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Abstract—In 1948 Shannon developed fundamental limits on available to the code designer; memory and redundancy. The

the efficiency of communication over noisy channels. The coding proper allocation of these resources to the different obstacles

theorem asserts that there are block codes with code rates g fartile ground for information theory and coding, but for
arbitrarily close to channel capacity and probabilities of error

arbitrarily close to zero. Fifty years later, codes for the Gaussian € Past 50 years the focus of coding theory in particular
channel have been discovered that come close to these fundahas been reliable communication in the presence of noise.
mental limits. There is now a substantial algebraic theory of This general framework includes the algebraic theory of error-
error-correcting codes with as rgaﬂy (lzonnections tohmathematic?] correcting codes, where codewords are strings of symbols
as to engineering practice, and the last 20 years have seen t S L .

construction of algebraic-geometry codes that can be encoded andetaken from some finite field, and it includes data transm|SS|or_1
decoded in polynomial time, and that beat the Gilbert-Varshamov ©OVer Gaussian channels, where codewords are vectors in
bound. Given the size of coding theory as a subject, this review Euclidean space. Compact disk players [168], [113], hard-
is of necessity a personal perspective, and the focus is reliabledisk drives [152], and high-speed modems [83] are examples
communication, and not source coding or cryptography. The ot consumer products that make essential use of coding

emphasis is on connecting coding theories for Hamming andt . liability. The i ¢ f h licati
Euclidean space and on future challenges, specifically in data 0 Improve reliabiiity. € 1mportance or these applicalions

networking, wireless communication, and quantum information has served to focus the coding theory community on the

theory. complexity of coding techniques, for it is entirely appropriate
Index Terms—Algebraic, information and coding theory, quan-  that performance of a code should be valued as a function of
tum and space-time codes, trellis. delay and decoding complexity. Ever since Shannon’s original

paper, coding theorists have attempted to construct structured
codes that achieve channel capacity, but this problem remains
unsolved. It is in fact tempting to ask a slightly different
EFORE Shannon [187] it was commonly believed thajuestion; to fix the complexity of decoding and to ask for
the only way of achieving arbitrarily small probabilitythe maximum transmission rate that is possible. There is a
of error on a communications channel was to reduce tBgnse in which the journey is more important than the goal,
transmission rate to zero. Today we are wiser. Informatiggr the challenge of coming close to capacity has generated
theory characterizes a channel by a single parameter; Hgny important coding techniques.
channel capacity. Shannon demonstrated that it is possiblerhe notion of combined source/channel coding is present
to transmit information at any rate below capacity with ap the telegraph codebooks that were used from 1845 until
arbitrarily small probability of error. The method of proofzhout 1950 (see [120, Ch. 22]). These books, arranged like
is random coding, where the existence of a good code ggtionaries, would list many useful phrases, or even sentences,
shown by averaging over all possible codes. Now there weggch with its corresponding codeword. They were compiled
codes before there was a theory of coding, and the mathemgf-shecialists who competed on the basis of compression (the
ical framework for decoding certain algebraic codes (Bosgpjjity to capture a specialist vocabulary in few words), ease
Chaudhuri-Hocquengham (BCH) codes) was written dowg} ,se and resistance to errors (exclusion from the codebook
in the late 18th century (see Wolf [227] and Barg [5])of \yords obtained from codewords by single letter substitution
Nevertheless, it is fair to credit Shannon with creating coding yansposition of adjacent letters). An important motivation
theory in that he established fundamental limits on wh as the price per word on undersea cablegrams which was
was possible, and present.ed the cha]lenge of finding Specgghsiderable (about $5 per word on a trans-Atlantic cable
families of codes that achieve capacity. message in 1867, falling to 25 cents per word by 1915). The
: : : ) UQhdition of adjacent transpositions to Hamming errors means
of information that is to be transmitted over some NOISY -+ the universe of words makes for a more complicated

including channel estimation, noise, synchronization, and Iﬁ?etric space, so that determining efficiency or even optimality
9 ' » SY ' of a particular code is extremely complicated. This framework
terference from other users, but there are only two resour

i not encourage the creation of coding theory but it did not
prevent telegraph code makers from using linear codes over
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In exploring the beginnings of coding theory, it is importanAlgebraic coding theory calculates the determinant of this
to be mindful of intent. In the early 1940's the famoudinear system forv = ¢,t — 1,---. It is zero if v exceeds
statistician Fisher [71], [72] discovered certain remarkabtbe number of errors that occurred and nonzero if equality
configurations in Hamming space through his interest in fabelds. Once the error-locator polynomial is known Chien
torial designs. Conside2” — 1 factors taking valuestl search [40] can be used to find the error locatidfs and
that influence the yield of a process, and suppose pairwiben finding the errors; is simple linear algebra. By contrast,
interactions do not affect yield. We are led to an expressiomde Prony used Lagrange interpolation, and this corresponds

to the refinement of the basic algorithm for decoding BCH
J(X) = Z AaXo + E codes that was suggested by Forney [73]. Berlekamp ([11,

acF} Ch. 7]) and Massey [153] expressed the problem of finding the

0?<oe1’“ficients of the error-locator polynomial as that of finding
the shortest linear feedback shift register that generates the
number of binary vectorss called experimentsFurther, we Syndrome sequence. The Berlekamp-Massey algorithm has
are interested in a collection of experiments that will alloffcenty been generalized to more than one dimension, and
us to distinguish the effect of factak, from that of X,:: _used to decoc_je algebraic-geometry codeg. Th|s_ story is told

Ryt more detail by Barg [5], but even this outline reveals

in the language of statistical design, these factors are ) _ ) .
to be confounded The 2 experimentsX, = (—1)**, for considerable synergy between the discrete and the Euclidean

v € FY, have this property, and correspond to codeworeﬁorld' This synergy is one of the strengths of the text by

in the binary simplex code. The assertion that main eﬁec%ah“t [14] anq there is reason to resist any balkanization 9f
X, are not confounded is simply that the minimum weight iﬁodlng theory into algebraic codes and codes for the Gaussian

the Hamming code is at lea8t In classical statistical designChannel'

the experiments are taken to be a linear cadeand large

minimum weight in the dual cod€- is important to ensure 1. AN INTRODUCTION TO HAMMING SPACE
that potentially significant combinations of factors are not L ) N
confounded. Since coding theory and statistical design share &€t Fq denote the finite field witly elements, and lef,
common purpose we can understand why Fisher discovered q_iﬁ@ote_ the set oN-tuples(ai, - -, ay), Whﬁreai € F,. The
binary simplex code in 1942, and the generalization to arbitrar{?™M"'NJ weightwt («) of a vectorz € F,’ is the number

. . : q
prime powers in 1945. However, it is important to remembd&fl NONZero entries. Thétamming distanceD(x, y) between
his intention was not the transmission of information.

two vectorsz,y € FY is the number of places whereand
On an erasure channel, a decoding algorithm interpolaedliffer- Thus D(z,y) = wt (x +y). An (N, M, D) codeC
the symbols of a codeword that are not erased. In an algeb/AYE" the alphabet,

is a collection of M vectors fromF}
error-correcting code the information in each encoded bit {galled codeword} such that

diffused across all symbols of a codeword, and this motivates

the development of decoding algorithms that interpolate. This
notion is fundamental to the Berlekamp—Massey algorithm ) ) )
that is used for decoding a wide class of cyclic codes, agfdL is the largest number with this property. The parameter
to the new list decoding algorithm of Sodan [203]. Howevep IS called theminimum distancef the code. _

Wolf [227] observed that as far back as 1795, de Prony [58] Vector addition turns the sdf ;" into an N-dimensional
considered the problem of solving over the real field, tHéector space. Alinear codeis just a subspace df)’. The

where E captures error and imprecision in the model. We lo
to determine the coefficients, by measuring’(.X) for a small

D(z,y) > D, for all distinctx,y € C

system of equations notation[V, k, D] indicates a linear code with blocklengif,
. dimensionk, and minimum distanceD. The next result is
ZCin‘k =S, k=12, 2t both fundamental and elementary.
i=1 Theorem: The minimum distance of a linear code is the

for the coefficientss;, in the case where = ¢. In algebraic Minimum weight of a nonzero codeword.

coding theory this system of equations appears in the decoding; s possible to describe any code by just listing the
of ¢-error-correcting BCH codes, but the underlying field igodewords, and if the code has no structure, then this may
finite, the indexv (v < t) is the number of errors, and thepe the only way. What makes a linear code easier to discover
coefficientse; are the error values. Nevertheless, the solutiogthat it is completely determined by any choicekolinearly

proposed by de Prony [58] and Peterson [170], Gorenstein gRgependent codewords. Perhaps ease of discovery is the main
Zierler [104] have the same form: all solve for the coefficienigason that coding theory emphasizes linear codes.

o1, -+, 0, Of the error-locator polynomial A generator matrixG for an[N, k] linear codeC is ak x N
v matrix with the property that every codeword 6fis some
o(x) = H(l —zX;) linear combination of the rows off. Given an[N, k] linear
i=1 codeC, thedual codeC is the [V, N — k] linear code given
by analyzing the recurrence relation by

01841+ 0,8 =Sy, =10 Ct={zeF)|(z.c)=0forallce C}
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where expresses the fact that spheres of Hamming radicesntered
N at the codewords of” are disjoint, and the union of these
(z1,- - zn), (1, yn)) = szyz spheres is a subset Bfé‘ An e-error-correcting cod€’ for
el which equality holds in the sphere-packing bound is said to

be perfect For perfect single-error-correctirigear codes, the

is the standard inner product. AV, k] linear codeC' is sphere-packing bound gives

also completely determined by any choice®éf— & linearly
independent codewords frofi+. A parity-check matrixH |IC|(14 (g — 1)N) = ¢".
for an [NV, k] linear codeC is an (N — k) x N matrix with
the property that a vectar € FY is a codeword inC' if and
only if HzT = 0. Thus a generator matrix faf' is a parity-
check matrix forC+ and vice versa. A linear codg is said .
to be self-orthogonalif (x,%) = 0 for all z,y € C. If C'is H for C are vectors ;. If Ah; = h; for someX € F,

e \HT = i T e i
self-orthogonal, ther C CL and we can construct a parity-11€" (eé_ )“;]J)I;I _he(()f This m;.\ans_e;] Aej € C|_*| which

check matrix forC by adding rows to a generator matrix. lfcor_nra icts the fact t L IS a code with minimum amming
C = O, thenC is said to beself-dual In this case, a single weight D = 3. Hence different columns o must determine

matrix serves as both a generator matrix and a parity-che%'ﬁerent one-dimensional subspages_ Fof. Smce. there_ are
matrix. exactly N = (¢° — 1)/(¢ — 1) distinct one-dimensional
S
It is interesting to look back on Blake [15] which is anSuPSpaces oFg, we must choose exactly one vector from

annotated selection of 35 influential papers from the first ?‘Ch subspace. Note that givenany two codes of length
get

years of algebraic coding theory and to distinguish two larg#’ — 1)/(¢ — 1) obtained in this way are equivalent. This
themes: geometry and algorithms. Here the early work pmpletes the classification of perfect single-error-correcting

Slepian [196]-[198] on the internal structure of vector spac Qear codes, but even perfect single-error-correcting nonlinear

provides a geometric framework for code construction. lde_s are nolt yet comp;lletely unr?efzrstoor(]j. ; des b
contrast, the emphasis of work on cyclic codes is on the't 1S natural to start the search for other perfect codes by

decoding algorithm. In the last 25 years, the fear that go(lj%okmg for instances wherEizo(Q )g—1)"is a power of
codes might turn out to be very difficult or impossible td- TO" ¢ =2 ¢ =3, N =11 we find
decode effectively (“messy”) has been proved to be unfounded. 56 <1 1124 <11) ' 4> _gu

Hamming distance is not changed tmpnomial transforma- 2 o

tionswhich consist of permutations of the coordinate positions .
P P and fore = 3, ¢ = 2, N = 23 we find

SinceC is linear, there is a dual codg* satisfying|C+| =
aV/IC| = ¢° for somes, and soN = (¢° — 1)/(g — 1).
The columnsh;, ¢ = 1,2,---, N in a parity-check matrix

followed by diagonal transformationdiag [A1,-- -, Ax] that
multiply coordinate: by the nonzero scalah;. Monomial 91214 93 4 23 n 23 _ 923
transformations preserve the Hamming metric and we shall 2 3 T

say that two code€’; andC, areequivalentf one is obtained AP each case there was a code waiting to be foundfih, 5|
. . . b ) 9
from the other by applying a monomial transformation. In h Erary Golay code, and tHe, 12, 7] binary Golay code.

1962 Harvard dissertation, MacWilliams [146] proved that th The ternary Golay code was discovered by Virtakallio in

linear r ivalent if and only if there is an r ) L
ear codes are equivalent if and only if there is an abst ?47 and communicated in issues 27, 28, and 33 of the

linear isomorphism between them which preserves weighls. " NP
Extensions of this result to linear codes over finite rings a nnish f_ootball POOl magazn_w‘delkaaja The ternary alphabet
to different weight functions (for example, Lee weight) hav _assouated with the possible _OI,JtCO.meS of a soccer match
been derived recently by Wood [228]. win, lose, or draw), and \ﬁrtgkalllo s aim was to approximate
closely an arbitrary vector in Hamming space (the ternary
. Golay code has the property that given anyc F3i' there
A. The Sphere-Packing Bound is a unique codeword such thatdy (x,c) < 2). ’
The spheres, () of radiuse centered at the vectere FJY The Golay codes [102] were discovered by Golay in 1949,
is the set but their rich algebraic structure was not revealed until much
. N later. The[24,12, 8] binary Golay code is obtained from the
Se(a) = {v € Fy |D(x’a) < e} perfect [23[, 12,7] c]ode by adding an overall parity check,
Since there arg — 1 ways to change an individual entry weand it is a most extraordinary code. The codewords of any

have given weight form beautiful geometric configurations that
e continue to fascinate combinatorial mathematicians. The sym-
N ; . AP
|Se(a)] = Z < ; )(q - 1) metry group of this code plays a central role in finite group
—o \*! theory, for it is the Mathieu group/.4, which is perhaps the

N o . . most important of the 26 sporadic simple groups.
Let C be a code irf-;" with minimum Hamming distancé In a perfecte-error-correcting code, the spheres of radius

and lete = [(D — 1)/2]. The sphere-packing bound about the codewords are disjoint and they cover the whole
/N ‘ ) space. MacWilliams [146], [147] proved that arerror-
|C| <Z < )(q — 1)Z> <. correcting linear code is perfect if and only if there are exactly

im0 \ ' ¢ nonzero weights in the dual code. For example,[1ie6, 5]
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ternary Golay code is perfect, and nonzero codewords in tiwhere H, (x) defined on[0, (g — 1)/q] is the appropriate
dual code have weight or 9. Uniformly packed codes are generalization of the binary entropy function, and is given by
a generalization of perfect codes that were introduced by
Semakov, Zinoviev, and Zaitzev [183] in which the spheres H,(0) = 0
of radiuse + 1 about the coo_lewords cover the whole space,Hq(x) = zlog,(q— 1) — zlog, = — (1 — x) log,(1 — x),
and these spheres overlap in a very regular way. There are g1
constants\ and i (with A < (n — ¢)(q — 1)/¢ + 1) such that for 0 <= < 475
vectors at distance from the code are ik + 1 spheres and
vectors at distance + 1 from the code are in. spheres. If Independently, Gilbert [95] and Varshamov [218] derived a
the restriction on\ were removed, a perfect code would als¢Pwer bound on achievable rate that is surprisingly difficult to
be uniformly packed. Goethals and van Tilborg [101] showd#eat. In fact, Varshamov proved there exist linear cadegth
that ane-error-correcting linear code is uniformly packed if
and only if there are exactly + 1 nonzero weights in the 2 N1 4 )
dual code. For example, tHe4, 12, 8] binary Golay code is €] Z < ; >(q D'z 4"

: ’ » =4 ?
uniformly packed withx = 0 and; = 6, and is self-dual with =0
nonzero weights, 12, 16, and 24.

