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ABSTRACT

Direct-sequence code-division multiple access (DS-CDMA) is a popular wireless technology. in DS-CDMA communications, all of the users’
signals overlap in time and frequency and cause mutual interference. The conventional DS-CDMA detector follows a single-user detection
strategy in which each user is detected separately without regard for the other users. A better strategy is multi-user detection, where
information about multiple users is used to improve detection of each individual user. This article describes a number of important multi-
user DS-CDMA detectors that have been proposed.

Multi-User Detection for
DS-CDMA Communications

Shimon Moshavi, Bellcore

he year is 2010, and the world has gone wireless. The

wireless personal communicator is as common as the
wireline telephone used to be, and it provides reliable and
affordable communication, anywhere and anytime: in the car,
restaurant, park, home, or office, or on the slopes of the Swiss
Alps. Portable computers provide a vast array of integrated
wireless services, such as voice, data, and video communica-
tions, movies and television programs on demand, and unlim-
ited access to the treasures of cyberspace.

To bring this vision to fruition, major improvements in the
current state of wireless technology are necessary. One type of
wireless technology which has become very popular over the
last few years is direct-sequence code-division multiple access
(DS-CDMA). In this article we review multi-user detection,
an area of research with the potential to significantly improve
DS-CDMA communications.

Code-division multiple access (CDMA) is one of several
methods of multiplexing wireless users. In CDMA, users are
multiplexed by distinct codes rather than by orthogonal fre-
quency bands, as in frequency-division multiple access
(FDMA), or by orthogonal time slots, as in time-division mul-
tiple access (TDMA). In CDMA, all users can transmit at the
same time. Also, each is allocated the entire available fre-
quency spectrum for transmission; hence, CDMA is also
known as spread-spectrum multiple access (SSMA), or simply
spread-spectrum communications. )

Direct-sequence CDMA is the most popular of CDMA
techniques. The DS-CDMA transmitter multiplies each user’s
signal by a distinct code waveform. The detector receives a
signal composed of the sum of all users’ signals, which overlap
in time and frequency. In a conventional DS-CDMA system, a
particular user’s signal is detected by correlating the entire
received signal with that user’s code waveform.

There has been substantial interest in DS-CDMA technol-
ogy in recent years because of its many attractive properties
for the wireless medium [1-4].1 While DS- CDMA systems
are only now beginning to be commercially deployed, these
properties have led to expectations of large capacity increases
over TDMA and FDMA systems. Air interface standards
based on DS-CDMA, IS-95, and IS-665 [5] have been defined,

and a strong commercial effort is currently underway to
deploy cellular systems that use them. (See the article in this
issue describing IS-665.)

Multiple access interference (MAI) is a factor which limits
the capacity and performance of DS-CDMA systems. MAI
refers to the interference between direct-sequence users. This
interference is the result of the random time offsets between
signals, which make it impossible to design the code wave-
forms to be completely orthogonal. While the MAI caused by
any one user is generally small, as the number of interferers
or their power increases, MAI becomes substantial.? The con-
ventional detector does not take into account the existence of
MAL It follows a single-user detection strategy in which each
user is detected separately without regard for other users.

Because of the interference among users, however, a better
detection strategy is one of multi-user detection (also referred
to as joint detection or interference cancelation). Here, infor-
mation about multiple users is used jointly to better detect
each individual user. The utilization of multi-user detection
algorithms has the potential to provide significant additional
benefits for DS-CDMA systems.

The next section contains a description of conventional
DS-CDMA detection. In the third section we discuss multi-
user detection, and we review the optimal multi-user sequence
detector. We then review the two main classes of suboptimal
detectors that have been proposed: linear multi-user detectors
and subtractive interference cancellation multi-user detectors.
This is followed by a summary and concluding remarks.

CONVENTIONAL DETECTION

In this section we take a more detailed look at the conven-
tional detector and the effect of multiple access interfer-
ence; but first we must define the mathematical system model.

RECEIVED SIGNAL MODEL
We begin with a mathematical description of a synchronous
DS-CDMA channel. In a synchronous channel all bits of all
users are aligned in time. In practical DS-CDMA applications,
however, the channel is generally asynchronous (i.e., signals
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are randomly delayed — offset — from one another). The
asynchronous channel is described in the next section.

To simplify the discussion, we make the assumption that all
carrier phases are equal to zero. This enables us to use baseband
notation while working only with real signals. To further sim-
plify matters, we also assume that each transmitted signal arrives
at the receiver over a single path (no multipath), and that the
data modulation is binary phase-shift keying (BPSK [8]).

Assuming there are K direct-sequence users in a syn-
chronous single-path BPSK real channel, the baseband
received signal can be expressed as

K
r()= Y Ay (g (Dd (1) +n{2)
k=1 M

where Ay(1), gi(t), and d(t) are the amplitude, signature code
waveform, and modulation of the kth user, respectively, and
n(t) is additive white Gaussian noise (AWGN), with a two-
sided power spectral density of Nyo/2 W/Hz. The power of the
kth signal is equal to the square of its amplitude, which is
assumed to be constant over a bit interval. The modulation
consists of rectangular pulses of duration 7} (bit interval),
which take on d; = =1 values corresponding to the transmit-
ted data. We assume a total of N transmitted bits. The code
waveform consists of rectangular pulses of duration 7, (“chip”
interval), which pseudorandomly take on 1 values, corre-
sponding to some binary “pseudo-noise” (PN) code sequence
[5, 8].

The rate of the code waveform, f, = 1/T.(chip rate), is
much greater than the bit rate, f, = 1/T},. Thus, multiplying
the BPSK signal at the transmitter by g(¢) has the effect of
spreading it out in frequency by a factor of f./f;, (hence, the
codes are sometimes referred to as “the spreading codes.”)
The frequency spread factor of a direct-sequence system is
referred to as the processing gain, PG. Hence, for the model
of Eq. (1) there are PG chips per bit.

THE CONVENTIONAL DETECTOR

The conventional detector for the received signal described in
Eq. (1) is a bank of K correlators, as shown in Fig. 1. Here,
each code waveform is regenerated and correlated with the
received signal in a separate detector branch. The correlation
detector can be equivalently implemented through what is
known as matched filtering [8];3 thus, the conventional detec-
tor is often referred to as the matched filter detector. The
outputs of the correlators (or matched filters) are sampled at
the bit times, which yields “soft” estimates of the transmitted
data. The final +1 “hard” data decisions are made according
to the signs of the soft estimates.

It is clear from Fig. 1 that the conventional detector fol-
lows a single-user detector strategy; each branch detects one
user without regard to the existence of the other users. Thus,
there is no sharing of multiuser information or joint signal
processing (i.e., multi-user detection).

The success of this detector depends on the properties of
the correlations between codes. We require the correlations
between the same code waveforms (i.e., the autocorrelations)
to be much larger than the correlations between different
codes (i.e., the cross-correlations). The correlation value is
defined as

1 7,
pi,k_ij 8i(Dg(n)dr o

Here, if i = k, prx = 1, (i.e., the integrand must equal one
since gi(t) = +1), and if i # k, 0 < p;x < 1. The output of the
kth user’s correlator for a particular bit interval is

Matched
filter bank

® Figure 1. The conventional DS-CDMA detector: a bank of cor-
relators (matched filters). ’
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In other words, correlation with the kth user itself gives rise to
the recovered data term, correlation with all the other users
gives rise to multiple access interference (MAI), and correla-
tion with the thermal noise yields the noise term z;. Since the
codes are generally designed to have very low crosscorrela-
tions relative to autocorrelations (i.e., pjx << 1), the interfer-
ing effect on user k of the other direct-sequence users is
greatly reduced.*? '

Nevertheless, the existence of MAI has a significant impact
on the capacity and performance of the conventional direct-
sequence system. As the number of interfering users increas-
es, the amount of MAI increases. In addition, the presence of
strong (large-amplitude) users exacerbates the MAI of the
weaker users, as can be seen by Eq. (3). Thus, the overall
effect of MAIT on system performance is even more pro-
nounced if the users’ signals arrive at the receiver at different
powers: weaker users may be overwhelmed by stronger users.
Such a situation arises when the transmitters have different
geographical locations relative to the receiver, because the sig-
nals of the closer transmitting users undergo less amplitude
attenuation than the signals of users that are further away.
This is known as the near-far problem. (Note that this prob-
lem also arises due to fading.)

