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Diversity and Multiplexing: A Fundamental Tradeoff
in Multiple-Antenna Channels

Lizhong Zheng, Member, IEEE,and David N. C. Tse, Member, IEEE

Abstract—Multiple antennas can be used for increasing the
amount of diversity or the number of degrees of freedom in wire-
less communication systems. In this paper, we propose the point
of view that both types of gains can be simultaneously obtained
for a given multiple-antenna channel, but there is a fundamental
tradeoff between how much of each any coding scheme can
get. For the richly scattered Rayleigh-fading channel, we give a
simple characterization of the optimal tradeoff curve and use it to
evaluate the performance of existing multiple antenna schemes.

Index Terms—Diversity, multiple input–multiple output
(MIMO), multiple antennas, space–time codes, spatial multi-
plexing.

I. INTRODUCTION

M ULTIPLE antennas are an important means to improve
the performance of wireless systems. It is widely under-

stood that in a system with multiple transmit and receive an-
tennas (multiple-input–multiple-output (MIMO) channel), the
spectral efficiency is much higher than that of the conventional
single-antenna channels. Recent research on multiple-antenna
channels, including the study of channel capacity [1], [2] and
the design of communication schemes [3]–[5], demonstrates a
great improvement of performance.

Traditionally, multiple antennas have been used to increase
diversity to combat channel fading. Each pair of transmit and
receive antennas provides a signal path from the transmitter to
the receiver. By sending signals that carry the same information
through different paths, multiple independently faded replicas
of the data symbol can be obtained at the receiver end; hence,
more reliable reception is achieved. For example, in a slow
Rayleigh-fading environment with one transmit andreceive
antennas, the transmitted signal is passed throughdifferent
paths. It is well known that if the fading is independent across
antenna pairs, a maximal diversity gain (advantage) ofcan be
achieved: the average error probability can be made to decay
like at high signal-to-noise ratio (SNR), in contrast to
the for the single-antenna fading channel. More recent

Manuscript received February 11, 2002; revised September 30, 2002. This
work was supported by a National Science Foundation Early Faculty CAREER
Award, with matching grants from AT&T, Lucent Technologies, and Qualcomm
Inc., and by the National Science Foundation under Grant CCR-0118784.

L. Zheng was with the Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, Berkeley, CA 94720 USA. He
is now with the Department of Electrical Engineering and Computer Science,
the Massachusetts Institute of Technology (MIT), Cambridge, MA 02139 USA
(e-mail: lizhong@mit.edu).

D. N. C. Tse is with the Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, Berkeley, CA 94720 USA (e-mail
dtse@eecs.berkeley.edu).

Communicated by G. Caire, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2003.810646

work has concentrated on using multipletransmit antennas
to get diversity (some examples are trellis-based space–time
codes [6], [7] and orthogonal designs [8], [3]). However, the
underlying idea is still averaging over multiple path gains
(fading coefficients) to increase the reliability. In a system
with transmit and receive antennas, assuming the path
gains between individual antenna pairs are independent and
identically distributed (i.i.d.) Rayleigh faded, the maximal
diversity gain is , which is the total number of fading gains
that one can average over.

Transmit or receive diversity is a means tocombatfading.
A different line of thought suggests that in a MIMO channel,
fading can in fact bebeneficial, through increasing thedegrees
of freedomavailable for communication [2], [1]. Essentially,
if the path gains between individual transmit–receive antenna
pairs fade independently, the channel matrix is well conditioned
with high probability, in which case multiple parallelspatial
channelsare created. By transmitting independent information
streams in parallel through the spatial channels, the data rate can
be increased. This effect is also calledspatial multiplexing[5],
and is particularly important in the high-SNR regime where the
system is degree-of-freedom limited (as opposed to power lim-
ited). Foschini [2] has shown that in the high-SNR regime, the
capacity of a channel with transmit, receive antennas, and
i.i.d. Rayleigh-faded gains between each antenna pair is given
by

The number of degrees of freedom is thus the minimum of
and . In recent years, several schemes have been proposed to
exploit the spatial multiplexing phenomenon (for example, Bell
Labs space–time architecture (BLAST) [2]).

In summary, a MIMO system can provide two types of gains:
diversity gain and spatial multiplexing gain. Most of current re-
search focuses on designing schemes to extract either maximal
diversity gainor maximal spatial multiplexing gain. (There are
also schemes which switch between the two modes, depending
on the instantaneous channel condition [5].) However, maxi-
mizing one type of gain may not necessarily maximize the other.
For example, it was observed in [9] that the coding structure
from the orthogonal designs [3], while achieving the full diver-
sity gain, reduces the achievable spatial multiplexing gain. In
fact, each of the two design goals addresses only one aspect of
the problem. This makes it difficult to compare the performance
between diversity-based and multiplexing-based schemes.