The connection between the metric properties of a li
ear code and the weight spectrum of the dual code is justTheorem (The Gilbert—Varshamov Bound)f 0 < 6 <
one facet of the structural framework for algebraic codin@y — 1)/¢, then
theory that was introduced by Delsarte [48] in his Ph.D.
dissertation, and this dissertation might well be the most a(8) > 1— H,(6).
important publication in algebraic coding theory over the past
30 years. The framework is that of association schemes derived pygof. |t is sufficient to prove
from a group-theoretic decomposition of the Hamming metric
space, and it will b_e _described briefly in Section I\(. The A (N, D) > qN/Vq(MD_ 1).
concept of an association scheme appears much earlier in the
statistics literature, and Delsarte was able to connect bour?_d

L _
on orthogonal arrays from statistics with bounds for codes. e? C' be an(_N_, _M’ D) cod_e InF,’, wher?\{\/l . Ag(N, l.))'
pen, by definition, there is no vector i’ with Hamming

Of course, perfect codes are best possible since equaﬁgt D to all cod ds i’ Thi that
holds in the sphere-packing bound. However, avainen IStanceL” or more 1o all codewords 10.. This means tha

[212], van Lint [138], and Zinoviev and Leontiev [231]

r\]/\_/hich for particular valuesV, d is sometimes stronger.

have shown that the only perfect multiple-error-correcting Fé\ = U Sp-1(c)

codes are the binary and ternary Golay codes, and the binary ect

repetition codes. Critical to these classification results is a . . . N

remarkable theorem of Lloyd [141] which states that a certaffich implies[C|Vy(N, D — 1) > ¢™. -

polynomial associated with a group-theoretic decompositionThe proof shows it is possible to construct a code with
of the H_ammlng metric space must have m_tegral zeros (fora@_l leastq™ /V,(N, D — 1) codewords by adding vectors to a
perfect linear code these zeros are the weights that appeagdfle with minimum distancé® until no further vectors can

the dual code). be added. What is essential to the Gilbert—Varshamov (G-V)
argument is an ensemble of codes, where for each vedtat
B. The Gilbert-Varshamov Bound appears in some code, we have control over the fractjoof

We fix the transmission rat&, and we increase the block-codes from the ensemble that containin the original G-V
length NV in order to drive the error probability to zero. Ifargument, the ensemble consists of all linear codes of a certain

the symbol error probability i, then the average number ofdimension. The group of nonsingular linear transformations

errors in a received vector of lengt¥i is Np. The minimum Preserves this ensemble (though linear transformations do not,
distanceD must grow at least as fast 2&7p. This explains the in general, preserve Hamming weight) and acts transitively on

importance of the quantity(§) which measures achievableNOnzero vectors, so that, = A is constant. The G-V argument

rate, given by applies to more restrictive ensembles of codes, for example,
to binary self-orthogonal codes with all Hamming weights
() = lim sup 2 A2V V) divisible by 4 [149]. Here the functionQ(v) = wt (v)/2

N—oo N ’ defines a quadratic form on the space of all binary vectors
with even Hamming weight. Self-orthogonal codes correspond
to totally singular subspaces and transitivity of the underlying
orthogonal group leads to the G-V bound. Similar arguments
provide lower bounds for quantum error-correcting codes [34]
and for the minimum norm of certain lattices (see [142]), and
log VoV, [AN]) _ Hy(\) there is a sense in which the classical bounds of Conway and
4 N 1 Thompson are also obtained by averaging.

where A,(N,8N) is the maximum size of a code with
minimum distanceSN. To study «(5) we need to estimate
the number of vector¥, (N, ¢) in a sphere of radius in F}.

If 0 < A< (g-1)/g then
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zero-mean colored

l Gaussian noise n(t)

filter with

input z(t) . output
. —~—>——— impulse response —>{ : f—
subject to power h(t) z(t) = z(t) * h(t) + n(t)
constraint [ S,(f)df < P

Fig. 1. The Gaussian channel model.

[ll. EUCLIDEAN SPACE p has power spectrum proportional £3( /) on W. The output
A Gaussian channetombines a linear filter with additive #(t) iS sampled every” seconds and the decoder operates on

Gaussian noise as shown in Fig. 1. In the time domain tfféS€ samples. _ o _
output =(#) is given by Opportunity for coding theorists is a function of commu-

nications bandwidth. The capacity-achieving bandwidth of
2(t) = z(t) * h(t) +n(t) an optical fiber is approximately 261z, which is too large
. . _ ) for sophisticated signal processing. By contrast, the capacity
wherex(t) is the input waveformh(#) is thechannel impulse ,ieying bandwidth of a telephone channel is approximately
requnsex(t) *h(t) is the convolu'gon Of”_(t) with 2(¢), and - 3300 Hz. If a modem is to achieve data rates of 28.8 kb/s and
n(t) is zero-mean-colored Gaussian noise. above, then every time we signal, we must transmit multiple
The Fourier transform of(¢) is the frequency TeSPONSE hits Mathematics now has a role to play because there is time
H(f) of the channel, and theower spectrunty,(f) is given ¢ sophisticated signal processing.

— 2 i i
by Si.(f) = |H(f)I". In the frequency domain the signal A jgeal band-limited Gaussian chanrisicharacterized by
z(t) and the noisen(t) are characterized by their Fourier,

a “brickwall” linear filter H that is equal to a constant
transformsX (/) and N(f), respectively, and by their power (/) q

d il £  th q Iover some frequency band of widti hertz and equal to zero
fspectraSw(f) an S."(f)' An essential feature of the mo Clelsewhere, and by white Gaussian noise with a constant power
is a power constraint

spectrum over the channel bandwidth. The equivalent discrete-
time ideal channel represents the complex output sequance

[snar<p o

on the power spectrun$,.(f) of the input waveformz(¢). 2k = T + ng
The channel signal-to-noise functioBNR,(f) is given by
SNR.(f) = Sn(f)/S.(f), and is measured in decibels bywhere (z;) is the complex input sequence arid;) is a
taking 101log;, SNR,(f). sequence of independent and identically distributed (i.i.d.)
The model is limited in that the outpu(#) is assumed to complex zero-mean Gaussian random variables. WeSJet
depend linearly on the input(t), and to be time-invariant. denote the average energy of the input samfpig$, and we let
In magnetic-recording applications, this linearity assumptio#}, denote the average energy of the noise samples. Shannon
becomes less valid once the recording density exceeds a cenaigved that the channel capacity of this ideal channel is given
threshold. In modem applications, the noisé) starts to by
depend on the input(¢) once the transmission rate exceeds a ]
certain threshold. However, these caveats should not subtract C = logy(1 + S/, bits/Hz
from the importance of the basic model.
We think of the inputz(¢) and the output(¢) as random
variables. The mutual information betweefit) and z(t) is C = CW = Wlog,(1 + S./S,) bits/s.
the conditional entropy of(¢) given z(¢). Channel capacity
results from maximizing mutual information. Information- We may transmitn bits per hertz by selecting; from
theoretic “waterfilling arguments” show that there is a constaat fixed constellation of2™ points from the integer lattice
K and a frequency banV = {f | K > 1/SNR,(f)}, such 72 in the complex plane. This method of signaling is called
that the capacity achieving input power spectr$ify f) is 2™-Quadrature Amplitude Modulatio2™-QAM), and this is

or

given by uncoded transmission since there is no redundancy. There is
; a gap between capacity of this ideal channel and the rate that

K-1
Sx(f) = {0 /SNR.(f), :; ; ;ZVV can be achieved by uncoded QAM transmission. The size of

this gap varies with channel SNR and for sufficiently high

The sampling theorem of Nyquist and Shannon allows @NR it is approximately 3 bits/Hz. This can also be expressed
to replace a continuous function limited to the frequency bamg a gap in SNR of approximately 9 dB since the extra rate
W by a discrete sequence 6¥ equally spaced samples,changesS, to S,/8 and10log,,8 = 9 dB.
without loss of any information. This allows us to convert our Shannon recognized that signals input to a Gaussian channel
continuous channel to a discrete-time channel with signalisgould themselves be selected with a Gaussian distribution;
interval T = 1/W. The inputz(t) is generated as a filteredthe statistics of the signals should match that of the noise. We
sequencd_ z1.p(t — kT), wherex;, is complex and the pulse start by choosing a lattic& in real N-dimensional spacB” .
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Leech lattice as a
code for Gaussian Channel

Voronoi Constellations for
transmission/quantization

Lattice/coset framework for TCM
Geometrically uniform trellis codes

Geometry

Group Codes for
the Gaussian Channel

/

Channel Capacity
Wlog(1+ Sz /Sn)

Sphere Packings via
Error Correcting Codes

Trellis structure of block codes

Trellis Coded Modulation - - tailbiting trellises

effective soft decision decoding

Viterbi Algorithm/Maximum
Likelihood Sequence Estimation

Shell mapping-shaping
by enumeration

Trellis
Coded

Quantization

Precoding - separation
of demodulation and ISI

Concatenated Codes
Multilevel Codes/Multistage Decoding

Algorithms

1948 1968 1978 1988 1998

Fig. 2. Fifty years of information theory and coding for the power-constrained Gaussian channel.

Here the text by Conway and Sloane [44] is a treasury of infdEnglish lawyer and amateur mathematician Thorold Gosset:

mation about sphere packings, lattices, and multidimensional .

Euclidean geometry. The signal constellatidrconsists of all By={(z,- )| m €l i=1,.8

lattice points within a regiofR. The reason we consider signal orz €Z+1/2,i=1,---,8,

constellations drawn from lattices is that signal points are andz; + zo 4 -+ + 28 € 2Z}.

distributed regularly throughoulN-dimensional space. This

means that the average signal powerof the constellation A fundamental regiorR for a latticeA is a region ofR™ that

Q is approximately the average powE(R) of a probability contains one and only one point from each equivalence class

distribution that is uniform withinR and zero elsewhere.modulo A. In the language of mathematicg, is a complete

This approximation is called thepntinuous approximatioand ~System of coset representatives foin RY. If vy, -+, v, are

we shall use it extensively. If we fix the size of the signad basis for a lattice\ then the parallelotope consisting of the

constellation, then the average signal power depends on B@Nts

choice of lattice and on the shape of the region that bounds the

constellation. We obtain a Gaussian distribution by choosing

the bounding region to be aN-dimensional sphere. is an example of a fundamental region &f This region is
From the time that Shannon derived the capacity of theilled afundamental parallelotopelf A € R is a lattice,

Gaussian channel there has been a divide between codipgly ¢ A is a lattice point, then th&oronoi regionR(y)

theory and coding practice. The upper track in Fig. 2 igonsists of those points iRY that are at least as close 40

the world of geometry and the lower track is the world ofs to any other/ € A. Thus

algorithms. We shall illustrate the differences by following an .

example, but a very positive development over the last fiveR(y) = {z € R™

years is that these two tracks are converging.

H1v1 + -+ HmUm (0 S i < 1)

lz = ylI* < [l = o/||* for all ' € A}.

The interiors of different Voronoi regions are disjoint though
two neighboring Voronoi regions may share a face. These faces

A. Lattices lie in the hyperplanes midway between two neighboring lattice

We begin with geometry. Formally, lattice A in real V-
dimensional space is a discrete additive subgrou®df A
basis for the lattice\ is a set ofn vectorsuy, - - -, v, such that

A= {ZAZUZ|)\ZEZ, i:l,---,m}.
=1

points. Translation by, € A maps the Voronoi regiofR (w)
to the Voronoi regioriR(w + y), so that all Voronoi regions
are congruent.

A maximume-likelihood decoding algorithm for the lattice
A finds the Voronoi regiorR(y) that contains the received
vectorv € R™. The Voronoi regionsR(y) are the decision
regions for this algorithm. We may create a fundamental

The latticeA is said to ben-dimensional and usually we haveregion for the latticeA by deleting faces from a Voronoi

m=N.If wy,--
exists a unimodular integral matrig¢ such thatw; = Qu;

-, w,, is another choice of basis then thereegion. Different ways of deleting faces correspond to different

rules for resolving ties in a maximum-likelihood decoding

forall ¢ = 1,.--,m. The Gosset latticdes was discovered algorithm.
in the last third of the nineteenth century by the Russian Given a latticeA C R”Y, there are many ways to choose
mathematicians A. N. Korkin and E. I. Zolotaroff, and by tha fundamental region, but the volume of the fundamental
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region is uniquely determined by the lattide This volume

is called thefundamental volumand we denote it by (A).
There is a simple formula for the fundamental volume. Let
v; = (v1,---,vn), ¢ = 1,---,m be a basis fol/(A), and

let A = [v;;]. The fundamental volumé& (A) is given by
V(A)? = det AT, It is easily verified that the fundamental
volume of the Gosset latticEs is equal tol, the same as the
integer latticez®.

Let ©2 be an~N-dimensional signal constellation consisting
of all points from a latticeA that lie within a regionR,
with centroid the origin. If signals are equiprobable, then the
average signal poweP is approximately the average power
P(R) of a continuous distribution that is uniform withiR
and zero elsewhere. Thus

1 [1]
P~PR)= 2 d
(R) NV(R) /R I o Fig. 3. Labeling edges by cosets [# : 47].
~ G(R)V(R)*N

points are taken from amv-dimensional latticeA, and the
signal constellation contains an equal number of points from
V(R) = / dv each coset of a sublatti¢g. One part of the binary data stream
R selects cosets of\’ in A, and the other part selects points
from these cosets. All the redundancy is in the coset-selection
procedure, and the bits that select the signal point once the
(R Jr 1] dv coset has been chosen are referred taremded bitsForney
(R) = W [79], [80] coined the nameoset codeo describe redundant
signaling based on lattices and cosets, and this name captures
is the normalized or dimensionless second moment. Thgs essential property of these signaling schemes. Coset coding
second momen(R) results from taking the average squareoyides a level of abstraction that makes it possible for a
distance from a point ifR to the centroid, and normalizing to ¢ode designer to handle complicated codes and large signal
obtain a dimensionless quantity. constellations.
We see that the average signal powerdepends on the  swjitching from uncoded transmission using the integer
choice of lattice, and on the shape of the region that bounggice A to coded transmission using a coset cadlebased
the signal constellation. The formula~ G(R)V (R)*'™ sep-  on the lattice partitiom\ /A’ requires that theV-dimensional

arates these two contributions. The voluM&R) = [Q[V(A),  signal constellation be expanded by a fac2d(<), where
so that the second factor is determined by the choice of latticg ) is the redundancy of the coset code Note that all

Since different lattices require different volumes to enclose thggundancy is in the method of selecting cosets, so this
same number of signal points, it is possible to save on signglantity is easy to calculate. We assume that the constellation
power by choosing the lattice appropriately. Since the secopdexpanded by scaling a bounding region, so that the power

momentG(R) is dimensionless, it is not changed by scalingenalty incurred by expansion4€(<). The coding gainy(0)
the regionR. Therefore, the first facto&(R) measures the of the coset cod€’ is then given by

effect of the shape of the regidR on average signal power.

It is natural to compare the performance Bf as a code AC) = d*(C)4=7,
forthe Ga955'2” channel with uncoded QAM transmission (ﬂﬁlis is the gain over uncoded transmission using the integer
integer latticeZ®). Since the fundamental volumes coincide WE tice (QOAM signaling).
may use the same region to bound both signal constellation e introduce the method of trellis coding by means of an
Performance gain is then determined by the minimum squarg Lmple where the latticd is the integer latticeZ, and the
Euclidean distance”(Fi) between two distinct points in thesublatticeA’ is 4Z. Fig. 3 shows the encoder trellié where the

i 2 2(78\ _ i
iitt:iﬁhwea?:voe&(gé)/d (£°) = 2 which corresponds edges have been relabeled by the four residue classes modulo
99 ' 4. All the redundancy is in the coset (residue class modulo
] ) A’) selection procedure; one bit chooses from four cosets.
B. Trellis Codes Based on Lattices and Cosets The symbol[i] represents the cosdtz | z = ¢ (mod4)}.

Next we turn to algorithms. In 1976, Ungerboeck [215For transmission all cosets are translated-hy/2. Since all
constructed simple trellis codes for the Gaussian channel thedundancy is in the coset-selection procedure, we can achieve
provided coding gains of between 3 and 6 dB. His originany transmission rate by just increasing the number of uncoded
paper has transformed the subject of coding for the Gausshits.
channel. Calderbank and Sloane [36] then abstracted the ide@he power and simplicity of the lattice/coset viewpoint
of redundant signaling based on lattices and cosets. The siggmhes from viewing the signal constellation as a finite subset

where

is the volume of the regioR, where
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of an infinite lattice. By focusing on the infinite lattice, we One reason that trellis-coded modulation has had an enor-
eliminate the influence of constellation boundary effects anous impact on communications practice is that around 1982

code structure and code performance. digital electronics were sufficiently advanced to implement
It is not hard to prove that the minimum squared distana®des of the type proposed by Ungerboeck. And when it is
d*(C) between different signal sequences is giverB{C) = not possible to build circuits the only recourse is geometry.

9. To calculate the redundangyC), we observe that every A second reason, also very important, is that consumers were
one-dimensional signaling interval, one input bit selects half efaiting for new products, like high-speed modems, that this
the integer lattice. The redundangyC) = 1, and the nominal invention made possible. With all the benefits of hindsight

coding gainy(C) is given by we may look back and find the principles of set partition-
9 ing in earlier mathematical work by Leech [131] at a time
¥(C) = 10log,, il 3.3dB when digital electronics were not ready for this innovation.

However, Leech’s work lacked any vision of communications

There is, however, a difference between the nominal codiféactice, and Ungerboeck made the link explicit between his
gain calculated above and the coding gain observed in practigi@thematical theory of set partitioning and the transmission
For channels with high SNR the performance of a trellis cod¥ information.