An analogy which helps to illustrate the effect of MAI is
as follows. Consider that you are at a party where every con-
versation takes place in a different language. In general, your
ear is reasonably good at picking out your own language and
tuning out the other conversations. However, as the number
of simultaneous conversations in the room increases, it
becomes harder and harder to continue your own conversa-
tion. Similar difficulties arise if some of the other conversa-
tions get closer or louder, or if the person you are talking to
moves further away or begins to whisper (the near-far effect).

MITIGATING THE EFFECT OF MAI
Research efforts directed at mitigating the effect of MAI on
the conventional detector have focused on several areas.

Code Waveform Design — This approach is aimed at the
design of spreading codes with good cross-correlation proper-
ties. Ideally, if the codes were all orthogonal, then p;; = 0, and
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there would be no MAI term. However, since in practice most
channels contain some degree of asynchronism, it is not possi-
ble to design codes that maintain orthogonality over all possible
delays. So instead we look for codes that are nearly orthogonal,
that is, have as low cross-correlation as possible (e.g., [11, 12]).

Power Control — The use of power control ensures that all
users arrive at about the same power (amplitude), and there-
fore no user is unfairly disadvantaged relative to the others
(e.g. [13]). In the IS-95 standard, the mobiles adjust their
power through two methods. One method is for the mobiles
to adjust their transmitted power to be inversely proportional
to the power level it receives from the base station (open loop
power control). The other method is for the base station to
send power control instructions to the mobiles based on the
power level it receives from the mobiles (closed loop power
control) [5]. Power control is currently considered indispens-
able for a successful DS-CDMA system.

FEC Codes — The design of more powerful forward error
correction (FEC) codes allows acceptable error rate perfor-
mance at lower signal-to-interference ratio levels. This obvi-
ously has broad application, and provides benefits to more
than just CDMA systems.

Sectored/Adaptive Antennas — Here, directed antennas
are used that focus reception over a narrow desired angle
range. Therefore, the desired signal and some fraction of the
MALI are enhanced (through the antenna gain), while the
interfering signals that arrive from the remaining angles are
attenuated. The direction of the antenna can be fixed, as is
the case for sectored antennas, or adjusted dynamically. In the
latter case, adaptive signal processing is used to focus the
antenna in the direction corresponding to a particular desired
user(s). Applications for these techniques also extend well
beyond CDMA. An overview of the work in this area can be
found in [14].

MuLTI-USER DETECTION

here has been great interest in improving DS-CDMA

detection through the use of multi-user detectors. In
multi-user detection, code and timing (and possibly amplitude
and phase) information of multiple users are jointly used to
better detect each individual user. The important assumption
is that the codes of the multiple users are known to the
receiver a priori.6

Verdu’s seminal work [31], published in 1986, proposed
and analyzed the optimal multiuser detector, or the maximum
likelihood sequence detector (described later in this section).
Unfortunately, this detector is much too complex for practical
DS-CDMA systems. Therefore, over the last decade or so,
most of the research has focused on finding suboptimal multi-
user detector solutions which are more feasible to implement.

Most of the proposed detectors can be classified in one of
two categories: linear multi-user detectors and subtractive
interference cancellation detectors. In linear multi-user detec-
tion, a linear mapping (transformation) is applied to the soft
outputs of the conventional detector to produce a new set of
outputs, which hopefully provide better performance. In sub-
tractive interference cancellation detection, estimates of the
interference are generated and subtracted out. We discuss
several important detectors in each category in the next two
sections.

There are other proposed detectors, as well as variations of
each detector, that are not covered here. There is also a large
and growing literature dealing with extensions of the various

multi-user algorithms to realistic environments.”® The inter-
ested reader can find additional references and discussion in
the survey articles [16-18].

It is interesting to note that there is a strong parallel
between the problem of MAI and that of intersymbol interfer-
ence (ISI). This point is made in [31], where the asynchronous
K-user channel is identified with the single-user ISI channel
with memory K — 1. The mathematical and conceptual similar-
ity of the two problems is evident if one thinks of the K -1
overlapping ISI symbols as separate users. Therefore, a num-
ber of multi-user detectors have equalizer counterparts, such
as the maximum-likelihood, zero-forcing, minimum mean-
squared error, and decision-feedback equalizers [8]. We will
point out these similarities as we go along.

LIMITATIONS AND POTENTIAL BENEFITS

Before discussing the details of multi-user detection, it is
important to examine some of the limitations that exist and
potential benefits available. We focus on the cellular environ-
ment, although the ideas extend to other wireless applications.

In a cellular environment, there are two channels in a
given coverage region: a central station, called a base station,
transmits to mobiles (downlink), and the mobiles transmit to
the base station (uplink). The coverage region associated with
one base sation is referred to as a cell. Generally, the uplink
and the downlink utilize different frequency bands. There are
two main limitations on the benefits of multiuser detection for
the cellular environment:

Existence of Other-Cell MAI — In cellular DS-CDMA sys-
tems, the same uplink/ downlink pair of frequency bands are
reused for each cell. Thus, a signal transmitted in one cell
may cause interference in neighboring cells. If this interfer-
ence is not included in the multi-user detection algorithm, the
potential gain is significantly reduced. (A similar effect occurs
from uncaptured multipath signals [1].) An upper bound on
the capacity increase is easily derived by comparing the total
interference for systems with and without multi-user detec-
tion. If we neglect background noise, the total interference in
a system without multi-user detection is I = Iyja1 + fImar
where a1 is MAI due to same-cell users, and f is the ratio of
other-cell MAI to same-cell MAI (also referred to as the
spillover ratio). For an ideal system where all same-cell MAI is
eliminated, we are still left with interference I = flyar. Since
the number of users is roughly proportional to the interfer-
ence [3], the maximum capacity gain factor would be (1 + f)/f
[1]. A typical value for f in cellular systems is 0.55 [1]; this
translates to a maximum capacity gain factor of 2.8.

Difficulty in Implementing Multi-User Detection on the
Downlink — Because issues of cost, size, and weight are
much larger concerns for the mobiles than for the base sta-
tion, it is not currently practical to include multi-user detection
in mobiles. Instead, it has primarily been considered for use at
the base station (for uplink reception of mobiles), where
detection of multiple users is required in any case. However,
improving the capacity of the uplink past that of the downlink
does not improve the overall capacity of the system [17].

Despite these limitations, the use of multi-user detectors
offers substantial potential benefits:

Significant Improvement in Capacity

* Although other-cell MAI causes the capacity improve-
ment for the cellular environment to be bounded, the
improvement is still significant.

¢ The bound can be improved by including signals from the
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surrounding cells in the multi-user detection algorithm.10

 There are other applications, such as satellite communi-
cations, where the spillover ratio is much less than that
of cellular communications.

» Although multi-user detection is not currently practical
for the downlink, DS-CDMA systems are generally con-
sidered to be uplink limited [3]. In addition, with
improvements in technology, techniques for improving
downlink performance may become more practical (e.g.,
see Endnote 6).

More Efficient Uplink Spectrum Utilization — The
improvement in the uplink allows mobiles to operate at a
lower processing gain [15]. This leads to a smaller chunk of
bandwidth required for the uplink; the extra bandwidth could
then be used to improve the downlink capacity. Alternatively, for
the same bandwidth the uplink could support higher data rates.

Reduced Precision Requirements for Power Control —
Since the impact of MAI and the near-far effect is much
reduced, the need for all users to arrive at the receiver at
exactly the same power is reduced; thus, less precision is
needed in controlling the transmitted power of the mobiles.
Therefore, the additional complexity at the base station
required for multi-user detection may allow reduced complex-
ity at the mobiles [15].