In this paper, we put forth a different viewpoint: given a
MIMO channel, both gains can, in fact, besimultaneouslyob-
tained, but there is afundamental tradeoffbetween how much
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of each type of gain any coding scheme can extract: higher
spatial multiplexing gain comes at the price of sacrificing
diversity. Our main result is a simple characterization of the
optimal tradeoff curve achievable byany scheme. To be more
specific, we focus on the high-SNR regime, and think of a
schemeas a family of codes, one for each SNR level. A scheme
is said to have a spatial multiplexing gainand a diversity
advantage if the rate of the scheme scales like
and the average error probability decays like . The
optimal tradeoff curve yields for each multiplexing gainthe
optimal diversity advantage achievable byany scheme.
Clearly, cannot exceed the total number of degrees of freedom

provided by the channel; and cannot exceed
the maximal diversity gain of the channel. The tradeoff
curve bridges between these two extremes. By studying the
optimal tradeoff, we reveal the relation between the two types
of gains, and obtain insights to understand the overall resources
provided by multiple-antenna channels.

For the i.i.d. Rayleigh-flat-fading channel, the optimal
tradeoff turns out to be very simple for most system parameters
of interest. Consider a slow-fading environment in which the
channel gain is random but remains constant for a duration
of symbols. We show that as long as the block length

, the optimal diversity gain achievable
by any coding scheme of block lengthand multiplexing gain

( integer) is precisely . This suggests an
appealing interpretation: out of the total resource oftransmit
and receive antennas, it isas though transmit and receive
antennas were used for multiplexing and the remaining
transmit and receive antennas provided the diversity. It
should be observed that this optimal tradeoff does not depend
on as long as ; hence, no more diversity gain
can be extracted by coding over block lengths greater than

than using a block length equal to .
The tradeoff curve can be used as a unified framework to com-

pare the performance of many existing diversity-based and mul-
tiplexing-based schemes. For several well-known schemes, we
compute the achieved tradeoff curves and compare it to the
optimal tradeoff curve. That is, the performance of a scheme is
evaluated by the tradeoff it achieves. By doing this, we take into
consideration not only the capability of the scheme to combat
against fading, but also its ability to accommodate higher data
rate as SNR increases, and therefore provide a more complete
view.

The diversity–multiplexing tradeoff is essentially the tradeoff
between the error probability and the data rate of a system.
A common way to study this tradeoff is to compute therelia-
bility function from the theory oferror exponents[10]. How-
ever, there is a basic difference between the two formulations:
while the traditional reliability function approach focuses on the
asymptotics oflarge block lengths,our formulation is based on
the asymptotics ofhigh SNR(but fixed block length). Thus, in-
stead of using the machinery of the error exponent theory, we
exploit the special properties of fading channels and develop a
simple approach, based on the outage capacity formulation [11],
to analyze the diversity–multiplexing tradeoff in the high-SNR
regime. On the other hand, even though the asymptotic regime

is different, we do conjecture an intimate connection between
our results and the theory of error exponents.

The rest of the paper is outlined as follows. Section II presents
the system model and the precise problem formulation. The
main result on the optimal diversity–multiplexing tradeoff curve
is given in Section III, for block length . In Sec-
tion IV, we derive bounds on the tradeoff curve when the block
length is less than . While the analysis in this sec-
tion is more technical in nature, it provides more insights to the
problem. Section V studies the case when spatial diversity is
combined with other forms of diversity. Section VI discusses
the connection between our results and the theory of error ex-
ponents. We compare the performance of several schemes with
the optimal tradeoff curve in Section VII. Section VIII contains
the conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Channel Model

We consider a wireless link with transmit and receive
antennas. The fading coefficient is the complex path gain
from transmit antenna to receive antenna. We assume that
the coefficients are independently complex circular symmetric
Gaussian with unit variance, and write .
is assumed to be known to the receiver, but not at the transmitter.
We also assume that the channel matrixremains constant
within a block of symbols, i.e., the block length is much small
than the channel coherence time. Under these assumptions, the
channel, within one block, can be written as

(1)

where has entries
being the signals transmitted from antennaat time ;
has entries being the signals
received from antenna at time ; the additive noise has
i.i.d. entries ; is the average SNR at each
receive antenna.

