated on later in this section, she obtains
the authentication message Wi, which she sends along with her unique identifier to Victor.
At which point, she updates the state on her smart card including an updated blinded
template, Ti. Victor unblinds her Wi using Ri, producing Vi, and calculates its difference
score (fractional hamming distance). If it suggests Peggy has correctly authenticated, by
scoring a difference score of .32, Victor updates his unblinding factor and sends Peggy a
positive response. Otherwise Victor leaves his unblinding factor alone and sends Peggy a
negative response.

In iris recognition, a single template may need to be rotated up to 8◦ in both the
left and right directions in order to obtain an acceptable difference score. Because Victor
cannot perform such operations, Peggy must do this for him by doing the actions locally and
embedding multiple attempts within a single Vi. This leads to an important design decision:
Peggy can send less data in Vi in order to reduce communication and computation cost at
the risk of having to perform several authentication attempts. In our system, we preprocess
a single template to produce these rotations. Thus Peggy’s new template need only be
XORed to each of these independent blinded templates in order to obtain the same effect
as a traditional template comparison would. By rotating the images during enrollment, we
tradeoff a slightly larger demand for storage capacity (on the order of kilobytes) in favor of
performing a rotation for each new template, P ′i .

1Open-source Matlab compatible system

17



During our evaluation, we discovered some interesting behavior for both feature extrac-
tion libraries. Project Iris only supports version 1 of the CASIA database, in which images
have been preprocessed by replacing the pupils with a black (constant intensity) circle.
Masek’s iris recognition library handles CASIA database version 2, however, had trouble
parsing approximately 4% of the images, though had no issue in database version 1. The
libraries also differ in the resolution of their extracted features. While Project Iris extracts
a 2048-bit template like Daugman [15], Masek extracts a 9600-bit template, the motivation
for which is not clear. In evaluation figures, we denote Project Iris as C++ and Masek’s
library as Octave.

All CASIA databases have already been converted to gray scale images. CASIA database
version 1 contains 108 individuals with 7 images each. The 7 images were obtained in two
separate sessions with 3 images in the first session and 4 in the second.

We ran the evaluations on a workstation computer equipped with a 4 core Intel Core
i7-2600 with 4 cores, 16 GB of memory, and a Crucial 256GB SSD hard drive. Though our
software ran in single threaded mode and never eclipsed 12 MB of used memory, the typical
amount for a minimal Qt application on said machine.

6.2 System Performance

To evaluate the enrollment phase, we created a client, the prover, for each image in the
CASIA database version 1 and used a single server, the verifier. Clients, in no particular
order, enrolled one after another. The enrollment occurred within the same process, as a
result the evaluation focuses on data processing and message serialization, i.e., CPU time.
Our results can be found in Figure 3.
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Figure 3: CPU time for enrollment

The clients enrollment time includes both the initial enrollment request and the sub-
sequent processing for a successful enrollment, both are represented as a single, summed
value. The client enrollment times is still negligibly larger than the servers enrollment time.
The major factor in performance appears to be the size of the stored template(s). The
iPRBG causes the performance degradation between the two approaches. While Octave,
Masek’s library, uses 17 9600-bit template with 17 masks resulting in 40.8 KBs of iPRBG
work, C++, Project Iris, uses only 8.7 KBs.
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To evaluate authentication time, we set a minimal difference score of .32 as passing.
We then had each image in the database tested against every client for a total of 571,536
authentication attempts or 756 attempts per client. We separated the results, in Figure 4,
into valid and invalid client and server authentications, those that our system processed,
and compared them against the time a traditional template comparison would take.
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Figure 4: CPU time for authentication

The traditional template comparison takes two templates XORs them together and uses
the masks to remove unhelpful bits. This process is repeated 16 more times by rotating one
template both left and right 8 times. In contrast, a client and server, in our scheme, each
perform only the XOR process as the rotations have been performed during enrollment.

Invalid authentications limit clients to retrieving their previous personal data from disk
and performing the XOR with a newly acquired template. Valid authentications complete
this process by updating the templates with new blinds. Similarly, invalid authentications
on the server involve querying the database for the client’s information and performing an
XOR. The server only updates the blind information upon successful authentication. At
this point, we have yet to consider the impact of an honest client failing to authenticate
and requiring additional attempts, which would result in his blinding factor becoming out
of sync with the server.