More Efficient Power Utilization — The reduction of
interference on the uplink may translate to some reduction in
the required transmit power of the mobiles [15]. Alternatively,
the same transmit power may be used to extend the size of
the coverage region.

MATRIX-VECTOR NOTATION

In discussing multi-user detection, it is convenient to intro-
duce a matrix-vector system model to describe the output of
the conventional detector. We begin with a simple example to
help illustrate our discussion: a three user synchronous sys-
tem. From Eq. (3), the output for each of the users for one
bit is

y1=Audy + payAxdy + pay Asdy +21

y2 =p12A1dy + Aody + p3p Asds +2; )

v3 = p13Aidy + po3 Asdy + Asds +z3

This can be written in the matrix-vector form

by L opaypsn [A 0 0 fd| |z
Yo =[Pz 1 pap| 04y 0 dy 4|25 (5)
3l |piapas 1 [0 0 Asfds] |23
or
y=RAd + z 6)

For a K user system, the vectors d, z, and y, are K-vectors that
hold the data, noise, and matched filter outputs of all K users,
respectively; the matrix A is a diagonal matrix containing the
corresponding received amplitudes; the matrix Ris a K x K
correlation matrix, whose entries contain the values of the
correlations between every pair of codes. Note that since p, «
= py;» the matrix R is clearly symmetric.

Tt is instructive to break up R into two matrices: one repre-
senting the autocorrelations, the other the crosscorrelations.
Therefore, parallel to Eq. (3), the conventional matched filter
detector output can be expressed as three terms:

y=Ad + QAd + z (7)

where Q contains the off-diagonal elements (crosscorrela-
tions) of R, that is, R = I + Q (I is the identity matrix). The

User 1
User 2

t

‘C:'| ‘Ciz Tb"‘i-’c‘| 3Tb:+’52

B Figure 2. Sample timing diagram for an asynchronous chan-
nel. There are 2 users and 3 bits per user.

first term, Ad, is simply the decoupled data weighted by the
received amplitudes. The second term, QAd, represents the
MALI interference.

ASYNCHRONOUS CHANNEL

The detection problem in an asynchronous channel is more
complicated than in a synchronous channel. In a synchronous
channel, by definition, the bits of each user are aligned in
time. Thus, detection can focus on one bit interval indepen-
dent of the others (e.g., Eq. (3)); the detection of N bits of K
users is equivalent to N separate “one-shot” detection prob-
lems. In most realistic applications, however, the channel is
asynchronous and thus, there is overlap between bits of differ-
ent intervals. Here, any decision made on a particular bit ide-
ally needs to take into account the decisions on the 2
overlapping bits of each user; the decisions on these overlap-
ping bits must then further take into account decisions on bits
that overlap them and so on. Therefore, the detection prob-
lem must optimally be framed over the whole message [40].

The continuous-time model expressed in Eq. (1) can easily
be modified for asynchronous channels by including the rela-
tive time delays (offsets) between signals. The received signal
is now written as

K
F(6) =Y A (g (t—Tp)d (1 = Tp) + () (8)
k=1
where 7 is the delay for user &.

The discrete-time matrix-vector model describing the asyn-
chronous channel takes the same form as Eq. (6). However,
now the equation must encompass the entire message; thus,
assuming there are N bits per user, the size of the vectors and
the order of the matrices are NK. The vectors d, z, and y hold
the data, noise, and matched filter outputs of all K users for
all N bit intervals, and the matrix A contains the correspond-
ing received amplitudes. The matrix R now contains the par-
tial correlations that exist between every pair of the NK code
words and is of size NK x NK. We use the term partial corre-
lations because in an asynchronous channel, the codes for
each bit only partially overlap each other.

An example helps to illustrate our discussion. Consider the
timing diagram of Fig. 2, where there are a total of two users
and 3 bits per user. The output of the conventional detector
can be described using Eq. (6), where we treat the problem as
if there were six users (each transmitting 1 bit over the inter-
val 3T}, + T, — 11). The vectors d, z, and y hold the data, noise,
and matched filter outputs associated with each of these 6
bits. The correlation matrix, R, is of dimension 6 x 6 and can
be written as

I ppy 0 0 0

0
Pz 1 psp 00 0
0

0 prs 1 pys O
k= : .
0 0 p3q 1 psg 0 ©)
0 0 0 pgs 1 pgs
0 0 0 0 psg 1

where p; x is now the partial cross-correlation between the
code associated with bit i and that associated with bit k; in other
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Spreader R
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B Figure 3. One stage of the polynomial expansion detector. The
input is the matched filter bank output vector y and the output
is Ry. A diagram of the matched filter bank is pictured in Fig. 1.

words, it denotes the cross-correlation between the overlapping
part of code i and code k. Note that the 0 entrees correspond to
the correlations between bits that do not overlap. For a typical
message length N is much greater than K; hence, the correla-
tion matrix is sparse because most of the NK bits do not overlap.

For the remainder of this article, an asynchronous channel
is assumed unless otherwise stated. A more in-depth presenta-
tion of the mathematical details of the asynchronous channel
can be found in [16, 18].

MAXIMUM-LIKELIHOOD SEQUENCE DETECTION

The detector which yields the most likely transmitted
sequence, d, chooses d to maximize the probability that d was
transmitted given that r(¢) was received, where r(¢) extends
over the whole message. This probability is referred to as the
joint a posteriori probability, P(d|(r(z), for all ¢)) [8]. Under the
assumption that all possible transmitted sequences are equally
probable, this detector is known as the maximum-likelihood
sequence (MLS) detector [8].11-13

The problem with the MLS approach is that here there are
2NK possible d vectors; an exhaustive search is clearly imprac-
tical for typical message sizes and numbers of users. However,
it turns out that MLS detection can be implemented for DS-
CDMA by following the matched filter bank with a Viterbi
algorithm [31].24 This method parallels the use of the Viterbi
algorithm to implement MLS detection in channels corrupted
by intersymbol interference [8, 31]. Unfortunately, the
required Viterbi algorithm has a complexity that is still expo-
nential in the number of users, that is, on the order of 2K.15

Another disadvantage of the MLS detector is that it
requires knowledge of the received amplitudes and phases.
These values, however, are not known a priori, and must be
estimated (e.g. [34-37)).

Despite the huge performance and capacity gains over con-
ventional detection, the MLS detector is not practical. A real-
istic direct-sequence system has a relatively large number of
active users; thus, the exponential complexity in the number
of users makes the cost of this detector too high. In the
remainder of this article we look at various suboptimal multi-
user detectors that are simpler to implement.

LINEAR DETECTORS

n important group of multi-user detectors are linear
multi-user detectors. These detectors apply a linear map-

ping, L, to the soft output of the conventional detector to
reduce the MAI seen by each user. In this section we briefly
review the two most popular of these, the decorrelating and
minimum mean-squared error detectors. We then examine the
polynomial expansion detector, a linear detector recently pro-
posed by the author that can efficiently implement both of the
aforementioned detectors.

DECORRELATING DETECTOR

The decorrelating detector applies the inverse of the correla-
tion matrix

Lgec = R (10)

to the conventional detector output in order to decouple the
data. (Note that R can be assumed to be invertible for asyn-
chronous systems [40].) From Eq. (6), the soft estimate of this
detector is

T gec = Rly = Ad + Rz
= Ad + Zdec (11)

which is just the decoupled data plus a noise term. Thus, we

see that the decorrelating detector completely eliminates the

MALI. This detector is very similar to the zero-forcing equaliz-

er [8] which is used to completely eliminate ISI.