We will first focus on studying the channel within this single
block of symbol times. In Section V, our results are generalized
to the case when there is a multiple of such blocks, each of which
experiences independent fading.

A rate bits per second per hertz (b/s/Hz) codebookhas
codewords , each of which is

an matrix. The transmitted signal is normalized such
that the average transmit power at each antenna in each symbol
period is . We interpret this as an overall power constraint on
the codebook

(2)

where is the Frobenius norm of a matrix
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B. Diversity and Multiplexing

Multiple-antenna channels providespatial diversity, which
can be used to improve the reliability of the link. The basic idea
is to supply to the receiver multiple independently faded replicas
of the same information symbol, so that the probability that all
the signal components fade simultaneously is reduced.

As an example, consider uncoded binary phase-shift keying
(PSK) signals over a single-antenna fading channel (

in the above model). It is well known [12] that the proba-
bility of error at high SNR (averaged over the fading gainas
well as the additive noise) is

In contrast, transmitting the same signal to a receiver equipped
with two antennas, the error probability is

Here, we observe that by having the extra receive antenna,
the error probability decreases with SNR at a faster speed of

. Similar results can be obtained if we change the binary
PSK signals to other constellations. Since the performance gain
at high SNR is dictated by the SNR exponent of the error prob-
ability, this exponent is called thediversity gain. Intuitively, it
corresponds to the number of independently faded paths that a
symbol passes through; in other words, the number of indepen-
dent fading coefficients that can be averaged over to detect the
symbol. In a general system with transmit and receive an-
tennas, there are in total random fading coefficients to be
averaged over; hence, themaximal (full) diversity gainprovided
by the channel is .

Besides providing diversity to improve reliability, mul-
tiple-antenna channels can also support a higher data rate
than single-antenna channels. As evidence of this, consider
an ergodic block-fading channel in which each block is as in
(1) and the channel matrix is i.i.d. across blocks. The ergodic
capacity (b/s/Hz) of this channel is well known [1], [2]

At high SNR

where is chi-square distributed with degrees of freedom.
We observe that at high SNR, the channel capacity increases
with SNR as (b/s/Hz), in contrast to

for single-antenna channels. This result suggests that
the multiple-antenna channel can be viewed as
parallel spatial channels; hence the number is
the totalnumber of degrees of freedomto communicate. Now
one can transmit independent information symbols in parallel
through the spatial channels. This idea is also calledspatial
multiplexing.

Reliable communication at rates arbitrarily close to the er-
godic capacity requires averaging across many independent re-
alizations of the channel gains over time. Since we are consid-
ering coding over only a single block, we must lower the data
rate and step back from the ergodic capacity to cater for the ran-
domness of the channel. Since the channel capacity increases
linearly with , in order to achieve a certain fraction of
the capacity at high SNR, we should consider schemes that sup-
port a data rate which also increases with SNR. Here, we think
of a schemeas a family of codes of block length ,
one at each SNR level. Let (b/symbol) be the rate of
the code . We say that a scheme achieves aspatial mul-
tiplexing gainof if the supported data rate

(b/s/Hz)

One can think of spatial multiplexing as achieving anonvan-
ishing fraction of the degrees of freedom in the channel. Ac-
cording to this definition, any fixed-rate scheme has a zero mul-
tiplexing gain, since eventually at high SNR, any fixed data rate
is only a vanishing fraction of the capacity.

Now to formalize, we have the following definition.

Definition 1: A scheme is said to achievespatial
multiplexing gain anddiversity gain if the data rate

and the average error probability

(3)

For each , define to be the supremum of the diversity
advantage achieved over all schemes. We also define

which are, respectively, the maximal diversity gain and the max-
imal spatial multiplexing gain in the channel.

Throughout the rest of the paper, we will use the special
symbol to denote exponential equality, i.e., we write

to denote

and are similarly defined. Equation (3) can, thus, be
written as

The error probability is averaged over the additive
noise , the channel matrix , and the transmitted codewords
(assumed equally likely). The definition of diversity gain here
differs from the standard definition in the space–time coding
literature (see, for example ,[7]) in two important ways.

• This is theactualerror probability of a code, and not the
pairwise error probability between two codewords as is
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commonly used as a diversity criterion in space–time code
design.