The results indicate that an invalid authentication attempt has negligible effect on a
server, in fact, it is nearly the same time to perform a template comparison. As a result,
the protocol should be resilient to denial of service attacks by brute force attempts to break
into the system, which could be further enforced by rate limiting a client’s authentication
attempts. By comparing the invalid client and server authentication attempts as well as
template comparison, it would appear that the database interaction plays a roll in server
performance especially for smaller template sizes. Successful authentication attempts take
orders of magnitude longer than a template comparison, but still within the realm of laten-
cies on the Internet and thus should not be easily perceived by individuals.

6.3 Feature Extraction Reliability

To evaluate the ability of the feature extraction libraries, we computed the difference scores
for two images extracted from the same individual as well as different individuals and then
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processed them using our system. The results, as expected, were identical, though the time
to do so was different, as shown earlier in Figure 4. Therefore, in this section, the evaluation
primarily focuses on the abilities of the feature extraction libraries to recognize images from
the same eye and differentiate those that are not, as shown in Figure 5.
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Figure 5: Difference scores using different libraries

While both libraries were able to identify common individuals relatively fell (low FRR),
we were suprised to see different participants had such low difference scores in both systems,
in particular Masek’s. This was a suprising result given Daugman’s earlier analysis [15].
Regardless of the reason for the discrepancy, we are satisfied that our system works equally
well as the underlying feature extraction and unprotected matching scheme.

6.4 Feature Extraction Timing

While our system has good response time on the orders of 10s to 100s of milliseconds,
depending on the sampling size, we discovered that feature extraction has significant per-
formance overheads as shown in Figure 6. This along with the ability to capture the image
play a critical role during the clients authentication process.
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Figure 6: Time for feature extraction

On average, the Project Iris processes images in less 2 seconds; however, the Masek’s
library took an order of magnitude longer. Considering these costs, our protocol has nearly
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negligible overhead in comparison to the cost of feature extraction alone. However, in
comparison to Daugman’s [15] results on a significantly older computer, these libraries
seem to perform poorly. Project Iris runs nearly an order of magnitude slower with Masek’s
library two orders slow. Using these libraries run time, our protocol overhead is negligible
and even using Daugman’s numbers we are still within the same magnitude.

7 Conclusions

Remote biometric authentication faces significant challenges related to the sensitive nature
of biometric data. While biometrics are exceptionally suitable for authentication purposes,
biometric templates carry sensitive information as user’s identity is embedded into them.
Consequently, protection of biometric data is of utmost importance.

The protocol we proposed defines a new approach to remote biometric authentication.
It combines biometric- and possession-based authentication in a way that:

• Protects biometric data. Our protocol handles biometric data in a way that
results in minimal disclosure. This approach guards agains attacks exploiting the
communication channel and attacks based on compromised proving or verifying party.
However, our protocol does not protect the biometric data in case of a simultaneous
compromise of both parties.

• Is theft-resistant. Peggy uses a token to store her authentication information,
including a biometric template secured by a sequence of blinding factors, and the
current state of a pseudorandom bit generator. If Peggy loses her token and Mallory
uses it or obtains its contents, Peggy’s biometric template cannot be stolen assuming
a backtracking resistant generator.

• Is privacy-preserving. Our protocol enables biometric data to be used in a way
that allows Peggy to create different personas. While each persona derives from the
same biometric identity, the blinding factor establishes a unique identity. Peggy can
use a different persona for each verifying party to ensure that her actions remain
unlinkable across those parties. This approach also allows to easily revoke and replace
the blinded reference template if it is ever compromised, for example, if Peggy loses
her token. In such cases, Peggy can disregard the compromised template as it does
not reveal information about the underlying biometric template and on its own cannot
be used for authentication. A replacement token can easily be created by re-enrolling
with the verifier.

• Offers good performance. Our protocol provides the same recognition performance
as straight-forward unprotected comparison of templates, in terms of FAR/FRR, while
only adding a little overhead in computation time. In fact, the time and computation
delay in feature extraction negates the overhead in our protocol, thus offering a good
user experience in contrast to existing protocols.
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