The decorrelating detector was initially proposed in [38,
39]. It is extensively analyzed by Lupas and Verdu in [40, 41},
and is shown to have many attractive properties. Foremost
among these properties are [16, 40, 41]:

* Provides substantial performance/capacity gains over the
conventional detector under most conditions.®

¢ Does not need to estimate the received amplitudes. In
contrast, detectors that require amplitude estimation are
often quite sensitive to estimation error. (Note that as in
the case of most multi-user detectors, the need to esti-
mate the received phases can also be avoided through
the use of noncoherent detection .9)

* Has computational complexity significantly lower than
that of the maximum likelihood sequence detector. The
per-bit complexity is linear in the number of users,
excluding the costs of recomputation of the inverse map-
ping.

Other desirable features of the decorrelating detector are
[16, 40, 41]:
¢ Corresponds to the maximum likelihood sequence detec-

tor when the energies of all users are not known at the

receiver. In other words, it yields the joint maximum like-
lihood sequence estimation of the transmitted bits and
their received amplitudes.

* Has a probability of error independent of the signal
energies. This simplifies the probability of error analysis,
and makes the decorrelating detector resistant to the
near-far problem.

* Yields the optimal value of the near-far resistance per-
formance metric,!7

* Can decorrelate one bit at a time. For bit k, we only need
apply the kth row of R-! to the matched filter bank outputs.
Because of its many advantages, the decorrelating detector

has probably received the most attention of any multi-user

detector in the literature. Many additional references can be

found in [16-18].18
A disadvantage of this detector is that it causes noise

enhancement (similar to the zero-forcing equalizer [8]). The

power associated with the noise term R-lz at the output of the
decorrelating detector — Eq. (11) — is always greater than or
equal to the power associated with the noise term at the out-
put of the conventional detector — Eq. (6) — for each bit
(proved in [44]). Despite this drawback, the decorrelating
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detector generally provides significant improve-
ments over the conventional detector.!?

A more significant disadvantage of the
decorrelating detector is that the computations
needed to invert the matrix R are difficult to
perform in real time. For synchronous systems,
the problem is somewhat simplified: we can
decorrelate one bit at a time. In other words,
we can apply the inverse of a K x K correlation

matrix. For asynchronous systems, however, R is
of order NK, which is quite large for a typical
message length, N.

There have been numerous suboptimal
approaches to implementing the decorrelating
detector [16-18]. Many of them entail breaking
up the detection problem into more manage-
able blocks [45-48, 79, 81] (possibly even to

y

Ry Rzy

one transmission interval [16, 49]); the inverse
matrix can then be exactly computed.20 A K-
input K-output linear filter implementation is
also possible [40], where the filter coefficients
are a function of the cross-correlations.2122

Whichever suboptimal decorrelating detector technique is
used, the computation required is substantial. Therefore, the
use of codes that repeat each bit (“short” codes) is generally
assumed so that the partial correlations between all signals
are the same for each bit. This minimizes the need for recom-
putation of the matrix inverse or the filter coefficients from
one bit interval to the next. Where recomputation cannot be
avoided, (e.g., new user activation), research has been direct-
ed at trying to simplify the cost of recomputation (e.g. [52,
53]). The processing burden still appears to present imple-
mentation difficulties.

MiNIMuM MEAN-SQUARED ERROR (MMSE) DETECTOR

The minimum mean-squared error (MMSE) detector {45] is a
linear detector which takes into account the background noise
and utilizes knowledge of the received signal powers. This
detector implements the linear mapping which minimizes
E[|d - Ly|?], the mean-squared error between the actual data
and the soft output of the conventional detector. This results
in [45, 84]

Lymse = [R + (No/2)A2]! (12)
Thus, the soft estimate of the MMSE detector is simply

D \vise = Lvvise ¥ (13)

As can be seen, the MMSE detector implements a partial or mod-
ified inverse of the correlation matrix. The amount of modifi-
cation is directly proportional to the background noise; the
higher the noise level, the less complete an inversion of R can
be done without noise enhancement causing performance
degradation. Thus, the MMSE detector balances the desire to
decouple the users (and completely eliminate MAI) with the
desire to not enhance the background noise. (Additional
explanation can be found in [54].) This multi-user detector is
exactly analogous to the MMSE linear equalizer used to com-
bat ISI [8].

Because it takes the background noise into account, the
MMSE detector generally provides better probability of error
performance than the decorrelating detector. As the back-
ground noise goes to zero, the MMSE detector converges in
performance to the decorrelating detector.?

An important disadvantage of this detector is that, unlike
the decorrelating detector, it requires estimation of the
received amplitudes. Another disadvantage is that its perfor-
mance depends on the powers of the interfering users [45].

M Figure 4. General DS-CDMA polynomial expansion detector with 2 stages.

Therefore, there is some loss of resistance to the near-far
problem as compared to the decorrelating detector.

Like the decorrelating detector, the MMSE detector faces
the task of implementing matrix inversion. Thus, most of the
suboptimal techniques for implementing the decorrelating
detector are applicable to this detector as well.24

POLYNOMIAL EXPANSION (PE) DETECTOR
The polynomial expansion (PE) detector [54, 55], applies a
polynomial expansion in R to the matched filter bank output,
y. Thus, the linear mapping for the PE detector is

N, ,
Lpg = Y wR' (14)
i=0
and the soft estimates of d are given by
pp = Lppy (15)
For a given R and Nj, the weights (polynomial coefficients) w;,
i=0,1, ..., Ny can be chosen to optimize some performance
measure.

The structure which implements the matrix R is shown in
Fig. 3, and the full detector (with two stages) is shown in Fig.
4. Each stage implements R by recreating the overall modula-
tion (spreading), noiseless channel (summing), and demodula-
tion (matched filtering) process. The fact that this implements
R is clear from the expression for the noiseless conventional
detector output, y = RAd (Eq. (6)). Cascading these stages
produces higher-order terms of the polynomial. A two-stage
PE detector is shown in Fig. 4; the detector corresponding to
Eq. (14) requires N; stages.

It can be shown (by the Cayley-Hamilton Theorem) that
the PE detector structure can exactly implement the decorre-
lating detector for finite message length, N [54]. However, for
typical N this would require a prohibitive number of stages.
As N — oo, infinite stages would be needed, with one bit delay
required per stage.? Fortunately, good approximations can be
obtained with a relatively small number of stages. Therefore,
we can choose w = [wqg wy ... wy] so that

Nl’ . .
p(R)= Y wR' <R (16)
i=0
The resulting weights are used in the structure of Fig. 4 to
yield a K-input K-output finite memory-length detector, which
approximates the decorrelating detector.
The PE detector structure can also be used to approximate
the MMSE detector, as described in [54].
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The bit decisions used to estimate the MAI can be
hard or soft. The soft-decision approach uses soft data
estimates for the joint estimation of the data and ampli-
tudes, and is easier to implement.26 The hard-decision
approach feeds back a bit decision and is nonlinear; it
requires reliable estimates of the received amplitudes in
order to generate estimates of the MAI. If reliable
amplitude estimation is possible, hard-decision subtrac-
tive interference cancellation detectors generally outper-

B Figure 5. SIC detection ~ first stage (hard decision,).

The polynomial expansion detector has a number of attrac-

tive features [54, 55]:

* Can approximate the decorrelating and MMSE detec-
tors. As such, it can enjoy the desirable features of these
two detectors, which were discussed earlier.

* Has low computational complexity. In approximating the
decorrelating (or MMSE) detector, neither the matrix R
nor its inverse must be explicitly calculated. Everything
can be implemented on-line, using anything from analog
hardware to DSP chips.

* Does not need to estimate the received amplitudes (or
phases). This important feature, which is true for the
decorrelating detector, is also true for the PE detector in
approximating the decorrelating detector. (If the PE
detector is approximating the MMSE detector, however,
amplitude estimation will be necessary).

* Can be implemented just as easily using long codes as
short codes. (See [51] which points out a problem with
using short codes.)

* Can use weights that work well over a large variation of
system parameters. As shown in [54], the use of addi-
tional stages in the PE detector (a higher order polyno-
mial) allows more flexibility to use pre-computed weights
that work well over a broad operating range. This mini-
mizes or eliminates the need to adapt the weights to
changes in the operating environment.