• In the standard formulation, diversity gain is an asymptotic
performance metric of onefixedcode. To be specific, the
input of the fading channel is fixed to be a particular code,
while SNR increases. The speed that the error probability
(of a maximum-likelohood (ML) detector) decays as SNR
increases is called the diversity gain. In our formulation,
we notice that the channel capacity increases linearly with

. Hence, in order to achieve a nontrivial fraction of
the capacity at high SNR, the input data rate must alsoin-
creasewith SNR, which requires a sequence of codebooks
with increasing size. The diversity gain here is used as a
performance metric of such a sequence of codes, which
is formulated as a “scheme.” Under this formulation, any
fixed code has spatial multiplexing gain.Allowing both
the data rate and the error probability scale with the
is the crucial element of our formulation and, as we will
see, allows us to talk about their tradeoff in a meaningful
way.

The spatial multiplexing gain can also be thought of as the
data rate normalized with respect to the SNR level. A common
way to characterize the performance of a communication
scheme is to compute the error probability as a function of SNR
for a fixed data rate. However, different designs may support
different data rates. In order to compare these schemes fairly,
Forney [13] proposed to plot the error probability against the
normalizedSNR

where is the capacity of the channel as a function of
SNR. That is, measures how far the SNR is above the
minimal required to support the target data rate.

A dual way to characterize the performance is to plot the error
probability as a function of the data rate, for a fixed SNR level.
Analogous to Forney’s formulation, to take into consideration
the effect of the SNR, one should use thenormalized data rate

instead of

which indicates how far a system is operating from the Shannon
limit. Notice that at high SNR, the capacity of the multiple-
antenna channel is ; hence, the
spatial multiplexing gain

is just a constant multiple of .

III. OPTIMAL TRADEOFF: THE CASE

In this section, we will derive the optimal tradeoff between the
diversity gain and the spatial multiplexing gain that any scheme
can achieve in the Rayleigh-fading multiple-antenna channel.
We will first focus on the case that the block length

, and discuss the other cases in Section IV.

Fig. 1. Diversity–multiplexing tradeoff,d (r) for generalm; n; andl � m+
n � 1.

A. Optimal Tradeoff Curve

The main result is given in the following theorem.

Theorem 2: Assume . The optimal tradeoff
curve is given by the piecewise-linear function connecting
the points , where

(4)

In particular, and .

The function is plotted in Fig. 1.
The optimal tradeoff curve intersects theaxis at .

This means that the maximum achievable spatial multiplexing
gain is the total number of degrees of freedom provided
by the channel as suggested by the ergodic capacity result in
(3). Theorem 2 says that at this point, however, no positive di-
versity gain can be achieved. Intuitively, as , the data
rate approaches the ergodic capacity and there is no protection
against the randomness in the fading channel.

On the other hand, the curve intersects theaxis at the max-
imal diversity gain , corresponding to the total
number of random fading coefficients that a scheme can average
over. There are known designs that achieve the maximal diver-
sity gain at a fixed data rate [8]. Theorem 2 says that in order
to achieve the maximal diversity gain, no positive spatial multi-
plexing gain can be obtained at the same time.

The optimal tradeoff curve bridges the gap between the
two design criteria given earlier, by connecting the two extreme
points: and . This result says that positive
diversity gain and spatial multiplexing gain can be achieved
simultaneously. However, increasing the diversity advantage
comes at a price of decreasing the spatial multiplexing gain, and
vice versa. The tradeoff curve provides a more complete picture
of the achievable performance over multiple-antenna channels
than the two extreme points corresponding to the maximum
diversity gain and multiplexing gain. For example, the ergodic
capacity result suggests that by increasing the minimum of
the number of transmit and receive antennas
by one, the channel gains one more degree of freedom; this
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Fig. 2. Adding one transmit and one receive antenna increases spatial
multiplexing gain by1 at each diversity level.

corresponds to being increased by. Theorem 2 makes a
more informative statement: if we increase bothand by ,
the entire tradeoff curve is shifted to the right by, as shown
in Fig. 2; i.e., for any given diversity gain requirement, the
supported spatial multiplexing gain is increased by.

To understand the operational meaning of the tradeoff curve,
we will first use the following example to study the tradeoff
performance achieved by some simple schemes.

Example ( System):Consider the multiple antenna
channel with two transmit and two receive antennas. Assume

. The optimal tradeoff for this channel
is plotted in Fig. 3(a). The maximum diversity gain for this
channel is , and the total number of degrees of
freedom in the channel is .