C is determined by the minimum squared distanf¢C)
between output sequences corresponding to distinct infit Sphere Packings and Codes

sequences. For coset codes this minimum squared distancggech [131] showed how to use error-correcting codes to
is determined by the minimum nonzero norm in the sublatti¢gnstruct dense sphere packingsNAdimensional space. The
A’ and by the method of selecting cosets. For channels wjlt3 is to specify a set of vectors with integer entries by
moderate SNR (symbol error probabilityl0~¢) performance constraining the binary expansion of those entries.

is determined by the minimum squared distardEéC), er_1d The Leech coordinate arrapf a vectorz = (z1, -, zy)

by the number of nearest neighbors or path multiplicity. 4yith integer coordinates is obtained by writing the binary
telephone channel is an example of a channel with modergig,ansion of the coordinates in columns starting with the
SNR. Here Motorola Information Systems has proposed a ry&st significant digit. The first row of the coordinate array is
of thumb that reducing the path multiplicity by a factor of tw@ne 20 row, the second row is the! row, the third row is
produces a coding gain of 0.2 dB. The result of discountinge 22 row, and so on. To find the binary expansian) of a

nominal coding gain by path multiplicity in this way is calledhegative number-a, simply write
effective coding gain

Every lattice point inEs has 240 nearest neighbors; the —a = Zazzl
neighbors of the origin (the poind®) are the 112 points 1>0
(£1)%0%, and the 128 pointg+1/2)® where the number
of minus signs is even. This means th#t offers a way
of arranging unit spheres in eight-dimensional space so that —a= Zalzl (mod 2%).

240 spheres touch any given sphere. Levenshtein [134] and >0

Odlyzko and Sloane [165] proved that it is impossible to ]

exceed this. We can start to appreciate that the lafiicés a In row 29, the entryl represents an odq integer, and the entry
fascinating mathematical object, and this lakigsing number 0 represents an even integer. We define subsets of the integer
contributes to its allure. When we apply the discounting rul@ttice ZA; by constraining the firsL. rows of the coordinate

to the lattice Es the path multiplicity (per dimension) is &Tay- Givenl binary codesCy,---,Cp with blocklength
240/8 = 30, whereas for the trellis code the path multiplicity’V: the sphere packing(C1,---, ') consists of all vectors

is 4. The difference is an important reason why high-spedd € 2" for which theith row of the coordinate array of
modems employ trellis codes based on lattices and coséts@ codeword inC;. If L = 1, and if ¢’y is a binary linear
rather than lattices in their natural state. code, then

Before the invention of treIIis_—coded modulation by Unger-. AC) = {z € 7N | # = ¢(mod 2), for somec € C;}
boeck [215] researchers designed codes for the Gaussian
channel using heuristics that approximated Euclidean distanekere A(C1) is a lattice, since it is closed under addition. This
For example, Nakamura [161] designed codes for phase madnstruction is described by Leech and Sloane [132], where
ulation by restricting the congruence of signals modul®his it is called Construction Athough Forney [80] uses the term
approach was also used for QAM transmission by Nakamurapd 2 latticeto distinguish lattices constructed in this way. In
Saito, and Aikawa [162]. Their measure of distance was LeeneralA(Cy,---,Cp) is not a lattice.
distance, which is computed entry by entry as a sum of LeeWe make contact again with the Gosset lattiEg by
weights. TheLee weightwt, ([{]) of a coset in[Z : 8Z] is taking C; to be the extendeds,4.4] Hamming codeC.
the smallest absolute valug| of an integerz congruent The fundamental volumé& (A(C)) = 16, and the minimum
to ¢+ modulo 8. This amounts to designing codes for thé squared distancé?(A(C)) = 4. The codeC contains the zero
metric. The assumption that noise is Gaussian makes it megetor, 14 codewords of weight and the all-one vectar of
appropriate to follow Ungerboeck and work with thé metric weight8. There arel4 x 2* vectors inA(C) of type (+1)*0%,
directly. and 16 vectors ith(C) of type (4-2)07. This gives 240 vectors

and fori = 1,2,--- solve the equation
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TABLE I-A
MAXIMUM -LIKELIHOOD DECODING OF THE BINARY GoLAY CoDE

Tow
When Who Mow many
1986 | Conway and Sloanc | 128 cosets of (1111) w2 Fy 1614

1986 | Belery and Snyders | Fast Hadamard Transform | 1551

1988 | Foruey 6d-state trellis decoder
via (8. 7)/(8,4)/(8, 1)]° 1351

19839 | Suyders and Be'ery generalized Wagner rule 827

Fig. 4. A decoding trellis for thg8, 4,4] Hamming code.
1991 | Vardy and Be'ery MTI. decoding of C4, U CYy,

in A(C) with minimum norm4, and it is easily seen that there ueing ML hexadecoder e

are no others. This second appearance of the number 240 is not

happenstance. The lattidgC) is a realization of the Gosset TABLE 1-B

lattice Es on a different scale. There is a norm-doubling linear MAXIMUM -LIKELILHOOD DECODING OF THE LEECH LATTICE

transformation® : R® — R® satisfying||®(z)||? = 2||z||? that How |
‘When Who How many

transforms the Orlglnal reallzatlon_ ﬁg Into A(C) . 1986 | Conway and Sloane Turyn construction from Fg 55,968
Conway and Sloane [44] describe more sophisticated vayi-

ants of Construction A, but it may be more interesting to apply 1988 | Forney 256jsta;0 t;?cgis d;wg“
the original construction to codes defined over the rihg via | Hs/REg/2E| 15,167
of integerS modul@®. For example, extended CyCIiC codes 19s9 Lang and Longstaff Wagner decoding rule ~10,000

overZsy. obtained from certain binary cyclic codes by Hensel
lifting determine even unimodular lattices via Construction A\
The binary Golay code determines the Leech lattice in th|s
way, and this is perhaps the simplest construction for th|s1993 | Vardy and Be'ery ML decoding of 4 x Qa4
remarkable lattice that is known. For more details see [108], using ML hexadecoder 3,595
[19], and [28].

1989 | Be'ery, Shahar, Snyders generalized Wagner rule
and look-up tables 6,129

o ) estimating the state sequence of a discrete time finite state

D. Soft-Decision Decoding Markov process observed in memoryless noise. Many problem

The origin of the termtrellis code is that the graph of in digital communication can be cast in this form.
state transitions looks like the structures used by gardeners t®@ecoding algorithms are assembled from basic binary op-
support climbing plants. Codewords are represented as pathations such as real addition, real subtraction, comparing two
through this trellis. real numbers, and taking an absolute value. For simplicity,

The decoder has a copy of the trellis. It processes the noigg might assign unit cost to each of these operations, and
samples and tries to find the path taken by the binary data. The might neglect the complexity of say multiplication By
decoding algorithm was proposed by Viterbi [219] and latdsince this can be accomplished by merely shifting a binary
shown to be a variant of dynamic programming. Every trelliexpansion). It is then possible to compare different algorithms,
stage, the decoder calculates and stores the most likely partil to show, for example, that the iterative decoding procedure
terminating in a given state. The decoder also calculates floe Reed—Muller codes based on the| « + v| construction
path metric, which measures distance from the partial receivisdless complex than the standard procedure using the fast
sequence to the partial codeword corresponding to the mbekstdamard transform (see [80]). Quite recently there has been
likely path. Fig. 4 shows a decoding trellis for tli& 4,4] substantial interest in effective trellis-based decoding of codes
Hamming code or for the lattic&s (in this interpretation the and lattices. Tables I-A and I-B follow the progress that has
digits 0, 1 represent the cose®¥,27 + 1 and the metric for been made in reducing the number of operations required
an edge labeled< is determined by the distances from thdéor maximume-likelihood decoding of the Golay code and the
received signals, »’ to 2Z+¢, 2Z+¢'). Attime £ = 4in Fig. 4, Leech lattice (see [216] and [217] for details and additional
the decoder only needs to update two path metrics and makéerences).
one comparison to determine the most likely path terminatingDecoding complexity can be reduced still further through
in a given state. bounded-distance decoding. Here the decoder corrects all

Viterbi [219] originally introduced this decoding methoderror patterns in the Euclidean sphere of radiuabout the
only as a proof technique, but it soon became apparent th@nsmitted point, wherg is the packing radius of the code
it was really useful for decoding trellis codes of moderater lattice. This means that the error exponent of the bounded-
complexity. The importance of this application is the reasafistance decoder is the same as that of a maximume-likelihood
the decoding method is called the Viterbi algorithm by condecoder. Forney and Vardy [87] have shown that bounded-
munication theorists. Forney [77] recognized that the Viterbiistance decoding of the binary Golay code and Leech lattice
algorithm is a recursive optimal solution to the problem afequires only 121 and 331 operations, respectively. The overall
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degradation in performance is about 0.1 dB over a wide rangmear Prediction (CELP) is a method of transmitting speech
of SNR’s. by first communicating a model of the vocal tract specified by
It was Conway and Sloane [43] who revived the study gfarameters that depend on the speaker, and then exciting the
the complexity of soft-decision decoding algorithms for blocknodel. This model includes pitch information, and an error
codes and lattices. Their paper served to inspire a great deale has much more impact on the reproduced speech quality,
of work, including the results reported in Table I. However, ithan an error at the input to the model. Specific speech/channel
is fair to say that this work was specific to particular familiesoding schemes for wireless channels are described by Cox,
of codes, and fundamental asymptotic questions seemed outlafjenauer, Seshadri, and Sundberg [47]. This matching of
reach. That changed with Tarokh’s 1995 thesis [208] showispeech and channel coding has become standard practice in
that decoding complexity grows exponentially with codinghe engineering of cellular voice services.
gain. The lower bound on complexity is established by meansA second example is digital High-Definition Television
of an ingenious argument involving a differential equatiofHDTV) that has been made possible by recent advances in
and the upper bound uses a sophisticated tensor prodeideo compression. Digital broadcast differs from digital point-
construction. Together the results show that the lower boutwpoint transmission in that different receivers have different
is asymptotically exact. signal-to-noise ratios, which decrease with distance from the
It is instructive to look back at the work of Slepian [199broadcast transmitter. One concern with digital broadcast is
who constructed codes for the Gaussian channel by takingtsa sensitivity to small variations in SNR at the various
finite group of V x N matrices, and applying each matrix to aeceiver locations. This sensitivity is manifested as an abrupt
fixed vector inR™. It is remarkable that Ungerboeck codeslegradation in picture quality, which is generally considered
are examples of Slepian signal sets (see [81]). One minmacceptable by the TV broadcast industry.
difference is that the group of isometries has become infinite.It is possible to achieve more graceful degradation by means
A more important difference is the emphasis today on ths joint source and channel coding. There are algorithms for
complexity of the group. This was not an issue that concernedmpressing video signals that output coarse information and
Slepian, but it is of paramount importance today, becausefifte information. The coarse information is sensitive because

determines the complexity of soft-decision decoding. it provides a basic TV picture, and the fine information is
less sensitive because it adds detail to the coarse picture.
E. Multilevel Codes and Multistage Decoding The channel-coding scheme is designed to provide greater

. error protection for the coarse information, so that the distant
The coded-modulation schemes proposed by Ungerboeck . . )

- . Y7~ féceiver always has access to the coarse picture. Receivers
make use of a partitiod';, of the signal constellation into

oL subsets sometimes correspondingitevels in the Leech that are closer to the broadcast transmitter can obtain both the

. ; coarse picture, and the fine detail, so that, indeed, there is a
coordinate array. A ratél. — 1)/L convolutional code selects . . ;
mare graceful decline in the quality of reception.

the subset, and the remaining uncoded bits select a signal fron, . : L :
. his philosophy of joint source and channel coding has
the chosen subset. Instead of coding across all levels at once, . " . .
. . [[S’'roots in the information-theoretic work of Cover [46]
we might directly allocate system redundancy level by leve X .
. : i . on broadcast channels. He considered a typical broadcast
an idea that first appeared in the context of binary codes

In 1977, Imai and Hirakawa [112] presented their multileVe(i\nvwonment where a source wishes to transmit information

. : gver a Gaussian channel to a strong receiver with SNR
method for constructing binary block codes. Codewords from d a weak receiver with SNFS,. Cover established the

) n
the component codes form the rows of a binary aray, a@?ﬁciency of superimposing informatigrthat is, broadcasting

the columns of this array are the codewords in the multilevé . : )
. . : . Sq that the detailed information meant for the stronger user

code. Imai and Hirakawa also described a multistage boundéd- . :
) : . . includes the coarse information meant for the weaker user. The
distance decoding algorithm, where the bits are decoded in

order of decreasing sensitivity, starting with the bits protectéﬁometryb?f tth € at;]hlevablle ra'f[e region mzik?sl |t‘alppa5rwent that
by the most powerful error-correcting code. Subsequent ,IStEOSStI € to achieve (t:?hse 0 iapfﬁg 2 Oti( +h'2) bl
Calderbank [22] and Pottie and Taylor [173] described simp gr ne strong receiver at the cost of reducing the achievable

multilevel coset codes for the Gaussian channel, and quantif@ for the weaker receiver only slightly below capacity

_oiq . )
the performance/complexity advantages of multistage decod= d_ 2 %Og(l :r 6;13 Szemﬂtg mu:ctl:ﬁéteTlvc?des th:t can be |
ing over full maximum-likelihood decoding. Here the purposgse In terrestrial broadcasting o O provide unequa

of the parity check is to provide immunity against singl rror protection are described by Calderbank and Seshadri

symbol errors. Concerning theoretical limits, Wachsmann a %]‘ The data rate for HDTV is about 20-25 Mb/s in 6-MHz

Huber [220] have shown that multilevel codes with turbo co andwidth, corresponding to transmission of 4 bits/symbol. It
components come within 1 dB of the Shannon limit IS possible to provide virtually error-free transmission (greater

than 6-dB coding gain) for some fraction (for example, 25%)
of the data, while providing a modest gain of 1-2 dB for
F. The Broadcast Channel the remaining data with respect to uncoded transmission. The
The flexibility inherent in multilevel coding and multistageconnection with the information-theoretic work of Cover on
decoding makes it easy to introduce unequal error protectibroadcast channels is described by Ramchandran, Ortega, Uz,
when some bits are extremely sensitive to channel errors ardl Vetterli [175] in the context of their multiresolution joint
others exhibit very little sensitivity. For example, Code Excitedource/channel coding scheme for this same application. Their
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paper proposes a complete system, and describes a partipplications are possible, for example, the reduction of peak

lar source-coding algorithm that delivers bits with differenio average power in OFDM systems. Trellis shaping is a

sensitivity to channel errors. method proposed by Forney [82] that selects a sequence with
minimum power from an equivalence class of sequences, by

G. Methods for Reducing Average Transmitted Signal PowdP&ans of a search through the trellis diagram of a code. The
signal constellation is divided into rings labeled by the possible

We consider signal constellations that consist of all 1atticg iy ts of a binary convolutional code. Shaping information is
points that fall within some regiorR. If the region R yansmitted by choosing a coset of the convolutional code, and
is an N-cube with faces parallel to the coordinate axes; gecoder selects the minimum-norm vector in the coset for
then thg mduceq prpbap|l|ty ghstnbuhon on an arbitrarl-  yansmission. Now data is transmitted in blocks of about 1000
dimensional projection is uniform. Changing the shape Q{mpois by periodically terminating the convolutional code.
the region’R induces a nonuniform probability distributionrje gejay would be unacceptable if it were only possible to
on this M-dimensional projection. Thus gains derived froMgcqyer information carried by the shaping code on a block-
shaping a high-dimensional constellation can be achievedyp b5ck hasis. However, it is possible to specify cosets on a
a low-dimensional space by nonequiprobable signaling. TBgmpol-by-symbol basis using the theory of syndrome formers,
asymptotic shaping gain isc/6 or 1.53 dB. ~_ developed by Forney [75] as part of his algebraic theory

The problem of addre_ssmg a signal co_nstellathn is thaf convolutional codes. Forney ([75], [77], [78], [81]) has
of mapping a block of input data to a signal point. Thig,iored the algebraic structure of convolutional codes, and the
problem enters into the design of both encoder and decodgsnnections with linear systems theory in some depth. Forney
for the decoder needs to invert the mapping in order ig,q Trott [85] have since shown that most of this structure

recover the data stream corresponding to the estimate for {hg, extends to trellis codes based on lattices and cosets.
transmitted sequence of signals. TNecube is a particularly

simple Cartesian product for which the addressing problem

is trivial, but here there is no shape gain. Spheres optimige Precoding for ISI Channels
the shape gain available in a given dimension but are har?ve begin with a brief account of the evolution in sig-
to address. Conway and Sloane [42] proposed the use 0

Voronoi constellations based on a lattice partitippA s—the rnsce?]rtfcejisr,ltzgllforaqus%n?'ei;;efggglrg?n chsansr;ee:is lé?;” Igu;tg
constellation consists of points from a translate /ofthat Y y 9 9 sy ploy

fall within a Voronoi region for the shaping latticks. They peak detection, where one sampled output is used to estimate

showed how to use a decoding algorithm g to address the value of one symbol recorded on the disk. The reliability

the constellation. Unfortunately, the ratio of peak—to—averag?c:re];;:1 E;zl;ndset?ft&r; dﬁgﬁ;ginosn ;?ee '[Eg"r(]:qlg?e Srtﬁglnge:gw:fen

power for Voronoi constellations (and spheres) is very hig - : : : ’ pea
réduced in amplitude and shifted. Binary sequences input to

precluding their use. agnetic recording systems that employ peak detection are
Calderbank and Ozarow [31] introduced the method opadr! g syst ploy pe .
required to meet certain runlength constraints in order to

shaping on rings, where the regidd is partitioned intoT improve linear density and to improve system reliability. The

§ubreglp ns so as to obtalli equal gubconstellatlons Wlth d, k) constraint requires that adjaceis be separated by
increasing average power. A shaping code then specifies . ) L
X o . at leastd 0's and by at most 0’'s. Here it is important to
sequences of subregions, and it is designed so that subcon- . : .
. . ecall that in NRZI (nonreturn-to-zero-interleaved) recording
stellations with lower average power are more frequent. The "
. . .~ the symbol0 represents no transition, and the symHol
purpose of the shaping code is to create a good approximation o
. ? S A epresents a transition. Long runs @§ correspond to long
to the desired Gaussian distribution, and it is important o : ;
o . . Stretches of constant magnetization. When the binary input
minimize the complexity of the shaping code. The shell map- . . S ; . )
; . . atisfies dd, k) constraint, it is possible to signgd+1) times
ping algorithm used in the V.34 modem standard enumerates : . : .
S . ; . .~ as fast while maintaining the same spacing between transitions.
all points in the Cartesian product of a basic two-dimension : : - o
. ) : . ; . the code rate ig? then the increase in linear density is given
constellation that are contained in a higher dimensional sphetge

Laroia, Farvardin, and Tretter [130] show that it is possible lod the prc.)duqR(thl). Thef constrgmt a_lds timing recovery
since timing is derived from transitions in the recorded data.

construct a 64-dimensional constellation from a 384-point tWRI' : . A X .