* Has a relatively simple structure. The types of system
components used are the same as those of the conven-
tional detector. The amount of system components
increases linearly with the product of the number of
users and the number of stages. As we will see in the
next section, the structure is very similar to that of the
parallel interference cancellation detector structure. In
that structure, each stage contains a modulator (spread-
er) a partial summer, and a demodulator (matched-filter
bank), which implements the matrix Q (R with its main
diagonal removed).

SUBTRACTIVE INTERFERENCE CANCELLATION

Another important group of detectors can be classified as
subtractive interference cancellation detectors. The basic
principle underlying these detectors is the creation at the
receiver of separate estimates of the MAI contributed by each
user in order to subtract out some or all of the MAI seen by
cach user. Such detectors are often implemented with multi-
ple stages, where the expectation is that the decisions will
improve at the output of successive stages.

These detectors are similar to feedback equalizers [8] used
to combat ISI. In feedback equalization, decisions on previ-
ously detected symbols are fed back in order to cancel part of
the ISI. Thus, a number of these types of multi-user detectors
are also referred to as decision-feedback detectors.

form their soft-decision counterparts. However, studies
such as [56, 57] indicate that the need for amplitude
estimation is a significant liability of the hard-decision
techniques: imperfect amplitude estimation may signifi-
cantly reduce or even reverse the performance gains available.

We briefly review several subtractive interference cancella-
tion detectors below. Additional references can be found in
two surveys which focus on these detectors [58, 59] and in the
general surveys [16-18].

SUCCESSIVE INTERFERENCE CANCELLATION (SIC)

The successive interference cancellation (SIC) detector [60,
68] takes a serial approach to canceling interference. Each
stage of this detector decisions, regenerates, and cancels out
one additional direct-sequence user from the received signal,
so that the remaining users see less MAI in the next stage.
(Note that the basic concept behind this approach can be
found earlier in information theory [61-63].)

A simplified diagram of the first stage of this detector is
shown in Fig. 5, where a hard-decision approach is assumed.
The first stage is preceded by an operation which ranks the
signals in descending order of received powers (not shown).
The first stage implements the following steps:

1. Detect with the conventional detector the strongest sig-

nal, s;.
2.Make a hard data decision on s;.
3.Regenerate an estimate of the received signal for user

one, §;(t) , using:

. Data decision from step 2
. Knowledge of its PN sequence
. Estimates of its timing and amplitude (and phase)?

4. Cancel (subtract out) 3(r) from the total received signal,
r(?), yielding a partially cleaned version of the received
signal, r(1)(t).

Assuming that the estimation of §;(¢) in step 3 above was
accurate, the outputs of the first stage are:
1. A data decision on the strongest user
2. A modified received signal without the MAI caused by

the strongest user

This process can be repeated in a multistage structure: the
kth stage takes as its input the “partially cleaned” received
signal output by the previous stage, -1y (¢), and outputs one
additional data decision (for signal s;) and a “cleaner”
received signal, r(y(z).2% 28

The reasons for canceling the signals in descending order
of signal strength are straightforward [17, 68]. First, it is easiest
to achieve acquisition and demodulation on the strongest users
(best chance for a correct data decision). Second, the removal
of the strongest users gives the most benefit for the remaining
users. The result of this algorithm is that the strongest user
will not benefit from any MAI reduction; the weakest users,
however, will potentially see a huge reduction in their MAI.2

The SIC detector requires only a minimal amount of addi-
tional hardware and has the potential to provide significant
improvement over the conventional detector. It does, howev-
er, pose a couple of implementation difficulties. First, one
additional bit delay is required per stage of cancellation. Thus,
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a trade-off must be made between the
number of users that are canceled
and the amount of delay that can be
tolerated [64]. Second, there is a need
to reorder the signals whenever the
power profile changes [64]. Here, too,
a trade-off must be made between the
precision of the power ordering and
the acceptable processing complexity.
A potential problem with the SIC
detector occurs if the initial data esti-
mates are not reliable. In this case,
even if the timing, amplitude, and
phase estimates are perfect, if the bit
estimate is wrong, the interfering
effect of that bit on the signal-to-
noise ratio is quadrupled in power
(the amplitude doubles, so the power
quadruples). Thus, a certain minimum

Amplitude
estimator

Partial
summer

performance level of the conventional
detector is required for the SIC detec-
tor to yield improvements; it is crucial
that the data estimates of at least the
strong users that are canceled first be
reliable.

PARALLEL INTERFERENCE CANCELLATION

In contrast to the SIC detector, the parallel interference can-
cellation (PIC) detector estimates and subtracts out all of the
MAI for each user in parallel. The multistage PIC structure
which we assume here was introduced in [67]. A basic one
stage PIC structure is assumed in [68, 69] and several earlier
references (see [18]).

The first stage of this detector is pictured in Fig. 6, where a
hard-decision approach is assumed. The initial bit estimates,
d;(0), are derived from the matched filter detector (not
shown), which we refer to as stage 0 of this detector. These
bits are then scaled by the amplitude estimates and respread
by the codes, which produces a delayed estimate of the
received signal for each user, §g(¢ — Tp). The partial summer
sums up all but one input signal at each of the outputs, which
creates the complete MAI estimate for each user.

Assuming perfect amplitude and delay estimation, the
result after subtracting the MAI estimate for user & is

K
rt=Ty)— 2.5¢-T,) =
izk
dp(t =7, ~T)A (=T, = T8t =7 —Tp) +n(t=T),)

K R
+ Z(di(f“fi -Ty)-d;t-1; “Tb))Ai("Ti -Ty)gi(t—1;-T,
i#k (17)

As shown in Fig. 6, the result of Eq. (17) (fork = 1..K) is
passed on to a second bank of matched filters to produce a
new, hopefully better, set of data estimates.

This process can be repeated for multiple stages. Each
stage takes as its input the data estimates of the previous
stage and produces a new set of estimates at its output. We
can use a matrix-vector formulation to compactly express the
soft output of stage m + 1 of the PIC detector for all N bits
of all K users as [70]

d(m+1)=y-Qadim)
= Ad + QA(d - d(m)) +

The term QAd(m) represents an estimate of the MAI (7). (As

(18)

W Figure 6. One stage of a PIC detector (hard decision) for K users. The initial stage (con-
ventional detector) is not shown; it introduces one bit delay, which is why the received sig-
nal and the amplitudes are delayed aby T, The spreader is defined in Fig. 3 and the
matched filter bank is defined in Fig. 1.

usual, for BPSK, the hard data decisions, &ﬂm), are made
according to the signs of the soft outputs, d (m).) Perfect
data estimates, coupled with our assumption of perfect ampli-
tude and delay estimation, result in the complete elimination
of MAL30

A number of studies have investigated PIC detection which
utilizes soft decisions, such as [55, 72, 76, 86]. In [72] soft-
decision PIC and SIC detectors are compared; since soft-deci-
sion SIC exploits power variation by canceling in order of
signal strength, it is found to be superior in a non-power-con-
trolled fading channel. On the other hand, soft-decision PIC is
found to be superior in a well-power-controlled channel.

A number of variations on the PIC detector have been
proposed for improved performance. These include the fol-
lowing.