In order to get the maximal diversity gain , each informa-
tion bit needs to pass through all the four paths from the trans-
mitter to the receiver. The simplest way of achieving this is to
repeat the same symbol on the two transmit antennas in two con-
secutive symbol times

(5)

can only be achieved with a multiplexing gain . If
we increase the size of the constellation for the symbolas
SNR increases to support a data rate
for some , the distance between constellation points
shrinks with the SNR and the achievable diversity gain is
decreased. The tradeoff achieved by this repetition scheme is
plotted in Fig. 3(b).1 Notice the maximal spatial multiplexing
gain achieved by this scheme is , corresponding to the point

, since only one symbol is transmitted in two symbol
times.

The reader should distinguish between the notion of the max-
imal diversity gain achieved by a scheme and the max-
imal diversity provided by the channel . For the preceding
example, but for some other schemes

1How these curves are computed will become evident in Section VII.

(a)

(b)

Fig. 3. Diversity–multiplexing tradeoff for (a)m = n = 2; l � 3. (b)
Comparison between two schemes.

strictly. Similarly, the maximal spatial multiplexing gain
achieved by a scheme is, in general, different from the degrees
of freedom in the channel.

Consider now the Alamouti scheme as an alternative to the
repetition scheme in (5). Here, two data symbols are transmitted
in every block of length in the form

(6)

It is well known that the Alamouti scheme can also achieve the
full diversity gain just like the repetition scheme. However,
in terms of the tradeoff achieved by the two schemes, as plotted
in Fig. 3(b), the Alamouti scheme is strictly better than the rep-
etition scheme, since it yields a strictly higher diversity gain
for any positive spatial multiplexing gain. The maximal mul-
tiplexing gain achieved by the Alamouti scheme is, since one
symbol is transmitted per symbol time. This is twice as much
as that for the repetition scheme. However, the tradeoff curve
achieved by the Alamouti scheme is still below the optimal for
any .
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In the literature on space–time codes, the diversity gain of a
scheme is usually discussed for a fixed data rate, corresponding
to a multiplexing gain . This is, in fact, themaximal diver-
sity gain achieved by the given scheme. We observe that if
the performance of a scheme is only evaluated by the maximal
diversity gain , one cannot distinguish the performance of
the repetition scheme in (5) and the Alamouti scheme. More
generally, the problem of finding a code with the highest (fixed)
rate that achieves a given diversity gain is not a well-posed one:
any code satisfying a mild nondegenerate condition (essentially,
a full-rank condition like the one in [7]) will have full diver-
sity gain, no matter how dense the symbol constellation is. This
is because diversity gain is an asymptotic concept, while for
any fixed code, the minimum distance is fixed and does not de-
pend on the SNR. (Of course, the higher the rate, the higher
the SNR needs to be for the asymptotics to be meaningful.) In
the space–time coding literature, a common way to get around
this problem is to put further constraints on the class of codes.
In [7], for example, each codeword symbol is constrained to
come from the same fixed constellation (c.f. [7, Theorem 3.31]).
These constraints are, however, not fundamental. In contrast, by
defining the multiplexing gain as the data ratenormalizedby
the capacity, the question of finding schemes that achieves the
maximal multiplexing gain for a given diversity gain becomes
meaningful.

B. Outage Formulation

As a step to prove Theorem 2, we will first discuss another
commonly used concept for multiple-antenna channels: the
outage capacity formulation, proposed in [11] for fading
channels and applied to multiantenna channels in [1].

Channel outage is usually discussed for nonergodic fading
channels, i.e., the channel matrix is chosen randomly but is
held fixed for all time. This nonergodic channel can be written
as

for (7)

where , are the transmitted and received sig-
nals at time , and is the additive Gaussian noise. An
outage is defined as the event that the mutual information of this
channel does not support a target data rate

The mutual information is a function of the input distribution
and the channel realization. Without loss of optimality,

the input distribution can be taken to be Gaussian with a covari-
ance matrix , in which case

Optimizing over all input distributions, the outage probability
is

where the probability is taken over the random channel matrix
. We can simply pick to get an upper bound on the

outage probability.
On the other hand, satisfies the power constraint

and, hence, is a positive-semidefinite
matrix. Notice that is an increasing function on the
cone of positive-definite Hermitian matrices, i.e., ifand
are both positive-semidefinite Hermitian matrices, written as

and , then

Therefore, if we replace by , the mutual information is
increased

hence, the outage probability satisfies

(8)

At high SNR

Therefore, on the scale of interest, the bounds are tight, and we
have

(9)

and we can without loss of generality assume the input (Gauss-
ian) distribution to have covariance matrix .