. . . . Note that increasing the speed of circuitry is not without its
dimensional constellation that supports uncoded transmlss&na"en es
at 8 bits/symbol with a shaping gain of 1.20 dB and a peak-to- ges.

. . L . Peak detection looks at a signal sequence with respect to
average power ratio (PAR) of 3.76. Alternatively, itis pOSSIbIﬁself not with respect to otherg signalqsequences thatpcould
to achieve a shaping gain of 1 dB with a PAR of 2.9 (fo '

i . . . ave been transmitted. The idea of using maximum-likelihood
comparison, the PAR of the two-dimensional spherg)is L . :
sequence estimation in magnetic-recording systems was sug-
1) Shaping by Searching a TrellisA trellis code is an en- gested in 1971 by Kobayashi and Tang [125]. However, it has
semble of codewords that can be searched efficiently. Thisly recently become possible to implement partial response
search can be carried out with respect to any nonnegativaximum likelihood (PRML) detection at sufficiently high
measure that is calculated on a symbol-by-symbol basis. dpeeds. PRML detection provides increases in linear density
Viterbi decoding this measure is distance from the received about 30% by eliminating the constraint. The resulting
sequence. Here the measure is signal energy, but many othtsrsymbol interference (ISI) is equalized at the output of the
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channel to some tractable response such as RRIV D?) average transmitted signal power provided by a Gaussian input
or EPRIV ((1 — D)(1 + D)?). Maximum-likelihood (Viterbi) distribution over a uniform distribution) without increasing
decoding is accomplished by tracking the state of the chanrtble complexity of trellis decoding much beyond that of the
as described in Kobayashi [124] or Forney [76]. baseline memoryless channel. The key idea is to separate
A basic feature of telephone channels and certain optidghe problem of decoding in the presence of additive white
memories (see [27]) is that they are linear subject to a pe@lussian noise (AWGN) from that of resolving intersymbol in-
constraint, and support a continuum of recording levels. Thisterference. This is captured geometrically in Fig. 5. Precoding
fundamentally different from conventional magnetic-recordingnodifies the input just enough to ensure that the output of the
channels which are inherently nonlinear and where, to forckannel@(D) is a trellis codeword. A Viterbi decoder takes
linearity, the write current in the recording head has to hmare of the noise, and inversion of the channel provides an
sufficient to ensure positive or negative saturation of thegpproximation to the original input. The original input can be
magnetic medium. Hence it is only possible to record thecognized from the approximation, since both lie in a common
levels 1. The ability to write a continuum of levels at theVoronoi region. There is a small power penalty connected
input to this channel makes it possible to employ precodinvgth the power of the sequence that modifies the original
techniques such as the one developed by Tomlinson [21Bjput, but this penalty can be made insignificant. Running this
and by Miyakawa and Harashima [157], for Gaussian channeiecoded transmission system “backward” provides a system
subject to ISI. The philosophy behind this precoding techniqdier quantizing an individual source with memory (cf. trellis-
is that since the channel is known, it is possible to anticipateded quantization [150]).
and correct for the effects of the channel at the input, so
that a very simple decoder can be used at the output. It
is not possible to use Tomlinson—Harashima precoding énThe AWGN Channel and the Public Switched
conventional magnetic- and optical-recording systems whekglephone Network

it is only possible to record a small discrete number of levels. Trellis codes provide effective coding gains of about 4.5
We consider transmission of equally spaced analog levelsgB on the AWGN channel, and a further 1 dB is available

a; € {0,1,---, A—1} over a discrete time channel with causahrough shaping schemes of moderate complexity. Forney
impulse response;, ¢ > 0 for which go = 1. The outputs; and Ungerboeck [86] observe that the cutoff role of a high-
is given by SNR channel corresponds to an effective coding gain (without

shaping) of about 5.7 dB at error probabilities of about®.0
This is as high an effective coding gain as anyone has achieved
with moderate complexity trellis codes.
Tomlinson—Harashima precoding [157], [213] is a nonlinear The coset codes described in this paper select signal points
method of precoding the data that renders the output of thefrom uniformly spaced constellations. When harmonic dis-
Q(z) channel effectively free of intersymbol interference, anghrtion and PCM noise (logarithmic quantization noise) are
allows instantaneous symbol-by-symbol decoding of the daggnificant channel impairments it can be advantageous to
The Tomlinson filter does not transmit the datadirectly, gjstort the uniform spacing. Testing of high-speed voiceband
but instead transmits precoded data where modems has revealed a significant increase in distortion for
p_ P ‘ points near the perimeter of a QAM signal constellation.
i = Z @i+ Ami This distortion increases with distance from the center of the
constellation and limits performance at data rates above 19.2
wherem; is the unique integer such thaf € [0, A]. Now the kp/s. The perimeter distortion can be reduced by transforming

v, = a; + Zav‘,—j%’-

Jjz1

=1

output v; is given by the signal constellation so that points near the center are
vi—a —S"d i+ Am S dl g closer together, and points near 'the perimeter are further
L ; i ‘ ; i apart. When the channel SNR is high, such a transformation
— —|—A_m< B reduces immunity to Gaussian noise because points near the
- T T

center of the transformed constellation are closer together than
and instantaneous symbol-by-symbol decoding is possible uiaa uniformly spaced constellation with the same average
congruence modulod. power. Betts, Calderbank, and Laroia [13] have demonstrated
Precoding is a part of the V.34 modem standard [11@jeoretically that for channel SNR’s of practical interest, there
for communication over bandlimited Gaussian channels aigdactually a small gain in immunity to Gaussian noise. In fact,
variants thereof. In telephone-line modem applications it & appropriate coded-modulation scheme can produce gains
important that the statistics of the channel symbols are Gaus§-about 0.25 dB. Experiments support the intuition that it is
ian, so they match the statistics of the noise. Here Tomlindvantageous to employ trellis codes for which the dominant
son—Harashima precoding is not appropriate since reductiemor is a trellis path error, and the longer that error the better.
modulo A seems to produce channel symbals that are In fact, the Public Switched Telephone Network is evolving
uniformly distributed over the intervald, A]. The ISI pre- toward the point where an analog voiceband channel will
coder [129] that forms a part of the V.34 standard is eonsist of short analog end links connected to PCM codes,
more sophisticated alternative to Tomlinson—Harashima pmgith no intermediate tandem D/A or A/D transformations.
coding. It achieves significant shaping gain (the saving ifhis observation inspired development of the V.90 modem
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Fig. 5. A geometric rendering of a precoded transmission system.

standard, concluded in February 1998 which promises 56 kittat the search for theoretical understanding of turbo codes

downstream and delivers V.34 upstream. has transformed coding theorists into experimental scientists.
One empirical discovery is the existence of emor floor at
J. The Potential of Iterated Decoding low error rates that depends on the size of the interleaver.

Perhaps the most interesting theoretical connection is that
Between thdorward—backward algorithnf6] (a.k.a. theBCJIR
ar.llgorithm [3]) used in decoding convolutional codes, and

segmented, with some bits determining the encoding ofbgIIef propag.ayon In Bayesian r.1etwc.)r.ks .[167.]’ a technique
ed for training and system identification in the neural

particular component subblock, and other bits the linkal .

between the different components. In decoding concatena work community [90], [145]' . . .

codes, initial estimates for component codewords are com-The |d9as of Iocgl encoding and iterative decoding were
bined by decoding the code that links components togethBF?sent in a classic paper of Gallager [91], [92] written

In turbo codes the information in each bit is replicated in wPme 30 years before the discovery of turbo codes. A low-

different localities of a codeword. The original construction i4€Nsity parity-check (LDPC) matrix is a binary array where
to produce a first parity sequence by encoding an informatiif number ofl’s in each row and column is kept small.
sequence using a rate/2 recursive systematic encoder, td>2/lager suggested using the adjacency matrix of a randomly
permute the information bits using a very long interleavé&osen low-degree bipartite graph as the parity-check matrix.
(10%-10° bits), and to produce a second parity sequence Q;ec'onmg is again an iterative process where b|t—Ieve[ soft
encoding the permuted sequence using a second encodef&sisions obtained at one stage are used to update bit-level
the same type as the first (possibly identical). Decoding $§ft decisions about a particular bit at the next stage by means
an iterative process where bit level soft decisions producfl the parity-check equations involving that bit. Gallager
by one decoder are used to improve (hopefully) the decisiofistinguished two different types of informatioimtrinsic and
produced by the other decoder at the next step. The poten@¥irinsic and understood that only extrinsic information is
of this combination of local encoding and iterative decodingseful for iterative decoding. He developed the geometric
was revealed by Berrou, Glavieux, and Thitmajshima [1Bjcture of asupport treewhere the influence of a bit fans
who demonstrated that a 16-state rat2 turbo code can Out across all symbols in a controlled way as the iterations
operate at an SNR 0.7 dB greater than capacity of tpgogress. Gallager was not able to show correctness of the
AWGN channel, with a decoded bit-error rate ti—>. For proposed iterative algorithm but he showed long LDPC codes
comparison, the Big Viterbi Decoder [41] designed to decod@n achieve rates up to capacity on the binary-symmetric
a 16 384-state convolutional code requires 2.4 dB to achiegeannel with maximume-likelihood decoding. Subsequently,
the same bit-error rate. Like many revelations there wasZgablov and Pinsker [232] showed that with high probability
period of initial scepticism, but now there are no doubts thater the choice of graph, the codes proposed by Gallager
this is a spectacular achievement. It is interesting to obsem@uld be decoded itbgn rounds, where each decoding round

In algebraic error-correcting block codes the informatio
in each encoded bit is distributed across all symbols
a codeword. Information carried by concatenated codes
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TABLE I
A GENERATOR MATRIX FOR THE [24, 12, 8] BINARY GoLAy CobE
11 00 11 11 11 00 00 00 00 00 00 00
00 11 01 01 01 11 00 00 00 00 00 00
00 00 11 10 10 11 11 00 00 00 00 00
00 00 00 11 11 01 ot 11 00 00 00 00
00 00 00 00 11 10 11 10 11 00 00 00
00 00 00 00 00 11 11 11 00 11 00 00
00 00 00 00 00 00 11 01 11 01 11 00
00 00 00 00 00 00 00 11 01 1 01 11
11 00 00 00 00 00 00 00 11 i1 10 01
11 11 00 00 00 00 00 00 00 11 01 10
11 10 11 00 00 00 00 00 00 00 11 01
01 11 10 11 00 00 00 00~ 00 00 00 11

removes a constant fraction of errors. More recently, MacKagtive, hence th@* = 16 states in the tailbiting trellis (see
and Neal [145] demonstrated near Shannon-limit performan@s] for details). It is quite possible that other extremal self-
of LDPC codes with iterative decoding. If the art of simulationlual block codes (notably th@g, 24, 12] Quadratic Residue
had been more advanced in 1963, the history of coding themgde) will also have generator matrices that correspond to
might look very different today. low-complexity tailbiting representations.

Sipser and Spielman [192] only discovered Gallager’'s pa-In iterative decoding the focus is on understanding the
per after deriving asymptotically good linear error-correctingomain of attraction for a codeword rather than understanding
codes with decoding complexit® (log N)-linear time only the boundaries of a Voronoi region. In the future we might
under the uniform cost model where the complexity of addingell see a shift in emphasis within coding theory from
two N-bit binary vectors is independent 8f. The combinato- static geometry to dynamical systems. Certainly it would be
rial objects at the heart of the Sipser—Spielman construction &peresting to have a counterpart of turbo codes in the world
expander graphin which every vertex has an unusually larg®f algebraic error-correcting codes.
number of neighbors, and these codes are of the type proposed
by Gallager. The machinery of expander graphs enabled Sipgeron Duality Between Transmission and Quantization
and Spielman to prove that the sequential decoding algorithml_

d by Gall i fact t for th he theory of communication and that of quantization
proposed Dy ‘>aflager was in fact correct for these eXpan%?ferlap significantly, but there has been less cross pollina-

codes, something Gallager had not been able to do 30 YERR between the two communities than might be expected.

earller._ . _ Nevertheless, it is commonly understood that the problems of
The idea that graphical models for codes provide a natui‘ﬁding and quantization are in some sense dual.

setting in which to describe iterative decoding techniques-l-he lattice-decoding algorithms described in previous sec-

is present in Tanner [207] but has undergone a revival jiy s can be used to represent a source sequeasethe sum

recent years [221], [222]. One way this school of codings 5 |attice pointy, and an error sequenee= (¢;). In quan-

theory connects with the classical theory is through the stugyation the objective is the lattice point and the expected

of tailbiting trellises for binary block codes. Solomon an@alueE(e?) is the mean-squared errofmse) normalized per
van Tilborg [200] demonstrated that a tailbiting trellis fogimension. By contrast, the objective in transmission is not
a binary block code can in fact have fewer states thanyg |attice pointv, but the error sequence The idea is to
conventional trellis. Table Il shows a generator matrix of thehgose a suitable discrete set of source sequences that
[24,12,8] binary Golay code that provides a 16-state, 12ne entries of the error sequenediave a distribution that is
section tailbiting trellis [26], whereas a conventional trelligpproximately Gaussian.

must have 256 states at its midpoint [158]. The specific The error sequenceis distributed over the Voronoi region
discovery was motivated by a suggestion of Wiberg [223; of the lattice, and if this distribution is uniform, then the
Corollary 7.3], and by the general result that the number ﬁfean-squared erroE(e?) is equal to the second moment
states in a tailbiting trellis can be as few as the square ra@lR). In quantization, the quantity(R) = 1/12G(R) is

of the corresponding number for a conventional trellis at thgalled thegranular gain and it measures the reduction in
midpoint [222]. The time axis for a tailbiting trellis is definedmean-squared error that comes from choosing the shape of
most naturally on the circle, though it can also be defined @e quantization cell. The baseline for comparison is uniform
an interval with the added restriction that valid paths begin asdalar quantization (using the integer lattice) where the quanti-
end in the same state. Tlspanof a generator is the interval zation cell is theV-cubeCy with second moment(Cy) =

from the first to the last nonzero component, and the generatgt 2. Table Ill presents a correspondence between quantities
is said to beactivein this interval. For the Golay code, we seef interest in communications and in quantization (with respect
from Table Il that at every time slot only four generators a® Gaussian channels/sources). Successive refinement is a
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TABLE I
CORRESPONDENCEBETWEEN QUANTITIES OF INTEREST IN CODING AND QUANTIZATION

Coding Quantization
Transmission over AWGN channel (memory-  Quantization of a memorvless Gaussian
less) subject to a power constraint source (mmse distortion) [113]

Coding Gain: The Voronoi cells should cover Boundary Gain: For a given mse the spheres

a region of appreciable noise probability of appropriate radius about the codewords
should cover a region of appreciable source
probability