Using the Decorrelating Detector as the First Stage
[70] — The performance of the PIC detector depends heavily
on the initial data estimates [67]. As we pointed out for the
SIC detector, the subtraction of an interfering bit based on an
incorrect bit estimate causes a quadrupling in the interfering
power for that bit. Thus, too many incorrect initial data esti-
mates may cause performance to degrade relative to the con-
ventional detector (no cancelation may be better than poor
cancelation). Therefore, using the decorrelating detector as
the first stage significantly improves the performance of the
PIC detector. (An additional benefit from this approach is
that the perormance analysis is found to be much simpli-
fied.)31. 32

Using the Already Detected Bits at the Qutput of the
Current Stage to Improve Detection of the Remaining
Bits in the Same Stage [74] — Thus, the most up-to-date
bit decisions available are always used. This contrasts with the
standard PIC detector, which only uses the previous stage’s
decisions. This detector is referred to as a multistage decision
feedback detector [74]. Proposals for the initial stage of this
detector include a decision-feedback detector [74], the con-
ventional detector [45], and the decorrelating detector [78].33

Linearly Combining the Soft-Decision Outputs of Dif-
ferent Stages of the PIC Detector [55] — This simple
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In the white noise model of Eq.
(19), the data bits are partially decor-
related. This can be shown to arise
from the fact that the matrix F is lower

triangular [77]. Thus, the output for
bit one of the first user contains no
MALI; the output for bit one of the
second user contains MAT only from
bit one of the first user, and is com-

y Yw

pletely decorrelated from all other
users; similarly, the output for user k
at bit interval i is completely decorre-
lated from users k + 1,k + 2, ..., K,
at time #, and from all bits at future
time intervals.

The ZF-DF detector uses SIC
detection to exploit the partial decor-
relation of the bits in the white noise
model. The soft output of bit one of
the first user, which is completely free
of MAI, is used to regenerate and
cancel out the MAI it causes, thereby
leaving the soft output of bit one of

B Figure 7. The ZF-DF detector. A form of SIC is performed on the whitened matched fil-

ter output.

modification yields very large gains in performance over the
standard soft-decision PIC detector. The reason for this has to
do with the extensive noise correlations that exist between
outputs of different stages. The linear combination is made in
such a way as to capitalize on the noise correlations and cause
cancellation among noise terms.

Doing a Partial MAI Cancellation at Each Stage, with
the Amount of Cancellation Increasing for Each Succes-
sive Stage [76] — Thus, the MAI estimate is first scaled by
a fraction before cancellation; the value of the fraction
increases for successive stages. This takes into account the
fact that the tentative decisions of the earlier stages are less
reliable than those of the later stages. Huge gains in perfor-
mance and capacity are reported over the standard (“brute
force”) PIC detector. This recently proposed detector may be
the most powerful of the subtractive interference cancellation
detectors, and needs to be studied further.

ZERO-FORCING DECISION-FEEDBACK (ZF-DF) DETECTOR

The zero-forcing decision-feedback (ZF-DF) detector (also
referred to as the decorrelating DF detector)[77-79, 81] per-
forms two operations: linear preprocessing followed by a form
of SIC detection. The linear operation partially decorrelates
the users (without enhancing the noise), and the SIC opera-
tion decisions and subtracts out the interference from one
additional user at a time, in descending order of signal
strength. As we describe below, the initial partial decorrela-
tion enables the SIC operation to be much more powerful.

The ZF-DF detector is based on a white noise channel
model. A noise-whitening filter is obtained by factoring R by
the Cholesky decomposition [83], R = FTF, where F is a lower
triangular matrix. Applying (FT)-1 to the matched filter bank
outputs of Eq. (6) yields the white noise model [77]

Yw = FAd + z, (19)

where the covariance matrix of the noise term, zy, is (Ng/2)I
(white noise). (This is similar to the white noise model that is
derived for ISI chanels [8].)

the second user also free of MAI
(decorrelated). This process contin-
ues: for each iteration, the MAI con-
tributed by one additional bit (the
previously decorrelated bit) is regenerated and canceled,
thereby yielding one additional decorrelated bit.

Prior to forming and applying (F7)-! to create the white
noise model, the users are ordered according to their signal
strength, thus insuring that interference cancellation takes
place in descending order of signal strength. This maximizes
the gains to be had from SIC detection, as discussed earlier.

A diagram of the ZF-DF detector is shown in Fig. 7, where
we assume a synchronous channel for clarity.34 In a syn-
chronous channel we can deal with one bit interval at a time;
hence, the size of the vectors and the order of F in Eq. (19)
are reduced to K. Assuming perfect estimates of F and the
received amplitudes, the soft output for the kth user is [77]

k=1
di =Yk = 2 FpiAid; (20
i=0
whered; = sign [ ;] are the previously detected bits (of the
stronger users), 4; is the received amplitude of this bit, and
Fy; is the (k, i)th element of F.

Under the assumption that all past decisions are correct,
the ZF-DF detector eliminates all MAI and maximizes the
signal-to-noise ratio [78].3 It is analogous to the ZF-DF
equalizer used to combat ISI.36, 37

An important difficulty with the ZF-DF detector is the
need to compute the Cholesky decomposition3® and the
whitening filter (F7)~! (matrix inversion). Attempts to simplify
its implementation are similar to those of the decorrelating
detector.

The ZF-DF detector, like the other nonlinear detectors, has
the disadvantage of needing to estimate the received signal
amplitudes. If the soft outputs of the decorrelating detector are
used to estimate the amplitudes, the ZF-DF detector is equivalent
to the decorrelating detector [78]. If the amplitude estimates
are more reliable than those produced by the decorrelating
detector, the ZF-DF detector performs better than the decor-
relating detector; if less reliable, however, the ZF-DF detector
performs worse than the decorrelating detector.
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SUMMARY AND CONCLUSION

Multiple access interference significantly limits the perfor-
mance and capacity of conventional DS-CDMA systems.
Much research has been directed at mitigating this problem
through the design of multi-user detectors.

In multi-user detection, code and timing information of
multiple users is jointly used to better detect each individual
user. The optimum multi-user sequence detector is known,
and provides huge gains in performance and capacity over the
conventional detector; it also minimizes the need for power
control. Unfortunately, it is too complex to implement for
practical DS-CDMA systems.

Many simpler suboptimal multi-user detectors have been
proposed in the last few years, all of which have the potential
to provide substantial performance and capacity gains over
the conventional detector. Most of the detectors fall into two
categories: linear and subtractive interference cancellation.

LINEAR DETECTORS

Linear multi-user detectors, which include the decorrelating,
minimum mean-squared error (MMSE), and polynomial
expansion (PE) detectors, apply a linear transformation to the
outputs of the matched filter bank to reduce the MAI seen by
each user.

The decorrelating detector applies the inverse of the corre-
lation matrix to the matched filter bank outputs, thereby
decoupling the signals. It has many desirable features, includ-
ing its ability to be implemented without knowledge of the
received amplitudes.

The MMSE detector applies a modified inverse of the cor-
relation matrix to the matched filter bank outputs. It yields a
better error rate performance than the decorrelating detector,
but it requires estimation of the received powers.

Both the decorrelating and MMSE detectors require non-
trivial computations that are a function of the cross-correla-
tions. This is particularly difficult for the case of long
(time-varying) codes, where the cross-correlations change
each bit. Many proposals for simplifying the necessary compu-
tations have been made, but difficulties remain.

The polynomial expansion detector applies a polynomial
expansion in the correlation matrix to the outputs of the
matched filter bank. This detector has the important advan-
tage that it can efficiently approximate either the decorrelat-
ing or MMSE detectors; in doing so, neither the correlation
matrix nor its inverse needs to be explicitly calculated. Like
the decorrelating detector, it does not need to estimate the
received amplitudes. Unlike the decorrelating detector, it can
easily be implemented with long codes. Also, it appears that
weights (polynomial coefficients) can be chosen that are fairly
robust over a wide range of system parameters, thereby mini-
mizing or eliminating the need for adaptation.

SUBTRACTIVE INTERFERENCE CANCELLATION DETECTORS
Subtractive interference cancellation detectors attempt to esti-
mate and subtract off the MAIL These detectors include the
successive interference cancellation (SIC), parallel interfer-
ence cancellation (PIC), and zero-forcing decision-feedback
(ZF- DF) detectors.

The bit decisions used to estimate the MAI may be either
hard decisions or soft decisions. Soft decisions provide a joint
estimate of data and amplitude and are easier to implement.
If reliable channel estimates are available, however, hard-
decision (nonlinear) schemes perform better than their soft-
decision counterparts.