In the outage capacity formulation, we can ask an analogous
question as in our diversity-tradeoff formulation: given a target
rate which scales with as , how does the outage
probability decrease with the ? To perform this analysis,
we can assume, without loss of generality, that . This is
because

hence, swapping and has no effect on the mutual informa-
tion, except a scaling factor of on the SNR, which can be
ignored on the scale of interest.

We start with the following example.

Example (Single-Antenna Channel):Consider the single-an-
tenna fading channel

where is Rayleigh distributed, and . To
achieve a spatial multiplexing gain of, we set the input data
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rate to for . The outage probability
for this target rate is

Notice that is exponentially distributed, with density
; hence,

This simple example shows the relation between the data
rate and the SNR exponent of the outage probability. The re-
sult depends on the Rayleigh distribution ofonly through the
near-zero behavior: ; hence, is applicable to
any fading distribution with a nonzero finite density near. We
can also generalize to the case that the fading distribution has

, in which case the resulting SNR exponent
is instead of .

In a general system, an outage occurs when the
channel matrix is “near singular.” The key step in computing
the outage probability is to explicitly quantify how singular

needs to be for outage to occur, in terms of the target data
rate and the SNR. In the preceding example with a data rate

, outage occurs when ,
with a probability . To generalize this idea to
multiple-antenna systems, we need to study the probability that
the singular values of are close to zero. We quote the joint
probability density function (pdf) of these singular values [14].

Lemma 3: Let be an random matrix with i.i.d.
entries. Suppose ,

be the ordered nonzero eigenvalues of , then the joint pdf
of ’s is

(10)
where is a normalizing constant. Define

for all

The joint pdf of the random vector is

This can be obtained from (10) by the change of variables
.

Now consider (9) with , let
be the nonzero eigenvalues of , we have

Let . At high SNR, we have
, where denotes . The preceding

expression can thus be written as

Here, the random vector indicates the level of singularity
of the channel matrix . The larger ’s are, the more singular

is. The set : describes the outage
event in terms of the singularity level. With the distribution of
given in Lemma 3, we can simply compute the probability that

to get the outage probability

Since we are only interested in the SNR exponent of , i.e.,

we can make some approximations to simplify the integral.
First, the term has no effect on the SNR
exponent, since

Secondly, for any , the term decays
with SNR exponentially. At high SNR, we can, therefore, ignore
the integral over the range with any and replace the
above integral range with ( is the set
of real -vectors with nonnegative elements). Moreover, within

, approaches for and for ,
and thus has no effect on the SNR exponent, and

(11)

By definition, for any . We only need to con-
sider the case that ’s are distinct, since otherwise the integrand
is zero. In this case, the term is dominated
by for any . Therefore,

(12)

Finally, as , the integral is dominated by the term
with the largest SNR exponent. This heuristic calculation is
made rigorous in the Appendix and the result stated precisely
in the following theorem.
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Theorem 4 (Outage Probability):For the multiple-antenna
channel (1), let the data rate be , with

. The outage probability satisfies

(13)

where

(14)

and

and

can be explicitly computed. The resulting coin-
cides with given in (4) for all .

Proof: See the Appendix.

The analysis of the outage probability provides useful in-
sights to the problem at hand. Again assuming , (12)
can in fact be generalized to any set

In particular, we consider for any the
set . Now

Notice that is a dummy variable, this result can also be
written as

for

for general (15)

which characterizes the near-singular distribution of the channel
matrix .

This result has a geometric interpretation as follows. For
, define

It can be shown that is a differentiable manifold; hence,
the dimensionality of is well defined. Intuitively, we observe
that in order to specify a rank matrix in , one needs to
specify linearly independent row vectors of dimension, and

the rest rows as a linear combination of them. These add
up to

which is the dimensionality of .
We also observe that the closure of is

which means that , the set of matrices with rank less than
, is the boundary of , and is the union of some lower dimen-

sional manifolds. Now consider any point in ; we say
is near singular if it is close to the boundary . Intuitively,
we can find ’s projection in , and the difference

has at least dimensions. Now being
near singular requires that its components in these
dimensions to be small.

Consider the i.i.d. Gaussian distributed channel matrix
. The event that the smallest singular value

of is close to , , occurs when is close to its
projection, in . This means that the component of

in dimensions is of order , with a prob-
ability . Conditioned on this event, the second
smallest singular value of being small, , means
that is close to its boundary, with a probability

. By induction, (15) is obtained.
Now the outage event at multiplexing gainis

. There are many choices of that satisfy this sin-
gularity condition. According to (15), for each of these’s,
the probability , has an SNR exponent

. Among all the choices of that lead
to outage, one particular choice , which minimizes the SNR
exponent has the dominating probability;
this corresponds to thetypical outage event. This is a manifes-
tation ofLaplace’s principle[15].