Shaping Gain: Bounding region that mini- Granular Gain: mse distortion favors Voronoi
mizes second moment Jeads to minimum av-  cells with the smallest second moment
crage transmitted signal power

Trellis Coded Modulation [215] Trellis Coded Quantization [150]
Broadcast Channel [16] Successive Refinement [127], [65]
Precoding for IS1 Channels [129] Quantization of Sources with Memory
Multiple Access Channels Quantization of Correlated Sources [200]

particular case of multiple descriptions, where two channetsinimum squared distance between codewords is at2d63t
connect the source to the destination (see [166], [64], amthere d is the minimum distance of the integer alphabet
[214]). Either channel may fail and this failure is known t@mployed (for the bipolar alphabetl, this gives a bound
the decoder but not the encoder. The objective is to obtah 8K. This simple observation is the starting point for
good performance when both channels work and to degratie construction of many codes used in magnetic recording
gracefully if either channel fails. The two channels may bapplications; more details can be found in Immink and Beenker
considered equally important, and this is different in spir[tL15], Karabed and Siegel [121], Eleftheriou and Cideciyan
from layered coding (successive refinement) where a higié3], and the survey paper [152]. The objective in all these
priority channel transports important bits. The emergence pépers is to separate signals at the output of a partial-response
wireless systems employing multiple antennas, and of actiekannel by generating codewords at the input with spectral
networking in lossy packet networks represent an opportunitylls that are matched to those of the channel. The special
for the multiple descriptions coding paradigm. features of telephone channels and recording channels have
also led to new connections between coding theory, dynamical

L. The Notion of Frequency Domain systems, and linear systems theory [151].

This is the idea of using constraints in the frequency domain ) )
to separate codewords in the time domain. We begin B Partial-Response Channels and Coding
considering integer valued sequenges: (pg,p1, -, PN—1) with Spectral Constraints
which we represent as polynomialéD) = "~ ' p;D'. We It is natural to try to devise coding schemes that meet both
shall say that the sequenggD) has alth-order spectral null spectral null and minimum distance/coding gain objectives.
atd = 2n¢ /M, if p(D) is divisible by(e?® — D)% A collection Starting from an uncoded.-level data sequencéi;) we
of sequences with this property is calledgectral null code want to generate a real-valued sequefige) with nulls at
To show that it is possible to separate vectors in Euclidearrtain prescribed frequencies in such a way that the data
space by placing spectral constraints in the frequency domaii,) can be recovered instantly from the sequefigg. Fig. 6
we consider the caseé = 0. We say that the sequengéD) shows an input sequence(D) passing through a partial
hasa sign change at position if p, # 0, andsign(p,) = response channel with impulse response (transfer function)
—sign (p;), wheret = max{i < u | p; # 0}. p(D), resulting in an outpuy(D) = z(D)p(D), which is
called a partial-response-coded (PRC) sequence. A white-noise

Theorem (Descartes Rule of Signsket p(D) be a real ; .
polynomial with K positive real roots, not necessarily distinct.sequencm(D) may be added tg(D) to give a noisy PRC

. . Sequence(D), representing the output of a real channel. The
Then the number of sign changes in the sequepcef
- : input sequence (D) can be recovered from the PRC sequence
coefficients ofp(D) is at leastK.

y(D) by passingy(D) through a filter with transfer function
For a proof we refer the reader to Householder [111]. Noty'p(D). (We have to imagine that(D) “starts” at some finite

consider a code with d(th-order spectral null a8 = 0. time for this inverse filtering operation to be well-defined, and

It follows directly from Descartes Rule of Signs that theve assume the initial values are known.) Thus the sequence
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RDS of the line code line code
sequence (yx) sequence
ik Tomlinson iy flz) = Tk Yk
— filter for 2 (z) —
1+ fiz+ faz® + - p
h(z} = f(z)p(z)
controls the power .S, p(z) = 1 — z creates
of the line code through a simple null at d.c.

RDS feedback

Fig. 6. Diagram for either partial-response signaling or signaling with spectral nulls.

x(D) may be reconstructed as the “running digital sum” (RDSNormalized Line Code g 1
of the PRC sequencg D). The spectra of the RDS sequencePower Sy/S (dB)
and PRC sequence are related by the partial-response transfer
function expressed in the frequency domain. The order of the 4
spectral null will be the order of the corresponding zero in
p(z). This number needs to be doubled to describe the order
of the null in the actual power spectrum, which is proportional T
to |p(c™)|?.
We define theRDS powersS, as the sample variance of B—1
the RDS variablesz;, assuming sufficient stationarity (so e
that this notion is well-defined), and tHeRC powersS, as
the sample variance of the PRC variablgs Neither is Normalized RDS Power S;/5 (dB)
necessarily larger than the other. Give), the problemisto
choosef(~) so as to minimizeS, subject to the requirement
that S, be held fixed. This will single out a one-parameter

B=0 Achievable Tradeoffs

B=1/2

Non-achievable
Tradeoffs

Optimum tradeoff betweefi. /S and S, /S.

family of filters f(z) indexed by the RDS poweS,. It is 20 7o
necessary to constraifi(z), for otherwise the minimizing

solution is f(z) = 1/p(z) and the null disappears (the power 15

S, becomes infinite). Decreasing the width of a spectral null in p=1/2
the line-code spectrum requires a large peak at the appropriate H,(6) p=3/4
frequency inf(z), and hence large powet,. y\9) 1.0 B="1/8

The new information in each symba}. is carried by the
i.i.d. input ¢, to the filter f(z). The powerS of the sequence 05
i}, is the effective signal power at the output of a minimum
mean-squared error (MMSE) predictor for the RDS sequence
(zx). For a single null at dc, Forney and Calderbank [84] 00
show that the filterf(2) = 1/(1 — z) gives the best possible
tradeoff between the RDS pow#r, and the line code power

Sy. The optimum tradeoff is shown in Fig. 7 and is given byig. 8. PRC spectra for first-order autoregressive RDS sequences with
parameterg3.

| | | | j
0.2r 04w 0.6mr 0.87 T

Frequency

NEAYE? (S
sI\s )T \s )" for these first-order power spectra

The corresponding PRC spectra are shown in Fig. 8. As mfo = (Su/25:) Iy
S, approachesS, S, necessarily increases without boundiwhere fx is the upper Nyquist band-edge frequency), so that
and H,(8) becomes flatter with a sharper and sharper null atfo/fny ~1— 3 (or 6y ~ 1 — 3), at least forg > 1/2.
dc. These power spectt,(6) are called “first-order power The optimum tradeoff betweef, and S, for sequences
spectra” by Justesen [118], who considers them to be &m,} and{y;} that are related by(D) = «(D)p(D), where
interesting representative class of simple spectra for sequene@s) is a response with arbitrary spectral nulls, was developed
with dc nulls, in that they remain small up to some cutofih subsequent work by Calderbank and Mazo [30]. Forney and
frequencyf, and then become approximately constant over tigalderbank have shown that, at least for sequences supporting
rest of the band. He notes thatfif is defined as the frequencylarge numbers of bits per symbol, coset codes can be adapted
at which H,(fo) = S, /2 (the “half-power” frequency), then, to achieve effectively the same performance and complexity on
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At the encoder:

Lempel-Ziv Reed-Solomon Modulation
Compression Code Code

/ / sequence of

+ 1s written

data ——— F—>—

software that hardware that on the disk
removes redundancy adds redundancy
from the data to the compressed

data for the purpose
of error correction

At the decoder:

Equalizer 1 2 .
for Demodulator | * Re%i—Sozjomon * DLempel—Zly data
Read Channel ecoder ecompression
converts the soft (Viterbi)
channel to a decisions

tractable response

Fig. 9. Concatenation of an inner modulation code with an outer Reed—Solomon codetlm demodular provides a maximum-likelihood estimate of the
+ valued sequence written on the disk, and the bit-error probability might be beti@eghand 10~1° depending on the aggressiveness of the modulation
strategy. Atx? the bit-error probability needs to bE) 1'%, that is, essentially error-free.

partial-response channels, or for sequences with spectral nudlsrect with very high probability, and have the inner decoder
as they do in the ordinary memoryless case. This in addititneat the corresponding information bits as side information
to the optimum tradeoff between input and output powers. in a second round of decodingtéte pinning. Particularly in
magnetic recording, it can be advantageous to reverse the order
of modulation and Reed-Solomon encoding (a systematic
N. Concatenated Codes encoder is required). This reduces error propagation and can

Applications of coding theory (see [45]) from deep-spadé&sult in coding efficiencies (see [17] and [114]).
communication to consumer electronics employ an inner mod-The theoretical foundations of concatenated coding are
ulation code with an outer algebraic error-correcting cod@und in Forney [74], who showed that for polynomial de-
(usually a Reed—Solomon code). Fig. 9 is a representatie?ding complexity, the error rate could be made to decrease
of a magnetic recording channel. For this application it @xponentially with blocklength at any rate less than capacity.
likely that in the next five years we will see full integrationhe notion of concatenated codes has been pursued with
of demodulation and Reed—Solomon coding (a single-chithusiasm in the Russian literature, and there is a substantial
solution). commonality to the generalized cascade codes of Zinoviev

There are opportunities to use soft information calculatdd30], and the multilevel codes of Imai and Hirakawa [112].
by the demodulator in Reed—Solomon decoding. For a smillalgebraic coding theory, Justesen [117] provided an explicit
increase in decoder complexity it is possible either to providg@nstruction of a sequence of codes for which the rate and
reliability information about every demodulated data symbdhe normalized distance/N are both bounded away from
or to provide a list of the two or three best estimates @ero. For a long time prior to his construction there had
the +1-valued sequence written on the disk (see [184] argen serious doubt as to whether this was possible. Now it
[106]). For the second alternative, the quantity of interekt easy to show there exist field elementg € Fa-, so that
is the probability that the true write sequence is not amorige binary concatenated codes determined by fairs,,.c),
the list of two or three. This quantity may be recast as @€ F2- meet the Gilbert-Varshamov bound as — oc.
decrease in bit-error probability; the old rangé—1°, —10=¢] However, this is not an explicit construction. Justesen’s idea
becomes[10~%*,107%], an improvement of about 1.5 dBwas to consider pair§(c;), («;c;)) where the field element
for the list of three estimates. Both alternatives have thg depends explicitly on the symbe};, but where variation
potential to simplify Reed—Solomon decoding, but it is ndt «; from symbol to symbol provides the kind of performance
so easy in practice, and even the declaration of erasuresitisibutable to random coding.
something of an art. It may in fact be more productive to
focus on interpolating reliable symbols as in [203]. Staged
decoding can provide additional coding gains of up to 1
dB in concatenated systems. For example, Hagenauer, OffefEven in the 1977 edition of MacWilliams and Sloane there
and Papke [107] identify Reed—Solomon codewords that amere 1478 references. Since it would be unwise to attempt a

IV. TwWO IMPORTANT DEVELOPMENTS
IN ALGEBRAIC CODING THEORY
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comprehensive array of algebraic coding theory in the spadé&e may think of an association scheme &nas a coloring

available, we have chosen instead to highlight two developf the complete graph ok with colors ¢y, --,cy where

ments of particular importance. The first is the geometriean edge has colot; if it belongs toI';. The first condition

mathematical framework of association schemes presentedalsgerts that each monochromatic gréhl’;) is regular. The

Delsarte [48] that provides a common language for codirsggcond condition asserts that the number of triangles with a

theory, statistical design, and algebraic combinatorics. Thesen coloring on a given base depends only on the coloring

second is grounded in algorithms, and follows developmergad not on the base.

in cyclic codes through to the creation of algebraic-geometry The Johnson schemé(v,d) offers an algebraic means

codes that beat the Gilbert—Varshamov bound. of quantifying the duality between packing and covering
The theory of association schemes was inspired in part psoperties ofl-subsets of a-set. The point se® of .J (v, d) is

the MacWilliams Identities, though it is the nonnegativity ofhe set ofd-subsets of a-set, these subsets intersectdin- 1

the MacWilliams transform that is important, rather than thgossible ways, and thé + 1 relations

identity connecting the weight distribution of a linear code

to that of the dual code (see [51]). It is these MacWiliams ~ Bi ={(z,%) | [zNyl=d -4},  ¢=0,1,---.d

Inequalities that lead to the MRRW linear programming boun . . . L
on codes, and to lower bounds on combinatorial designs a gfermine an association scheme. Starting from this simple

orthogonal arrays. Many notions of regularity in group theor)?, servation, Delsarte [48] used the representation theory of

combinatorics, and statistics are expressed very naturallyaig sl;ynjm?trlcc?r?up ?nd ortthogolnal tpt%Iynomlals to derive an
terms of association schemes. For example, the study ebraic foundation for extremal set theory.

distance regular graphs, now a large subject in its own ri htThe \{ec_tor s_pacR“ consists of all map_pmg& from €2 to :

(see [21]), is the study of association schemes with a particS@lrand IS Invariant ungier thg natgral action of the symmetric

(P-polynomial) property. group S,. The wredumb!eSv-mvanant ;ub;paces under this
We begin with a section that emphasizes approximati@?ﬂ'On are the hgrmonlcv spacéarm (@), 4 = 0,1,---,d,

in the theory of combinatorial designs. The notion of ap¥eredim (harm(9)) = (5) - (;Z,). The adjacency matrix

proximation is one reason the theoretical computer sciente of the graph({2, K;) is symmetric, and the relations

community has made extensive use of coding theory in recent DD — Z kD

years. In particular, codes have been used to design small Y - Pij =k

sample spaces that approximate the behavior of large sample »

spaces, leading to bounds on the number of random bitsply that the matricedDy = I, D;,---, Dy span a(d + 1)-

used by probabilistic algorithms and the communicationimensional commutative real algebra called Bose—Mesner

complexity of cryptographic protocols. From the perspective algebraof the Johnson scheme [20]. The adjacency matrices

computational complexity it is natural to view random bits as B, commute with the natural action of the symmetric group,

resource analogous to time and space, and to design algorittand Delsarte [48] proved that thie- 1 eigenspaces common to

that require as few as possible. For details on this and othlee matricesD; are in fact the harmonic spaces. Calderbank,

applications of coding theory to computational complexity se@elsarte, and Sloane [25] constructed an explicit spanning set

Feigenbaum [67]. for each harmonic spadearm (). For everyi-set A, let
i —1

A. Approximation, Combinatorial Designs, B NTe d—j\[v—i+1)_

and the Johnson Scheme fa= Z( 1) j i—j j o;(A),

=0
The concept of approximation is similar but slightly dif-

ferent from that of quantization. The purpose of a design Yéhereo;(4) is the sum of the characteristic functions of all

to capture with a small ensemble the regularity properties bsubsets ofd. As A ranges over every-set the vectors 4

a much larger universe. Designs are concerned with approxanharm (i).

mating a universe closely, whereas codes are concerned witd he harmonic spaces are of combinatorial importance, be-

separating an ensemble widely. Questions in coding the(ﬁ?use if the characteristic function of a family dfsubsets

are packing problems, whereas questions in design theory @fed v-set is orthogonal to a harmonic spakterm (;j), then

covering problems. There is a duality between packing a#is family exhibits some regularity with respect tesets. To

covering that can be made mathematically precise using gfnnect this viewpoint with classical design theory, we recall

theory of association schemes. that at — (v, d, A) design is a collectio® of subsets of a-

An association schemis a setX together with a partition element set such that every membeRbtontainsd points and
of the two-element subsets df into N classed;,---,I'y €very subset of points is inA blocks. Here we are looking at
satisfying the following conditions: the universe ofi-point subsets, and we are approximating the

] ) ) regularity properties of this universe with respect{subsets
1) givenz € X, the numbery; of pointsy € X with 4 coordinates.