The SIC detector takes a serial approach to subtracting out
the MAI: it decisions, regenerates, and cancels out one addi-

tional direct-sequence user at a time. In contrast, the PIC
detector estimates and subtracts out all of the MAI for each
user in parallel. Both of these detectors may be implemented
with a variable number of stages.

From the work in [72], it appears that the SIC detector
performs better than the PIC detector in a fading environ-
ment, while the reverse is true in a well-power-controlled
environment, (although this work has been done specifically
for the case of soft decisions). The PIC detector requires
more hardware, but the SIC detector faces the problems of
power reordering and large delays.

Various methods for improving PIC detection have been
proposed. The recently proposed improved PIC detector of
{76] may be the most powerful of the subtractive interference
cancellation detectors, and needs to be studied further.

Several detectors combine linear preprocessing with sub-
tractive interference cancellation. Examples are the ZF-DF
detector and a PIC detector with a decorrelating detector as the
first stage. A significant disadvantage of the ZF-DF detector
is that it requires Cholesky factorization and matrix inversion.

A major disadvantage of nonlinear detectors is their
dependence on reliable estimates of the received amplitudes.
Studies such as [56, 57] indicate that imperfect amplitude esti-
mation may significantly reduce or even reverse the gains to
be had from using these detectors.

CONCLUSION

Multi-user detection holds much promise for improving
DS-CDMA performance and capacity. Although multi-
user detection is currently in the research stage, efforts to
commercialize multi-user detectors are expected in the com-
ing years as DS-CDMA systems are more widely deployed.
The success of these efforts will depend on the outcome of
careful performance and cost analyses for the realistic envi-
ronment.
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ENDNOTES

1 These properties include: frequency reuse of one, resistance to multipath
fading, multipath diversity combining (RAKE reception), soft capacity,
soft handoff, natural usage of the voice activity cycle (VAQ), ability to
overlay on existing systems, ability to use forward error correction cod-
ing without overhead penalty, natural exploitation of sectored antennas
and adaptive beamforming, ease of frequency management, low prob-
ability of detection and intercept (LPD and LPI), and jam resistance. See
[1-4] for details.

2 Note that we focus here only on the effect of MAI, and not on the effect
of narrowband (NB) interference. A good survey of work dealing with
CDMA in the presence of NB interference can be found in[6]. See also
[7] where multiuser detection is proposed for eliminating NB intefer-
ence.

3 The detector would consist of a band of K matched filters, where each
filter is “matched” to a different code waveform. Matched filter detec-
tion and correlation detection are equivalent methods of implementing
optimal detection where the only interference is from additive white
Gaussian noise [8], that is, in a single-user channel.

4 The operation of the conventional detector can also be explained in the
frequency domain. All signals arrive at the receiver spread in frequency
by the processing gain factor, PG. This has the effect of reducing the
power of each signal over any given narrow band of frequencies. After
multiplying the received signal by the code of user k, the signal of user
k is de-spread back to the original information bandwidth; the other
signals, however, remain spread in frequency (i.e., gi{t)g«(f) is equiva-
lent to some new spreading code waveform). The integrator then acts
as a low pass filter with cut-off at frequencies +f,. Within this frequen-

cy range the de-spread signal is at full power, while the power of the
interfering signals has been reduced by an amount proportional to the
processing gain [88].

5 A popular approximation of the SNR at the output of the conventional
detector is obtained by modeling the MAI as a Gaussian random vari-
able [9]. Thus, for the conventional detector, the MAI can be lumped
with the thermal noise for analysis, that is, it raises the noise floor. The
resulting equation yields fairly accurate probability of error results for
most reasonable system parameters (i.e., for K, PG, and probability of
error not too small [10]). This equation is often used in analysis of DS-
CDMA systems, e.g., [3, 41

6 Another important area of research is the design of improved single-user
detectors, where the code of only one (desired) user is known. Here
detection is optimized in some way for the muliti-user channel, where
the general structure of the interference is known to be that of other
direct-sequence users. As a substitute for the specific knowledge of the
interfereing users’ code waveforms, these detectors generally rely heavi-
ly on adaptive signal processing. They are also sometimes referred to as
adaptive multi-user detectors. An overview of the work in this area can
be found in [15].

7 Issues dealt with include multipath, fading, noncoherent detection, gen-
eral modulation schemes, power variation and power control, coding,
acquisition and tracking (code synchronization), channel estimation,
multiple and adaptive antennas, complexity and cost, efficient subopti-
mal implementations, application to 15-95, and sensitivity and robust-
ness (e.g., the effects of amplitude and phase estimation errors, delay
tracking errors, and quantization errors).

8 Multipath is an important issue in multi-user detection. The bandwidth of
a DS-CDMA signal is very wide (or equivalently, the chip duration is
very small); hence more than one signal path can generally be resolved
at the receiver [8]. This yields what is known as “multipath diversity.”
The conventional detector in this case takes the form of a bank of RAKE
detectors [8], which allows it to take advantage of the availble diversi-
ty. The RAKE detector of each user has M “fingers,” where each finger
detects a different signal path through a matched filter. The RAKE
receiver then combines the M outputs in some manner (e.g., maximal
ratio or equal gain). The name “RAKE” comes from a similarity of this
detector to an ordinary garden rake [8]. There has been much literature
on multi-user detection in a multipath environment, e.g., [19-23] (for
the decorrelating detector), [24, 25] (for the PIC detector), and [26, 271
(for the MLS detector and the decorrelating detector in a 2 path Rician
fading channel). See [16-18] for additional references and discussion.
One approach to multi-user detection in the presence of multipath is to
maximal ratio combine the M corresponding signal paths for each user
and then perform multi-user detection on the resulting K signals. A
more common approach is to treat each path as a separate user with
respect to the multi-user detection algorithm. Thus, first multi-user
detection is performed on MK signals and then RAKE combining takes
place on the corresponding M outputs for each user.

9 We are assuming BPSK modulation and thus coherent detection. Howev-
er, in the 15-95 standard,a pilot signal is not availble on the uplink (it is
available, however, in 15-665). Thus, a coherent reference is not avaial-
ble for tracking the phase, and noncoherent detection is necessary [5].
Two basic works that consider noncoherent multi-user detection (for
the decorrelating detector) are [28] for the synchronous channel and
[29] for the asynchronous channel; other articles include [19, 21-23, 30}
(for the decorrelating detector), and [65] (for the SIC detector). See
[16-18] for additional references and discussion.

10 The ability to detect signals from multiple cells is already assumed in IS-
95 for the implementation of soft-handoff [1]. Here base stations of
neighboring cells may simultaneously transmit to, and receive from the
same mobile user. Note that the value of 0.55 given for the spillover
ratio in [1] actually already includes soft handoff users [87].

11 By definition, the maximum-likelihood sequence detector chooses d to
maximize P(r(t)|d); but if all d vectors are equally probable, this is
equivalent to maximizing P(d|r(t)) [8]. Thus, the MLS detector yields the
most likely tranmsitted d vector as long as all possible d vectors are equal-
ly likely [8]. It can be shown that maximizing the probabilty P(r(t)|d) is
equivalent to maximizing the log likelihood function £ = 2d7Ay -
d’ARAd where d € {-1, 1}¥K [41]. From this follows the well known
result that y (the matched filter output over the whole message) is a
sufficient statistic for optimum detection of the transmitted data [31].

12 MLS detection guarantees the most likely sequence (i.e. a global opti-
mum). An alternate optimality crieteria is “minimum probability of
arror,” which results from the maximation of the marginal a posteriori
distributions, P(dy;|r(t), k = 1..K, i = 1...N (locally optimum) [31].
This is more difficult to implement. Fortunately, the bit error rate of the
MLS detector turns out to be indistinguishable from the minimum
probability of error for SNR regions of interest, that is, where the ther-
mal noise is hot dominant [16]; in the limit as the noise goes to zero,
the MLS error rate is equivalent to that of the minimum error rate. A 2
user synchronous channel example which illustrates the difference
between the MLS ciriteria and the minimum probability of error criteria
is given in [16], and repeated here. Assume that the joint posterior
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probablities P({d, d2}|r(8)}), are given as P({1, 1}|r(t)) = 0.26, P({-1,
1} r(®) = 0.26, P({1, -1}r(t)) = 0.27, and P({-1, -1}|r(t)) = 0.21. The
most likely sequence is {1, —=1}; however, the most likely value of the
second user’s bit is 1.