The minimizing can be explicitly computed. In the case
that takes an integer value, we have

for

and

for

Intuitively, since the smaller singular values have a much higher
probability to be close to zero than the larger ones, the typical
outage event has smallest singular values ,

largest singular values are of order. This means that the
typical outage event occurs when the channel matrixlies in
a neighborhood of the submanifold , with the component in

dimensions being of order
, which has a probability . For the case

that is not an integer, say, , we have

for

for

and

That is, by changing the multiplexing gainbetween integers,
only one singular value of , corresponding to the typical
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outage event, is adjusted to be barely large enough to support
the data rate; therefore, the SNR exponent of the outage
probability, , is linear between integer points.

C. Proof of Theorem 2

Let us now return to our original diversity–multiplexing
tradeoff formulation and prove Theorem 2. First, we show that
the outage probability provides a lower bound on the error
probability for channel (1).

Lemma 5 (Outage Bound):For the channel in (1), let the data
rate scale as (b/s/Hz). For any coding scheme,
the probability of a detection error is lower-bounded by

(16)

where is defined in (14).
Proof: Fix a codebook of size , and let

be the input of the channel, which is uniformly drawn from the
codebook . Since the channel fading coefficients inare not
known at the transmitter, we can assume thatis independent
of .

Conditioned on a specific channel realization , write
the mutual information of the channel as ,
and the probability of detection error aserror . By
Fano’s inequality, we have

error

hence,

error

Let the data rate be

error

The last term goes to as . Now average over to
get the average error probability

error

Now for any , for any in the set

the probability of error is lower-bounded by ;
hence,

Now choose the input to minimize and apply The-
orem 4, we have

Take , by the continuity of , we have

This result says that conditioned on the channel outage
event, it is very likely that a detection error occurs; therefore,
the outage probability is a lower bound on the error probability.

The outage formulation captures the performance under infi-
nite coding block length, since by coding over an infinitely long
block, the input can be reliably detected as long as the data rate
is below the mutual information provided by the random real-
ization of the channel. Intuitively, the performance improves as
the block length increases; therefore, it is not too surprising that
the outage probability is a lower bound on the error probability
with any finite block length. Since , Theorem 2,
however, contains a stronger result: with a finite block length

, this bound is tight. That is, no more diversity gain
can be obtained by coding over a block longer than ,
since the infinite block length performance is already achieved.

Consider now the use of a random code for the multiantenna
fading channel. A detection error can occur as a result of the
combination of the following three events: the channel matrix

is atypically ill-conditioned, the additive noise is atypically
large, or some codewords are atypically close together. By going
to the outage formulation (effectively takingto infinity), the
problem is simplified by allowing us to focus only on the bad
channel event, since for large, the randomness in the last two
events is averaged out. Consequently, when there is no outage,
the error probability is very small; the detection error is mainly
caused by the bad channel event.

With a finite block length , all three effects come into play,
and the error probability given that there is no outage may not be
negligible. In the following proof of Theorem 2, we will, how-
ever, show that under the assumption , given that
there is no channel outage, the error probability (for an i.i.d.
Gaussian input) has an SNR exponent that is not smaller than
that of the outage probability; hence, outage is still the domi-
nating error event, as in the case.

Proof of Theorem 2:With Lemma 5 providing a lower
bound on the error probability, to complete the proof we only
need to derive an upper bound on the error probability (a lower
bound on the optimal diversity gain). To do that, we choose the
input to be the random code from the i.i.d. Gaussian ensemble.

Consider at data rate (b/symbol)

error error, no outage

error, no outage

The second term can be upper-bounded via a union bound.
Assume are two possible transmitted codewords,
and . Suppose is transmitted, the
probability that an ML receiver will make a detection error
in favor of , conditioned on a certain realization of the
channel, is

(17)
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where is the additive noise on the direction of , with
variance . With the standard approximation of the Gaussian
tail function: , we have

Averaging over the ensemble of random codes, we have the
average pairwise error probability (PEP) given the channel re-
alization [7]

(18)
Now at a data rate (b/symbol), we have in

total codewords. Apply the union bound, we have

error

This bound depends on only through the singular values. Let
for , we have

error (19)

Averaging with respect to the distribution of given in
Lemma 3, we have

error, no outage error

where the is the complement of the outage eventde-
fined in (14). With a similar argument as in Theorem 4, we can
approximate this as

error, no outage

with

(20)

The probability is dominated by the term corresponding to
that minimizes

error, no outage

with

For , the
minimum always occurs with ; hence,

Compare with (16); we have , . The overall
error probability can be written as

error, no outage

error, no outage

Notice that the typical error is caused by the outage event, and
the SNR exponent matches with that of the lower bound (16),
which completes the proof.