{z,y} € I'; depends only on; If ¢ is anS,-invariant subspace @, then we can write
2) givenz,y € X with {z,y} € I'y, the number of points
z € X with {z,2} € I'; and{y, 2z} € I'; is a constant ¢ =) harm (i)

p}; that depends only on j, and k. =
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for some subsel” of {0,1,---,d}, where»_ denotes orthog- by
onal sum. There ar@?*t! such subspaces. Now 18 be a

. 4
nonempty family ofd-subsets of a-set. A subspacé¢ of R Ey(z) = Z(_l)j <$> <U - x) <U —d—x )7

will be said to be®B-regular if it satisfies = JJ\l—J l—j
18| [=0,1,---.,d.
<7l'(%),”(/}> = —<7T(Q),”(/}>, for all ”(/) € C .
|€2] For a proof, see Delsarte [48]. The matéx= P~!/(};), with

. - . tlth entr 1) is called thedual eigenmatrix Note that
wherew( ) is the characteristic function of a subsetbfHere ' y@uli) g

we are thinking about a design as a way of approximating d v
the statistics of the full ensemble of d-subsets of a-set, Ji= <Z Ql(i)Dz)/(d)-
using only a proper subsé&. The vectorr(Q2) is the all-one =0

function which span&arm (0). Orthogonality implies that the The entryq, (i) = H;(), whereH,(z) is the Hahn polynomial

inner product(r(£2), ) vanishes for alk) € harm (j) with  defined by
j = 1. It follows from the definitions that it is .S, -invariant

and B-regular then Hy(z)= K?) B <li}1 )}

(w(*B),v) =0, for all ¢ € harm (j), with 0 # j € T. ! { N (1IN (d\ Y o—d\ ) [z
e ()6 () 0)
In this case we sa$ is aZ-design(when0 € T, aT-design is i=0 ¢ ¢ ¢ ¢ ¢
defined to be &”-design with?” = 7'\ {0}). The importance 1=0,1,---,d.
of this equation is that it shows the equivalence between the .
concepts of al-design in.J(v,d) and anS,-invariant B- Agg!n we rifer.tlhe%reidsrtobDetlsar';e ([48]totrh[5((j)]) flo(;.atp.roof.
regular subspace d@®. The following theorem of Delsarte, = ven @ lamily= ol d-SUbSELs of a-set, thedual distr-

[48] makes the connection with classical design theory. bution b = (bo, by, -- -, ba) is given by

{1T2r1eorerr;: A t-design inJ(v,d) is aT-design, wherdl’ = b; = %W(%)Jﬂr(%)T = %HMHQ
J2 0 tt.

where ; is the orthogonal projection ofr(*8) onto the

Let B be a family of d-subsets of au-set. The inner " )
eigenspacéiarm (7).

distribution a = (ao, - -, aq) of B is given by
. Theorem ([48]): The inner distributiona, and the dual
a; = |B| Z Di(x,y) distribution & are related by
z,yCB

a@) = |'Blb
which is the average valency of the relatié restricted to ) ) .
8. The information carried by the inner distribution is packiny/here@ is the dual eigenmatrix of the Johnson scheme.
information about the family8. Thed-+1 numbers in the inner Proof: We have
distribution are all that is necessary to calculate the norm of the 1
projection of the characteristic functiar{®5) on the harmonic <—aQ> =— Z Qi($)a;
spacesharm (¢). These norms carry information about how B c 1Bl
subsets inB cover thewv points. This is what is meant by 1 d
quantifying the duality between packing and covering. = |%|27r(%) <Z Qz(i)Dz)W(%)T = by,
Since the Bose—Mesner algebra is semisimple, it has a i=0
unique basis of minimal mutually orthogonal idempotent Mgy required. 0
trices Jo, - - -, Ja. Here Jo = J/(;), where J is the matrix

with every entryl, and the columns of; span the harmonic It is also possible to capture the regularity properties of
spaceharm (7). If a design®B through analysis of invariant linear forms. With

any t-subsetz of V' and any integei € [0,¢] we associate

d the numberD;(x) that counts the blocks ifB meetingz in
D, = ZPI('L')% fori=0,1,---,d t — points. Suppose that for allsubsetsr, we have a linear
i=0 relation
then JoDo(x) + fiDi(x) + -+ fiDy(x) = ¢
Dy J; = P(i)J; where fo, f1,---, ft and ¢ are fixed real numbers. Then we

say that the(t + 1)-tuple (f;)i_, is a t-form for B. The
so thatF,(¢) is the eigenvalue of); on the harmonic spaceset of t-forms clearly is a vector space, which will be called
harm (¢). The(d+1) x (d+1) matrix P with ¢/th entry P,(¢) is  the ¢-form spaceof 8. The dimension of the-form space
called theeigenmatrixof the Johnson scheme. The eigenvalumeasures regularity dB with respect ta-subsets, and when
F,(i) = Ey(z), whereE;(z) is the Eberlein polynomial defined 5 is a classical¢-design, thet-form space coincides with
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RttL. Calderbank and Delsarte [24] have shown thatffeem (negative) eigenvalues. We obtain
space is completely determined by the inner distributiofSof

and that the invariant-forms can be calculated via a matrix |B| < <“>

transform that involves a system of dual Hahn polynomials. d

For example, the inner distribution of octads in the binary VAN A (v _ v .
Golay code is(1,0,0,0,280,0,448,0,30) and the 7-form d d—1 d—2 d—3
space can be generated from the partic@éorm v v—1
=(a)- (")
Do(z) + Di(z) = 1.
_ <v — 1)
It is interesting to note that given any collection®element d—1
subsets of &4-set for which this particular-form is invariant, as required. .

the linear span must be the binary Golay code.

The fundamental question in design theory is usually takenWe now consider-designs in greater detail. If denotes
to be: Givenv,d, \ does there exist & — (v,d, \) design? the number of blocks, and if denotes the number of blocks
This is certainly a natural question to ask from the perspectigentaining a given point, then the identities
of small geometries, but it does not involve the idea of
approximation in an essential way. Designs play an important
role in applied mathematics and statistics and this author WOlfledstrict the possible parameter sets. These identities are trivial

suggest that questions involving fundamental limits on tqﬁ that they are obtained by elementary counting arguments.

quality of approximation are more important than questior?Fis natural to impose the restrictioh < v, and in this case

involving existence of individual designs. we have Fisher’s inequality > v. Designs withb = v are
One of the strengths of the association scheme approach 1 d - 9 T

designs is that it allows arbitrary vectors R, not just the caﬂeq symmetric de3|gn§. In a symmetric design there IS just
- . . ) . one intersection number; two distinct blocks always intersect
characteristic vectors of collections dfsets, in particular it

. . ; in A points. Conversely, it is easily shown that2adesign
includes signed designs [177]. . ; i . . .
; . I ith one intersection number is a symmetric design. The
We mention briefly an elegant application to extremal s : - -
S ) . ruck—Ryser—Chowla theorem provides a nontrivial restriction
theory that was inspired by Delsarte’s thesis. A far#hof d- on the parameter sets of symmetric designs. Here “nontrivial”
element subsets efset is called- intersectingf |BNB’| > ¢t P y gns.

for all B, B’ € 8. The problem of determining the maximumgs]arl]s é’g‘ur?tli%eb;‘s:lcur%%r:gglo?hteh%trlikrlﬁ 2;32%3&:2%20?]‘
size of t-intersecting families goes back to B Ko, and P g arg : Y

Rado [66] who proved the following theorem. rem also prowde_s a connection between '_[he theory of designs
and the algebraic theory of error-correcting codes. The row
Theorem: Suppose thafB is a t-intersecting family with space of the incidence matrix of a symmetric design deter-

bk=vr and r(k—1)=(v— DA

v > wo(d,t). Then mines a self-dual code with respect to some nondegenerate
scalar product. The restrictions provided by the theorem are
1B < <U - t>' necessary conditions for the existence of these self-dual codes

T \d-t (see Lander [128], Blokhuis and Calderbank [18]).

The bound is obviously best possible, since we may taBe Algebraic Coding Theory and the Hamming Scheme
B to be alld-subsets containing a fixegelement subset. The 14 Hamming schemé (XN, q) is an association scheme

best possible value ofy(d,?) is (d — ¢ + 1)(t + 1), as Was i n classes. The point sef is F2, and a pair of vectors
shown by F_rankl [89] for > 15, gnd then by W|Ison [225_] for {z,y} is in classI; if the Hamming distance)(x, ) = 1.
all ¢. The eigenvalues of the adjacency matrigzsare a little  The agiacency matrices; of the graph(F}Y,T';) generate the

difficult to work with, and Wilson used instead the matriceg,ge_Mesner algebra of the scheme, and there is a second
S(j), with rows and columns indexed hysets, and where pagis 70 .. 7. of mutually orthogonal idempotent matrices.
the (A4, C) entry countsj-subsetB for which AN B = ¢ and The two bases are related by

B C C. ThusS(y) is a linear combination oDy, - -, Dy_;
and the eigenvalues turn out to be

N
Dy =Y Ki(i)J;

.o i d—1 U—]—'L =0
A(i,g) = (=1) <J—L>< d—i ) ) N
q]\ Jl = ZK](L)DZ,

with multiplicity (7)—(,", ). Itis interesting to note that when =0
t =1, it is easy to prove the Eéd—Ko—Rado theorem usingWhere
this algebraic framework. An intersecting family determines
a principal submatrix ofB(0) = Dy that is identically ! ; AN\ (1 — 2
zero, and the size of this submatrix is bounded above by Ki(z) =Y (=1)/(g— 1) <J) <l—j>
() —max(ly,l_), wherel (I_) is the number of positive 7=0
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is the ith Krawtchouk polynomial. Recall thak;(z) is the binary self-dual code” with all weights divisible by4 is

coefficient of ! in invariant under the transformations
1= N1+ (g - DNV <x> = L(l 1 ><x>

In this association scheme, the eigenmatfixand the dual Y v2\l —1/\y
eigenmatrix@ are identical.

The inner distributiona = (ao,---,ax) of a codeC is and
called thedistance distributionand the entry; is the average
number of codewords at distantérom a given codeword. If <$> — <1 0) <x>
C'is linear thena is simply the weight distribution. The dual Yy 0 ¢/\y

distributionb = (b, ---,by) is given bya@) = |C|b which ] o .
we expand as These transformations generate a group containing 192 matri-

ces, and Gleason [97] used a nineteenth century technique
1 & ) called invariant theory to prove tha¥c(x,y) is a poly-
b= IE] ZaiK’(Z)’ 1=0,1,---,N. nomial in the weight enumerators of th®, 4,4] Hamming
=0 and [24, 12, 8] Golay codes. An immediate corollary is that
For linear codesC we recognize these equations as thihe blocklengthV is divisible by 8. More details and gen-
MacWilliams Identities [146], [147] that relate the weightralizations can be found in a very nice survey by Sloane
enumerator of a linear code to that of the dual cédte. A [201]. There is also a very fruitful connection between self-

little rearrangement gives dual binary codes with all weights divisible by and even
unimodular lattices. In fact, there are parallel theorems giving
1 wt (ac) _ . RNV ! .
[~ Z A - ZZ“ZKI(L))‘ upper and lower bounds on the best codes and lattices, and
l

zeCt ‘ parallel characterizations of the weight enumerator of the code

= Z ai(1 =X (14 (g— 1NN and the theta series of the lattice (see [44, Ch. 7]).
i The most important theorem relating codes and designs is

which is the single variable form of the MacWilliams Identithe Assmus—Mattson theorem. The statement of this theorem

ties. It is sometimes more convenient to associate to a lingiyen below differs from the statement given elsewhere (for

codeC a weight enumerator in two variables. Then example, in Assmus and Mattson [2] or MacWilliams and
Sloane [148]) where the conclusion applies only to codewords
We(z,y) = a7yt of sufficiently low weight. This restriction is to exclude designs
ceC with repeated blocks. Since we mean to allbdesigns with

and the MacWilliams Identities take the form repeated blocks, we may drop the extra restriction.

1 Theorem (Assmus—Mattso)et C be a linealv, &, d] code
Wes(@y) = @WC(“: +(g =y z—y). over F,, where the weights of the nonzero codewords are
= d, wq, -, w,. Let d,uh,---,w, be the nonzero

w
There are several families of nonlinear codes that have m%}éights inCL. Let ¢ be the greatest integer in the range

codewords than any comparable !inear code presently knov@n< t < d, such that there are at mogt— ¢ weights w!

These are the Nordstrom—Robinson, Kerdock, Prepar 0 < w! < v — t. Then the codewords of any weight

Goethals, and DeIsa_rte—GoethaIs_ codes [52], [98], [99], [1_2%1, C form a t-design.

[164], and [174]. Aside from their excellent error-correcting

Capabi“ties, these pairs of codes (Kerdock/Preparata andThe theorem is pfOVEd using the MacWilliams Identities. We

Goethals/Delsarte—Goethals) are remarkable in the sense Ewcture the code by deleting coordinages- - -, p, to obtain

although these codes are nonlinear, the weight distribution®fodeC. The codeC is obtained by taking codewords

one is the MacWilliams transform of the weight distributiodn C* with ¢,, = ¢,, = --- = ¢,, = 0 and deleting these

of the other code in the pair. Hammomsal [108] provide coordinates. The MacWilliams Identities allow us to solve for

an algebraic explanation by showing that there is a natufgp weight distribution ofC" and the solution is independent

definition of Kerdock and Preparata codes as linear codéisthe choice ofpy,---,p;.

over Z,, and that asZ, codes they are duals. The mystery Delsarte [49] identified four fundamental properties of a

of the weight distributions is resolved by observing tha} ( code or more generally, a subset of an association scheme:

Lee distance) andFEY, Hamming distance) are isometric « the minimum distance’;

(see Subsection IV-D), and that there is an analog of thee the degrees, which is the number of nonzero entries

standard MacWilliams Identities for codes in the Lee metric. in the inner distribution, not counting, = 1;

There are in fact a number of different association schemes the dual distanced’, which is the index: of the first

and MacWilliams Identities that are useful in coding theory. nonzero entryb; in the dual distribution, not counting

Delsarte and Levenshtein [55] mention five, including the b, = 1;

association scheme relative to the split-weight enumerator. < the dual degrees’ (sometimes called thexternal dis-
There is a great deal of interesting mathematics associated tance, which is the number of nonzero entrigsin the

with self-dual codes. The weight enumeraidt-(x,y) of a dual distribution, not counting, = 1.
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There is also thenfaximun strengtht which isd’ — 1. In the N ‘
Johnson scheme, a subset of strertgth a ¢-design. Z aiKi(d) 2 0, fori=1,---,N.
The combinatorial significance of the external distaste =0
is understood through the characteristic polynomial of a cottehas in fact proved more convenient to attack the dual

C, which is given by minimization problem. Here we look for a polynomi&l z) of
N ¢ degree at mosV, where the coefficienf; in the Krawtchouk
_ 49 expansion
=1 1—2).
“© =g 1 (%)

N
F(z) =Y fiKu(z)

We expand the shifted polynomial§™«(¢) in terms of =0

Krawtchouk polynomials are nonnegative, wher¢y, > 0, and where F(i) < 0

for ¢ = d,---,N. The size of any code with minimum

ma(e) _Si"amK(g) distanced is bounded above by(0)/fo. The McEliece,
- —~ i AL Rodemich, Rumsey, Welch (MMRW) bound [156] results from
= polynomials
Now, given a vectorz € FY, let 3;(») be the number of Fla) = 2 (KK _K Ko())2
codewords: € C for which D(c, z) = <. Delsarte [48] proved () = T (K0 Kr(2) = K () Kil2)
) wherel < ¢ < |(N —1)/2], andc is an appropriately chosen
st - 1, if m=0 real number. For binary codes the rdtesatisfies
Z o i) {0, otherwise d d
=0 R<H,|1/2- [N(l_ﬁﬂ (1+ o(N)).
Takingm = 0, we see that the covering radius@fis bounded
above by the external distance. Strengthening the dual problem by requiridz) < 0 for
If the minimum distanced is greater than the externald < = < N gives a new problem where the minimizing
distances’, then the coefficienta=a{=...=aj__,_, =1. Polynomial can be found explicitly [136], [194]. However, the

Fori < d — &', this is proved by choosing € F — ¢~ at asymptotics of the solution coincide with the MRRW bound.

distancei from somec € C. Then by the triangle inequality, A Second application of linear programming is to bound-
every other’ € C is at distance greater thahfrom z. Since 1Ng zero-error capacity of a discrete memoryless channel,
Bi(z) = 1, andB,(z) = 0 for j < ', j # i we have @ concept introduced by Shannon [188] in 1956. Here the
a; = 1. This leads to the famous characterization of perfeftPut alphabet becomes the vertex set of a graph, and two
codes mentioned in Section II. vertices are joined if the action of noise cannot result in the
) . ) corresponding symbols being confused at the output of the

Theorem: Let C' be a code with minimum distaneéand channel. The problem of determining the zero-error capacity

external distance’, and lete = |(d — 1)/2]. Then of the pentagon remained unsolved for some 20 years until the
‘ /N gV s’ N ‘ linear programming solution by Lasz [144].
Z <L )(q -1y <=< Z < )(q — 1) The combinatorial significance of the dual distanfeis
£ |C| - ¢ . o . o
i=0 i=0 understood in terms of variation in the inner distribution of
If one of the bounds is attained, then so is the other, the coggnslates of?. For example, a cod€ is said to bedistance-
is perfect, and its characteristic polynomial is invariant if the number of codewords at distanéefrom a
e given codeword depends only erand not on the codeword
pe(z) = > Ki(2). chosen. Linear codes are distance-invariant, as are the binary
=0

images of linear codes ovét, after applying the Gray map

This result is named for Lloyd who obtained the theoref{0r €xample, the Kerdock and Preparata codes). Delsarte [48]
for ¢ = 2 by analytic methods prior to the discovery ofProved that a sufficient condition for distance invariance is

the MacWilliams Identities. For comparison, the characteristif@t the degree is at most the dual distancg. The argument
polynomial of a uniformly packed code is rests on degrees of freedom in the MacWilliams transform. If
d’ > s then there is no variance in the distance distribution

e—1 .
Ki(» 1= MWK (2)+ 1/ K. 1 (). of translate” + = where D(x, () < d' — s is constant (for
lz_; (=) +( IKe(2) + 1/ K e (2) details see [55] or [38]).