13 Besides yielding the most likely transmitted sequence, this detector is
also optimal in terms of the performance measures known as the
asymptotic efficiency and the near-far resistance [31, 40, 41]. These
metrics are covered in the surveys [16, 18].

14 In [31] a Viterbi implementation is proposed with path metrics that are
a function of the user crosscorrelations, and that are similar to that of
a single-user periodic time varying ISl channel with memory K - 1; the
resulting Viterbi algorithm has 25 -1 states and a complexity per binary
decision on the order of 2K. Unfortunately, no algorithm is known to
solve the maximization of the likelihood function £ (see Endnote 11) in
polynomial time in K (i.e., it is NP-hard) [31]. An illustrative example of
MLS detection for an asynchronous 2 user DS-CDMA system is spelled
out in [16]. Note that [58] cites two article by Kohno from 1982 and
1983 that also proposes a Viterbi altorithm implementation with a
complexity per binary decision on the order of 2K; both of these articles
appear only in Japanese. Viterbi implemenations of higher complexity
were also proposed in [32, 38].

15 A natural simplification of MLS detection is to replace the Viterbi algo-
rithm with a sequential decoder, as is done for convolutional decoding
[33]. Sequential decoding searches for the most likely path based on
local metric values; in contrast, the Viterbi algorithm tracks and evalu-
ates all possible paths. Although simpler, sequential decoding for DS-
CDMA is still fairly difficult to implement.

16 As is discussed below, the decorrelating detector pays a noise enhance-
ment penalty for eliminating the MAI. Thus, if the MAI is relatively low
and the background noise power is relatively high, ignoring the MAI, as
does the conventional detctor, may yield better performance [16, 40].

17 In brief, the near-far resistance [31, 40, 411 is a performance measure
that indicates performance under worst-case conditions. of interfering
powers; it provides some quanitfication of the resistance of a detector’s
error performance to the power of the interfering users. A detector
that is near-far resistant (i.e., the metric is not equal to zero), can
achieve any given performance level in the multi-user enviroment, no
matter how powerful the multi-user interference, provided that the
desired user is supplied enough power. Both the maximum likelihood
sequence detector and the decorrelating detector are guaranteed to be
near-far resistant for linearly independent users (linearly dependent
users, however, are not near-far resistant). Both detectors also yield the
largest value of this metric for a given set of code waveforms. In con-
trast, the conventional detector is not near-far resistant, unless all
waveforms are orthogonal. For more details on near-far resistance, see
[16].

18 Two recent papers treat the decorrelating detector as a special case of
what is termed “parallel group detectors” [42, 43]. These detectors
bridge the gap in performance and complexity between the decorrelat-
ing detector, (which corresponds to the case of one user per group),
and the MLS detector (which corresponds to the case of all users in one
group).

19 As mentioned above, the decorrelating detector is the optimal sequence
detector (linear or nonlinear) when the energies of the users are
unknown. If they are known, however, there are linear detectors that
provide better probability of error performance. This involves trading
off some MAI reduction for less noise enhancement. An example of this
is the MMSE detector discussed in the next subsection.

20 Degradation from the ideal decorrelating detector performance results
because of the “edge effects” [45, 46]. Some proposals include a form
of “edge correction” to mitigate this problem [45, 46]; other proposals
involve physically separating the data sub-blocks, to entirely avoid the
edge problem [47, 48, 79, 81]. The latter scheme, however, requires
some time synchronization among users.

21 It is shown in [40] that for the case of short codes (codes that repeat
each bit), and where the message length, N, approaches infinity, the
decorrelating detector apporaches a K-input K-output linear time-invari-
ant noncausal infinte memory-length filter. It is further shown in [40]
that under mild conditions a stable unique realization of this filter
exists. Since the filter has infinite memory-length and is non-causal, a
practical implementation would require truncation to a finite length fil-
ter, and the insertion of sufficient delay. Since stability requires that the
impulse response, h(n), go to zero as n — o, the more remote symbols
will count less heavilty. Therefore, the approximation to the exact
decorrelating filter will be good for a truncation window (filter memo-
ry) of sufficient length [40].

22 See also [50] where an adaptive decorrelating detector is proposed that

avoids the need for computations with the correlation matrix.

23 On the other hand, as the noise gets very large, or the MAI amplitudes
get very small, Lymse = (2/Ng)AZ. In this case, performance of the
MMSE detector approaches that of the conventional detector [15, 45].
See Endnote 16.

24 For example, in [45] MMSE detection takes place on blocks of subse-
quences; in [85] “one-shot” MMSE detection is proposed, where detec-
tion is based only on observation over one transmission interval. MMSE
detection has also received much attention lately because of its ability
to be implemented adaptively, where the codes of the interfering users
are not known, that is, improved single-user detection (e.g. [84, 85]).
For more on this subject, see [15].

25 In this case, the PE detector structure can be thought of as being a K-
input K-output linear infinite memory-length filter realization of the
decorrelating detector.

26 Note that soft-decision subtractive interference cancellation detectors
can usually also mathematically be classified as linear detectors.

27 The Wireless Information Network Laboratory (WINLAB) at Rutgers Uni-
versity, New Jersey, is currently implementing a protoype of the SIC
detector which utilizes soft decisions [64]. A soft-decision SIC detector
was initially investigated in [65].

28 A distinctly different SIC scheme that does cancellation in the Walsh-
Hadamard spectral domain is discussed in [66]. Additional references
on this approach can be found in [18].

29 Because of the cancellation order, this detector is most potent when
there is significant power variation between each users’ received signal.
A specific geometric power distribution is derived in [60] that enables
each user to see the same level of signal power to interference (+
noise) ratio, and produce the same probability of error. It is also shown
in [60] that by using the SIC detector with this power profile, along
with very low rate forward error correction (FEC) codes, it is possible
for the composite bit rate of all users to approach the Shannon limit.

30 The multistage PIC algorithm is used in [71] as part of a joint parameter
estimation and data detection scheme.

31 This detector can be considered to be a special case of the modified
parallel group detectors introduced in [42] (corresponding to the case
of one user per group).

32 An adaptive version of this detector that does not require explicit esti-
mation of the received amplitudes is proposed in [73] for synchronous
systems.

33 In [75] a PIC detector is proposed that is based entirely on feedback
cancellation: the outputs of the correlators are continuously fed back
during the correlation for cancellation.

34 Note that the cancelation takes place on the post correlation MAI terms.
Although both the SIC and PIC detectors were described earlier with
“pre-correlation” cancelation, they too can be equivalently implemented
through “post-correlation” cancellation [24, 59, 65].

35 The ZF-DF detector can be considered to be a special case of the
“sequential group detectors” introduced in [42] (corresponding to the
case of one user per group). A general analysis is given there without
the assumption that all past decisions are correct.

36 An MMSE-DF detector is proposed in [78, 79, 81] which is analogous to
the MMSE-DF equalizer [8]. Here the feed-forward and feedback filters
are chosen to minimize the mean square error under the assumption
that all past decisions are correct. This detector is similar to the ZF-DF
detector except that the feed-forward filter is obtained by Cholesky fac-
toring the matrix [ARA + (Ng/2)1]. Like in equalization, the MMSE-DF
detector outperforms the ZF-DF detector.

37 An improved ZF-DF detector is proposed for synchronous channels in
[82] which feeds back more than one set of likely decision vectors
along with their corresponding metrics. The approach of this detector is
similar to that of sequential decoding.

38 The “Schur algorithm” with parallel processing is proposed for Cholesky
factorization in [80]; it results in a complexity that is linear with the
order of the matrix.
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