The problem of finding good upper bounds on the size of We have seen how the dua_l degréeand the minimum ,
a code with minimum distance can be expressed as a Iineag'StanCEd can be used to provide upper bounds on the size

program. We treat the entries of the inner distribution as real Of codes./ We now describe hqw the degreand the dual_
variables, and we look to maximize the sU) a; under distanced’ can be used to provide lower bounds on the size
) =0 "

. . N
the linear constraints of designs. Given a subs_é’t of ', we form the array where
. the rows are the words ilv. The subset” is anorthogonal
ap =1, a; =0, fori=1,---,d-1 array of strengtht and index)\ if, in eacht-tuple of distinct
a; >0, fori=d,---,N columns of the array, ali-tuples of symbols appear exactly
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times. Clearly|Y'| = A¢*. This what it means to be a design in There are strong structural similarities between the Eu-
the Hamming scheme. The two notions of strength coincideidean spher&®™ —! and the Hamming and Johnson schemes.

and this is evident whel” is linear. All are distance-transitivén the sense that given poinisy,
The counterpart to the characteristic polynomial is the, sy’ the distance(x,y), D(z',%') are equal if and only
annihilator polynomialgiven by if there is an isometry for which z¢ = 2’ and4? = v/.
¢ For the Euclidean sphere, isometries are simply orthogonal
v =1 ] <1 - ;) transformations. Delsarte, Goethals, and Seidel [54] showed
e that the earlier method of deriving lower bounds on designs

which we expand in terms of Krawtchouk polynomials remains valid, though the particular orthogonal polynomials
are different. Also see [55] for more details.

£) = Z’WKI(S)- Delsarte, Goethals, and Seidel [53] also derived upper
bounds on the cardinality of sets of lines having prescribed
If the maximum strengttt is at least the degree then the angles both iR™ andC”. The inner products between unit
coefficientsyy = --- = v_, = 1. The counterpart of the vectors in the different lines determine the inner distribution
previous theorem is the following. of these spherical codes. Given a spherical c@det A =
_ _ _ {l(a,b)]? | a # b € Q}. Fors € {0,1} and integers; > 0, the
Theorem: Let Y" be a design with degreeand maximum  jacobi polynomiatyy, . (z) in the real variable: is defined by

strengtht, and letf = |¢/2]. Then a three-term recursion that depends on the choice of field.
f .
3 <N>(q_ i< || < Z < ) g— 1y Thet_)rems[53]: For anyc > 0, let F(z) be a polynomial
= satisfyinge®F(o) < Oforall o« € A, fi,. > 0forall k> 1,

and fo. > 0, where f; , is the coefficient ofQ, , in the
If one of the bounds is attained, then so is the other, thacobi expansion of'(x). Then

design is calledight and the annihilator polynomial is

(= ZKI

This is the Rao bound [176] for orthogonal arrays of strength This theorem provides upper bounds on the size of families

t. The corresponding theorem in the Johnson scheme is tifesequences with favorable correlation properties that are
Ray—Chaudhuri/Wilson bound for tight designs [178)s-( used in spread-spectrum communication. For instance, there
designs withs different block intersection sizes). Fer> 1 the is an interesting example involving Kerdock codes. Cameron

only known example is the set of minimum-weight codewordand Seidel [37] used quadratic forms @' to construct a

9] < F(1)/ fo,e-

in the perfect binary Golay code. family of lines through the origin oR”Y, where N = 2m+1,
such that any two lines are perpendicular or at an adgle
C. Spherical Codes and Spherical Designs wherecos§ = 1/\/— These line sets are the union Af/2

We begin in real Euclidean space with a mathemancgfig]es (;ﬁrrispgnd;(n 9 tg cgzetslo;ghe f(ljrsLt ordetht{eed 1g/l5uller
criterion that measures how well a sphere is approximatgg € in the Kerdock code.dfig [126] and Levenshtein [135]
- . _ observed that adding the standard coordinate frame did not
by a finite point set. Let2 = {P;,---, Py} be a set ofM | .
. . increase the set of prescribed angles, and that the augmented
points on the unit sphere ) :
system of lines met an upper bound derived from the above
gN-1 — {z = (21, ,2n) € RY |z -z =1} theorem. TheZy-linear Kerdock code determines an extremal

system of lines in complex space (see [23]).
Then 2 is a sphericalt-designif the identity

D. From Cyclic Codes to Algebraic-Geometry Codes

f( M Zf We take the perspective of frequency-domain techniques
particular to finite fields. The notions of time and frequency
(where y is uniform measure oV ~! normalized to have domain for codes defined over finite fields, and the idea
total measurd) holds for all polynomialsf of degree< ¢. of using constraints in the frequency domain to separate
For example, a soccer ball is a truncated icosahedron rathedewords in the time domain are of fundamental importance.
than a perfect sphere, and the 60 vertices of the soccer Mdils is the foundation for the Reed—Solomon codes that are
form a sphericab-design. Goethals and Seidel [100] improvefbund everywhere today, from computer disk drives to CD
upon the standard soccer ball by slightly perturbing the verticelayers.
S0 as to produce a sphericablesign. This is a very particular The early theory of cyclic codes was greatly influenced
spherical design. Seymour and Zaslavsky [186] proved that foy a series of reports written mostly by Assmus, Mattson,
any positive integer&y and¢, and for all sufficiently largel/, and Turyn in the 1960’s and early 1970’s. They were much
there exist spherical-designs of sizeld in R". This result quoted and used extensively by van Lint [139] in his first book
is a remarkable generalization of the mean value theorem andcoding theory. These reports were much influenced by the
is not constructive. monthly meetings on coding theory held first at Hanscom Field
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then at Sylvania involving Assmus, Gleason, Mattson, Pierclg, . N N
. S - is'represented by the polynomidlz) = A X here
Pless, Prange, Turyn, and the occasional distinguished visitor. P y poly (z) Z / W

j=1
We begin by observing that the bind@/”—1, 2™ —m—1, 3] .
Hamming code may be defined as the collection of binary j = i
vectors(ag, as, - - -, azm_s) that satisfy Aj =alad) = ; A
= w0 The BCH code with designed distande= 26 is then the
; i = set of all vectorsz for which 4; = Ay = --- = As_; = 0.

VLSI implementation of Reed—Solomon decoding has inspired
wherec is a primitive(2™ — 1)th root of unity in the extension a great deal of creativity regarding effective computation in
field F»~. (Recall that the Hamming code is the unique binarfinite fields, for example Berlekamp’s bit-serial multiplication
[2™—1,2" —m — 1,3] code, and the new definition certainlycircuits. For an introduction to this area see McEliece [155],
determines a code with these parameters.) We may thinkasfd note the dedication to Solomon.
the matrix 1) Cyclic Codes Obtained by Hensel Liftindy: binary cy-
clic code C is generated by a divisogz(z) of 2 — 1 in
F.[z]. Hensel's Lemma allows us to refine a factorization

N _ H H N _
as a parity-check matrix for this Hamming code and increade — 1 = 92()h=(x) modulo2, to a factorization: ™ — 1 =

“ oy _
minimum distance by adding a second spectral constraint: 92 @)ha (x) modulo 2 N qnd to a factorization: - 1=
g(z)h(z) over the 2-adic integers. The polynomigjs.(z)

generates a cyclic cod€. over the ring of integer?s.,
and the polynomiaf(z) generates a cyclic codg,, over the
2-adic integers. The codes ové@r. can also be described
% terms of parity checks involving Galois rings, and this
is completely analogous to the construction of binary cyclic
codes through parity checks involving finite fields.

2 27 —2
s by [
[laa o ]

Q2”2
Q3@-2) |

This is the parity-check matrix for the two-error-correctin
BCH code. More generally we may defineB&H code with
designed distancd by means of the parity-check matrix

1« o? . o2 A very striking theorem of McEliece (generalized to Abelian

1 o ot o 2D codes in [56]) characterizes the possible Hamming weights that
H=|1 o ab LA can appear in a binary cyclic codgin terms ofl, the smallest

: : : : number such thaf nonzeros ofC (roots of hy(x)) have

1 ad2 Q2d-2) ... [(d-2@7"-2) productl. The characterization is that all Hamming weights

are divisible by2'~*, and there is a weight not divisible by
Note that the rows of are not linearly independent: some!. Though this theorem has been generalized to cyclic codes
sergtrgl constraints are Ig;erged by others: for examplghtained by Hensel lifting [28] there remains the possibility
Yico @i = 0 implies ;" a;® = 0. The assertion of using the code€s., C. to infer additional properties of
that the minimum distance is at leastamounts to proving ¢. we might, for example, hope to resolve the deceptively
that every set ofl — 1 columns is linearly independent. Thisinnocent question of given twe-sequences, whether or not
is a Vandermonde argument. —1 must appear as a crosscorrelation value.

The Hamming code and the BCH codes with designedA special case of particular interest is cyclic codes dkgr
distanced are examples of cyclic codes. These codes playat are obtained from binary cyclic codes by means of a single
an important role in coding practice, and are good in the sensensel lift. It will be of interest to characterize the possible
that there are cyclic codes that meet the Gilbert-Varshampye weights that can appear in this cyclic code. Recall the the
bound. A linear code isyclic if the set of codewords is fixed Lee weightsof the element®),1,2, 3 of Z, are, respectively,
by a cyclic shift of the coordinates: ifco,---,cy—1) is @ 0,1,2,1 and that the Lee weight of a vector & is just
codeword, then so ifcy—1,co,- -+, cn—2). To verify that the the rational sum of the Lee weights of its components. This
above codes are indeed cyclic, we apply the identity weight function defines theee metricon Z%'. If we imagine

om_o om_o 0,1,2,3 as labeling (clockwise) four equally spaced points on
ot Z a;ab = Z it a circle, t_he_n ITee distance is distance a_round this C|r_cle. The
Lee metric is important because there is a natural isometry

_ from (Z}, Lee Metric) to F3", Hamming Metric) called the
where subscripts are read modut8® — 1. The theory of Gray map. This map is defined fromz, to 7, by
cyclic codes identifies the sequeng®),a;,---,ay—_1) with
the polynomialag+a,z+- - -+an_12V 1. Cyclic codes then  ¢(0) = (00) ¢(1) =(01) ¢(2) =(11) ¢(3) = (10)
correspond to ideals in the residue class fingr]/(z™¥ — 1),

. . . ]\T
and the structure theory of principal ideal rings can be brou%@d is extended in the obvious way to a magrom Zj' to
A

N1t is evidently distance preserving. Hammazisal. [108]
roved that the Gray image of the Hensel lift of the first-order
Reed—Muller code RML, m) is the Kerdock code [122]. The
Gray image of the Hensel lift of the extended Hamming code
differs slightly from the standard Preparata code [174], but

to bear. It is also possible to approach cyclic codes throu
a discrete analog of the Fourier transform called khatt-
son—Solomon polynomigl54]. The vector

a(z) =ap +arx+- +ay_z™ 7t
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shares the same distance structure. The Kerdock, Preparapanent of coding techniques for data networks in general, and
and Delsarte—Goethals codes are nonlinear binary codes, wigeless networks in particular.
fined via quadratic forms, that contain more codewords thanin 1948 the main thread connecting information theory and
any linear code presently known. What remains mysteriousghysics was understanding the new perspective on entropy and
how to construct efficient linear codes ov&g that correct its relation to the laws of thermodynamics. Today the main
more than three errors by specifying parity checks involvindpread is quantum mechanics, as methods in information theory
Galois rings. We do not have any counterpart to the BClnd computing have been extended to treat the transmission
Hartmann—Tzeng, and Roos bounds for classical cyclic codesd processing of intact quantum states, and the interaction
(for a unified approach to these bounds see [140]). of such “quantum information” with classical information.

2) Algebraic-Geometry CodesThe last 20 years have seerAccording to Bennett and Shor [10]

the construction of algebraic-geometry codes that can beIt has become clear that an information theory based

encoded and decoded in time polynomial in the blocklength L .
. on quantum principles extends and completes classical
N, and with performance that matches or exceeds the. .
. . information theory, somewhat as complex numbers ex-
Gilbert—-Varshamov bound. This was proved by Tsfasman, X
y . S . tend and complete the reals. The new theory includes
Vladd, and Zink [211] for finite fieldd-,, whereq is a square L : .
. . A guantum generalizations of classical notions such as
and ¢ > 49, but this numerical restriction on may not be
- . sources, channels and codes, and two complementary,
essential. It was and is a spectacular result, so spectacular o . . : o .
. . o .~ “quantifiable kinds of information—classical information
that it motivated many mathematicians to learn some coding
4 : and quantum entanglement.
theory, and many engineers to learn some algebraic geometry.
The consequence has been a fascinating combination ofn this perspective we focus on the development of quantum
abstract geometry and efficient computational methods thator-correcting codes.
has been described in a number of excellent surveys andVe then turn to 21st century communication. Fifty years
introductory articles, for example, [110], [204], and [16]. from now it will be disappointing if the focus of coding
We begin by describing the codes proposed by Reed aheory is point-to-point communication in the presence of
Solomon [179], that are now found everywhere from computepise. Telecommunications will likely be dominated by packet
disk drives to CD players. Even these codes did not go intata/voice transmitted over wide-area networks like the Inter-
use immediately because fast digital electronics did not exigtt where network management is distributed. The reliability
in 1960. Consider the vector space and even the nature of individual links will be of secondary
) importance, and the challenge will be to understand the
L,.= 2) € F,lz] | d <r .
{7) Al [ deg f <7} network as a whole and to guarantee end-to-end quality of
of polynomials with coefficients in the fielll, and degree at service.

mostr. Letay, -, ay be distinct elements df,;, and define

the evaluation map A. Quantum Error-Correcting Codes

ev(f) = (fla), -, flan)). Classical bits take the valuér 1 at all times, but quantum

The evaluation map is linear, and if < N it is 1 — 1. Dits or qubits occupy a superposition of theand 1 states.
The image ofL, is a Reed-Solomon code with dimensior Nis is not to say that the qubit has some intermediate value
r—+1 and minimum distancé = N — r. Reed—Solomon codesbP€tweerD and1. Rather, the qubit is in both thestate and the
are optimal in the sense that they meet the Singleton bouhgtate at the same time to varying extents. Mathematically, a
d < n —k+ 1. The only drawback is that the lengthi is dubit is a two-dimensional Hilbert space, and a quantum state
constrained by the size of the fiefd,, though this constraint IS @ Vvector
can be removed by passing to general BCH codes.

The construction of Reed—Solomon codes can be gen-

eralized by allowing polynomialsf(zy, -, z,) in several llecti (N diff lis is th
variables, and by evaluating these polynomials on a subset bfollection o fiferent two-state memory cells is then ex-

the affine spacé™. In general, the result will be a code Withpr'essed as the tensor product of the individual two-dimensional
a poor tradeoff betweeh/N andd/N. However, the Russian Hilbert spaces, so we are led to vectors

mathematician Goppa [103] made the inspired suggestion of

choosing the subset &t to be points on a curve. Tsfasman, Z awlv),
VIadu, and Zink recognized that existence of asymptotically
good codes required curves over finite fields with manyhen the qubita|0) + A1)
rational points, hence the entrance of modular curves. Table,
IV juxtaposes developments in algebraic geometry codes with
the corresponding theory for BCH codes.

@|0) + B|1), where|a|? 4 |87 = 1.

whereV =7} and > |a,|” =1.
veV vV

is measured with respect to
basis|0), |1) the probability that the qubit is found in
particular state is the square of the absolute value of the
corresponding amplitude. The evolution of an isolated quan-
tum system conserves superposition and distinguishability, and
is described by a unitary transformation that is linear and

We have chosen to highlight two very different challengegreserves inner products. This is the analog in Hilbert space
the creation of a quantum information theory, and the devaif rigid rotation in Euclidean space.

V. THE NEXT FIFTY YEARS
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TABLE IV
PARALLEL DEVELOPMENTS IN THE THEORY OF BCH AND ALGEBRAIC-GEOMETRY CODES

BCH Codes

Tlexibility in choice of code

(block length N
not constrained by field size as with RS codes)

[137] Performance degrades with large block
length (cannot bound both d/N and k/N
away from zero asymptotically)

Algebraic Geometry Codes

TFlexibility regarding block length requires
curves with many rational points

Block length of codes from plane curves (e.g.
Hermitian curves) bounded by ¢ + ¢+ 1

[211] Existence of codes from modular curves
with polvnomial complexity that exceed the
GV bound for alphabets of size ¢ > 19

[93] Explicit curves (from here to codes is still
a lot of work)

Gorenstein-Peterson-Zierler Algorithm: Com-
plexity O(N?)

Basic Algorithm [119]: Complexity O(N3),
restricted to plane curves

Modified Algorithm [195]: Arbitrary curves

Porter’s Algorithm [171], [172]: generaliza-
tion of FEuclidean algorithm for decoding clas-
sical Goppa codes equivalent to modified
algorithm

[60]. [169] Trror locating pairs of vector spaces common framework for decoding cyclic

codes up to and beyond the BCIT bound, and the Basic Algorithm

[70] Decoding beyond the BCH designed dis-
tance

[69], [59] Decoding up to the Goppa designed
distance, using majority voting to find addi-
tional syndromes for the crror vector

[61] gives a different solution
123], [229] Decoding Mermitian codes up to
= ]

the actual distance using special properties of
the affine ring of the curve

[180], [181] Multidimensional generalization of
the Berlekamp-Massey Algorithm with com-
plexity ()(/\72372/”‘+1) for curves in A7

I-dimensional Berlekamp-Massey Algorithm:
Complexity O(N?)

[182] Incorporates majority voting

[205] List decoding of Reed-Solomon codes [189] List decoding of algebraic geometry

codes

The first work connecting information theory and quantum The effectiveness of quantum computing is founded on
mechanics was that of Landauer and Bennett who were lookiogherent quantum superposition or entanglement, which allows
to understand the implications of Moore’s Law; every twexponentially many instances to be processed simultaneously.
years for the past 50 years, computers have become twitewever, no quantum system can be perfectly isolated from
as fast while components have become twice as small. #e rest of the world and this interaction with the environment
the components of computer circuits become very small, themuses decoherence. This error process is expressed mathemat-
description must be given by quantum mechanics. Over tiriglly in terms of Pauli matrices. A bit error in an individual
there developed a curiosity about the power of quantugubit corresponds to applying the Pauli matix = (| ;) to
computation, until in 1994 Shor [190] found a way of exthat qubit, and a phase error to the Pauli mairix= ((1J _01).
ploiting quantum superposition to provide a polynomial tim&he third Pauli matrixg,, = (? —(j) = io,0,, corresponds to
algorithm for factoring integers. This was the first exampla combination of bit and phase errors. The grdtipf tensor
of an important problem that a quantum computer coufgtoductstw; @ --- @ wy andiw; @ - -- @ wx, Where each
solve more efficiently than a classical computer. The desig is one ofI, o,, oy, 0., describes the possible errors
of quantum algorithms for different classes of problem, faqubits. TheError Group F is a subgroup of the unitary group
instance finding short vectors in lattices, is currently an activé(2"). In general, there is a continuum of possible errors
area of research. in qubits, and there are errors in sets of qubits which cannot
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be described by a product of errors in individual qubits. For A. K. Erlang (1878-1929) was the first person to study call
the purposes of quantum error correction, however, we negdcking in telephone networks. By taking measurements in
consider only the three types of errars, o, ando., since a small village telephone exchange he worked out a formula,
any error-correcting code which connetisf these errors will now known as Erlang’s formula, that expresses the fraction of
be able to correct arbitrary errors trqubits [62], [9]. We do callers that must wait because all lines are in use. Ever since
not go into the details of this result, but essentially it follow&rlang, the nature of voice telephone traffic—exponentially
from the fact that the matrices o, o,,, ando. form a basis distributed interarrival and holding times—has remained un-
for the space of a2 x 2 matrices, and so the tensor products afhanged. However, Erlang did not anticipate fax, nor could
t of these errors form a basis for the spac@'of 2! matrices. he imagine the emergence of data networks where computers
In classical computing one can assemble computers that ta# rather than humans. For voice networks the only statistic
much more reliable than any of their individual componentbat matters is the mean traffic rate. By contrast, data traffic is
by exploiting error-correcting codes. In quantum computingxtremely bursty and looks the same when viewed over a range
this was initially thought to be precluded by the Heisenbewf different time scales. More precisely, aggregate packet-level
Uncertainty Principle (HUP) which states that observatiomsetwork traffic exhibits fractal-like scaling behavior over time
of a quantum system, no matter how delicately performesales on the order of a few hundred milliseconds and larger, if
cannot yield complete information on the system'’s state befaaad only if the durations (in second) or sizes (in bytes) of the
observation. For example, we cannot learn more about a singidividual sessions or connections that generate the aggregate
photon’s polarization by amplifying it into a clone of manytraffic have a heavy-tailed distribution with infinite variance.
photons—the HUP introduces just enough randomness into fitee self-similar nature of data network traffic was an empirical
polarizations of the daughter photons to nullify any advantagiéscovery made by Leland, Taqqu, Willinger, and Wilson [133]
gained by having more photons to measure. At first, erriom extensive measurements on different local-area networks.
correction was thought to be impossible in the quantum workhe fact that heavy tails are found everywhere from sizes of
because the HUP prevents duplication of quantum states. Thiiss in a file system to bursts and idle periods of individual
is not so—only repetition codes are eliminated. The trick &thernet connections, leads to self-similarity at the packet level
to take quantum superpositioft decoherence, to measureacross local- and wide-area networks (see [224] or [223] for
the decoherence in a way that gives no information aboaitpopular article). Above a certain time scale there are no
the original superposition, and then to correct the measuradrprises in voice traffic since everything reduces to the long-
decoherence. The first codes were discovered quite recemdlym arrival rate. For data traffic, significant variation on quite
[191], [203], [8], [35] but there is now a beautiful group-coarse time scales means that routers require large buffers,
theoretic framework for code construction [32], [105], [33]. that safe operating points have to be set very conservatively,
Commutative subgroups of the error graBplay a special and that overall network performance is no longer a guarantee
role. The quantum error-correcting code is the subspace fixagdindividual quality of service. Absent new insights from
by the commutative subgroup—hence the nastabilizer coding and information theory, these variations are likely to
codesErrors move the fixed subspace to a different eigenspdme magnified on wireless channels by the rapidly changing
of the original commutative subgroup. This eigenspace mature of fading and interference.
identified by a process similar to that of calculating a syndromeThe flow of packets at the different layers in the TCP/IP
in the classical world. Note that syndrome decoding identifiéderarchy is determined by Internet protocols and end-to-end
the coset of a linear code containing the received vector, atmhgestion control mechanisms. The impact of the network on
not an error pattern. However, given the coset, there is a cosaffic shows up on small time scales, from a few hundred mil-
leader that gives the most probable error pattern. Likewidiseconds and downwards. Feldmann, Gilbert, and Willinger
in the quantum world there is an error that is most probabjé8] have proposed cascades (or multiplicative processes)
given the eigenspace that has been identified. as an explanation for the more complex (multifractal rather
The error group in classical theory is the subgrodpof than monofractal) scaling behavior exhibited by measured
bit errors. It is possible to describe classical linear codes 8€P/IP and ATM wide-area network traffic. The thought is
the fixed spaces of commutative subgroups5ofso the new that cascades allow refinement of self-similarity (monofractal
framework is a graceful extension of the classical theorgcaling) to account for local irregularities in WAN traffic that
Recent developments in quantum coding theory includen@ight be associated with networking mechanisms such as TCP
guantum analog of the MacWilliams Identities in classicdlow control that operate on small time scales. Fig. 10 is taken
coding theory [192]. from [68] and it compares local scaling behavior of exactly
self-similar traffic with that of measured WAN traffic. This
author would suggest that particularly on wireless channels,
Today we lack fundamental understanding of network dafge need to change the metrics we use to evaluate systems,
traffic, and we need to replace network engineering methodis-emphasizing long-term average packet loss statistics, and
developed for voice traffic. Information theory and coding magugmenting throughput with appropriate measures of delay.
have an important role to play, but the first step must be to o )
develop channel models through active and passive netwétk It 1S Dangerous to Put Limits on Wireless
measurement, that capture the interaction of applications,The heading is a quotation of Marconi from 1932. Fig. 11
protocols, and end-to-end congestion control mechanisms. superimposes research issues in wireless communication on

B. The Changing Nature of Data Network Traffic
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in combination with time interleaving to obtain some form
of temporal diversity [206]. In TDMA systems, frequency
diversity is obtained using a nonlinear equalizer [4] when
multipath delays are a significant fraction of symbol interval.
In DS-CDMA, RAKE receivers are used to obtain frequency
diversity, and more general two-dimensional RAKE structures
have been proposed [159] that exploit temporal and spatial
structure in the received multipath signal. Antenna diversity is
5 5050 250 500 500 1505 typ|ca_1lly used in the uplink (mot_)lle—to-base) direction _to pro-
time vide link margin and cochannel interference suppression. This
is necessary to compensate for the low-power transmission
from mobiles [96]. The focus here will be narrowband 30-kHz
TDMA (I1S-136) channels, specifically the design of channel
codes for improving the data rate and/or the reliability of
communications over fading channels using multiple transmit
and receive antennas. Information-theoretic aspects of transmit
diversity were addressed by Telatar [210] and by Foschini and
Gans [88]. They derived the outage capacity curves shown in
Fig. 12 under the assumption that fading is quasistatic, that
i & is constant over a long period of time and then changing in
400 e t00 800 1000 an independent manner. Recall that 10% outage capacity is
Fig. 10. _ L_ocal sc_aling analysis_ of packet-level data trgffic; different shadth(.a fransmission rate that can be aChIeved. 90% of the tlm.e'
of gray indicate different magnitudes of the local scaling exponents at tW'th only two antennas at both the base station and the mobile

different point in the traffic trace (black for small scaling exponents or “burstythere is the potential to increase the achievable data rate by
instants, light for large scaling exponents or “lull” periods). From top 9 factor ofé6.

bottom: (exactly) self-similar traffic, and WAN trace at the 1-ms time scale.The . . . . .
latter trace was gathered from an FDDI ring (with typical utilization levels 1ransmit diversity schemes use linear processing at the

of 5-10%) that connects about 420 modems to the Internet. It was collecteeinsmitter to spread the information across the antennas. At
between 22:00 and 23:00, July 22, 1997 and contains modem user as Wer?é receiver. the demodulator computes a decision statistic
nonmodem user traffic totalling 8910014 packets. ' . . L. .

based on the received signals arriving at each receive antenna

) ) ) ) 1 <j<m. The signald{ received by antenng at time ¢
a plot that displays the increasing size of the U.S. cellulay given by

market. Unlike the Gaussian channel, the wireless channel suf-

fers from attenuation due to destructive addition of multipaths ; " ; ;

in the propagation media and due to interference from other dy = Zavﬁ,jctv Es+m

users. Severe attenuation makes it impossible to determine the =1

transm!tted s'|gnal .unless_ some Iess-atte.nuated'repllca of \m?ere the noisen{ at time ¢ is modeled as independent

transmitted signal is provided to the receiver. This resource IS . .
samples of a zero-mean complex Gaussian random variable

calleddiversityand it is the single most important Conmbm%\/ith varianceNo,/2 per dimension. The coefficient; ; is the

to reliable wireless communications. Examples of diversit . . ! . L
: . ath gain from transmit antenrato receive antenna. It is
techniques are (but are not restricted to) as follows. . .
assumed that these path gains are constant during a frame
« Temporal Diversity:Channel coding in connection withand vary from one frame to another (quasistatic flat fading).
time interleaving is used. Thus replicas of the transmikeedforward information (the path gains;) is required to
ted signal are provided to the receiver in the form ddstimate the channel from the transmitter to the receiver. The
redundancy in temporal domain. first scheme of this type was proposed by Wittneben [226]

« Frequency DiversityThe fact that waves transmitted or@nd it includes the delay diversity schemes of Seshadri and
different frequencies induce different multipath structuréVinters [185] as a special case. In delay diversity there are
in the propagation media is exploited. Thus replicas &0 transmit antennas, and a signal is transmitted from the
the transmitted signal are provided to the receiver in t{St antenna, then delayed one time slot, and transmitted
form of redundancy in the frequency domain. from the second antenn@? = c;_,). It has been shown

. Antenna DiversitySpatially separated or differently po_by Wittneben that delay diversity schemes are optimal in

. . . providing diversity in the sense that the diversity advantage
larized antennas are used. Replicas of the transmitte . . . .

: i S experienced by an optimal receiver is equal to the number
signal are provided to the receiver in the form of redun

. . . . . . of transmit antennas. There is, however, no “coding gain.”
dancy in spatial domain. This can be provided with n : .

. . - or wireless systems employing small nhumbers of antennas,
penalty in bandwidth efficiency.

the space-time codes constructed by Tarokh, Seshadri, and
When possible, cellular systems should be designed to encabalderbank [209] provide both coding gain and diversity,
pass all forms of diversity to ensure adequate performanegd using only a 64-state decoder come within 2-3 dB of
For instance, cellular systems typically use channel codiogtage capacity. The general problem of combined coding and
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Fig. 11. Progress in wireless communications.
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Fig. 12. Achievable data rates with multiple antennas at 10% outage capacity.

modulation for multi-input (multiple transmit antennas) multi- A second method of providing interference suppression is
output (multiple receive antennas) fading channels is a nadaptive antenna array processing at the receiver. Here a

research area with great potential. substantial body of work by Winters and colleagues (see [96])
) has shown that a receiver usingbranch spatial diversity can
D. Interference Suppression completely eliminateN — 1 interferers using optimal linear

The challenge in designing cellular radio networks is toombining.

satisfy large demand with limited bandwidth. Limits on the The challenge for coding theory is to provide immunity
available radio spectrum means that cochannel interferencéoismultiple channel impairments, in this case fading and
inevitable when a cellular radio network is operating near caechannel interference. This author advocates a divide-and-
pacity. The standard solution is to treat cochannel interferenmenquer strategy, specifically the development of concatenated
as Gaussian noise, and to employ powerful channel codesctmling schemes where an inner component code might enable
mitigate its effect. This solution is far from optimal, since thénterference suppression, and an appropriate outer code might
decoder is using a mismatched metric. Interference is oftprovide additional immunity to fading. For narrowband 30-
due to a few dominant cochannel users, and this cannot kiéz TDMA channels it is possible to design very simple
described as additive white Gaussian noise. space—time block codes that provide diversity gain using only
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Fig. 13. Frame error rate performance of 8-PSK modulation with a space—time block code and interference suppression.
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Fig. 14. Throughput of an incremental redundancy radio link protocol on a narrowband 30-kHz IS-136 channel.

transmit antennas. For example, Alamouti [1] presents the cadkere the noise vectofn!,n5) has zero mean and covari-
ance (|h1]? + |h2|?*)I2, and take the vector that results to a

} slicer. This code provides diversity gain (but no coding gain)
and decoding is remarkably simple. THBex 2 matrix that

where the signals, , 7, received over two consecutive symbobescribes transmission is a particularly simple example of an

cL  —ch
[e1, 2] = {c; c*{Q

periods are given by orthogonal design [94] and this rather arcane mathematical
) theory provides generalizations to more antennas.
rY _ (o he N e}, (ma) If two antennas are available at the receiver, then Naguib
75 hE —h{ Co no

and Seshadri [160] have shown that it is possible to suppress
Assuming that channel state information is known to th@terference from a second space-time user by exploiting

receiver, we may form the special structure of the inner space—time block code.
. ) Fig. 13 shows the performance of their scheme with 8-PSK

<hi ho ) <7i> — (] + |hQ|2)<cl> n <”}) modulation. When the signal power of the interferer is equal
hy —h ’ €2 ) to that of the desired signal, performance is the same as that
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of a system employing two transmit and one receive antenng] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of

When there is no interference, the second antenna provides
additional immunity to fading. The decoder does not requiref4]
any information about the interference, and simply adapts

automatically.

E. Radio Link Protocols

In wireless communication, coding theory is associated with
the physical layer which lies at the bottom of the protocoll”]
stack. The next layer is radio link protocols which are designed
to deliver error-free packets to the higher networking layerss]
The gains that come from joint optimization of the physical
and radio link layers are substantial, and may well be essential

to the engineering of attractive wireless data services.

A very interesting idea with great potential is that of
incremental redundancy. Packets received in error are stof
at the receiver, and additional parity packets are transmitted
until the original packet is decoded successfully. The type 8fll
hybrid radio link protocol is extremely flexible and can be;y;
tuned to different delay/throughput characteristics by adjusting

the coding strategy and packet size (see [163]). Fig. 14 sh

the throughput that can be achieved on narrowband 30-k
channels. An alternative method of increasing throughput is
to measure the signal-to-noise ratio (SNR) at the receivif!
and adapt coding and modulation to the measured SNR.[1]
is difficult to do this accurately (within 1 dB) in the presence
of rapid fading, and changing interference. Furthermore, t
SNR values that trigger changes in coding and modulation vaty]
with mobile speed so that collection of second-order statistics
is necessary. The incremental redundancy radio link protoq%]
implicitly adapts to SNR and provides superior performance.
The rise of the Internet shows the power of distributed contr8#l
in communications systems, and lightweight engineering is
another reason to prefer implicit adaptation to SNR ovézo]
explicit measurement and adaptation to SNR. The radio link
protocol described by van Nobelen [163] has been acceptedas
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