An alternative derivation of the bound (18) on the PEP gives
some insight to the typical way in which pairwise error occurs.
Let be the nonzero eigenvalues of

, and be the row vectors of . Since is
isotropic (i.e., its distribution is invariant to unitary transforma-
tions), we have

where denotes equality in distribution. Consider

This probability is bounded by

The upper and lower bounds have the same SNR exponent;
hence,

Provided that , from (15)

When
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Combining these, we have

which has the same SNR exponent as the right-hand side of (18).
On the other hand, given that

there is a positive probability that an error
occurs. Therefore,

(21)

This suggests that at high SNR, the pairwise error occurs typ-
ically when the difference between codewords (at the receiver
end) is of order , i.e., it has the same order of magnitude as the
additive noise.

D. Relationship to the Naive Union Bound

The key idea of the proof of Theorem 2 is to find the right
way to apply the union bound to obtain a tight upper bound
on the error probability. A more naive approach is to directly
apply the union bound based on the PEP. However, the following
argument shows that this union bound is not tight.

Consider the case when the i.i.d. Gaussian random code is
used. It follows from (21) that the average PEP can be approx-
imated as

pairwise error

where is the difference between codewords. Denoteas
the event that every entry of has norm .
Given that occurs,

hence,

pairwise error

and

pairwise error

Intuitively, when occurs, the channel is in deep fade and it
is very likely that a detection error occurs. The average PEP is,
therefore, lower-bounded by .

Now, let the data rate , the union bound yields

pairwise error

(22)

The resulting SNR exponent as a function of:
, is plotted in Fig. 4, in comparison to the optimal

tradeoff curve . As spatial multiplexing gain increases,
the number of codewords increases as , hence, the SNR
exponent of the union bound drops with a slope .
Under the assumption , even when we applied
(22) to have an “optimistic” bound, it is still below the optimal

Fig. 4. Union bound of PEP.

tradeoff curve. Therefore, we conclude that the union bound on
the average PEP is a loose bound on the actual error probability.
This strongly suggests that to get significant multiplexing gain,
a code design criterion based on PEP is not adequate.

The reason that this union bound is not tight is as follows.
Suppose is the transmitted codeword. When the channel
matrix is ill-conditioned, is close to for many
’s. Now it is easy to get confused with many codewords, i.e., the

overlap between many pairwise error events is significant. The
union bound approach, by taking the sum of the PEP, overcounts
this “bad-channel” event, and is, therefore, not accurate.

To derive a tight bound, in the proof of Theorem 2, we first
isolate the outage event

error with no outage

and then bound the error probability conditioned on the channel
having no outage with the union bound based on the conditional
PEP. By doing this, we avoid the overcounting in the union
bound, and get a tight upper bound of the error probability. It
turns out that when , the second term of the
preceding inequality has the same SNR exponent as the outage
probability, which leads to the matching upper and lower bounds
on the diversity gain . The intuition of this will be further
discussed in Section IV.

IV. OPTIMAL TRADEOFF: THE CASE

In the case , the techniques developed in the pre-
vious section no longer gives matching upper and lower bounds
on the error probability. Intuitively, when the block lengthis
small, with a random code from the i.i.d. Gaussian ensemble,
the probability that some codewords are atypically close to each
other becomes significant, and the outage event is no longer the
dominating error event. In this section, we will develop different
techniques to obtain tighter bounds, which also provide more in-
sights into the error mechanism of the multiple-antenna channel.

A. Gaussian Coding Bound

In the proof of Theorem 2, we have developed an upper bound
on the error probability, which, in fact, applies for systems with
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any values of , , and . For convenience, we summarize this
result in the following lemma.

Lemma 6 (Gaussian Coding Bound):For the multiple-an-
tenna channel (1), let the data rate be (b/s/Hz).
The optimal error probability is upper-bounded by

(23)

where

where the minimization is taken over the set

(24)

The function can be computed explicitly. For conve-
nience, we call a system with transmit, receive antennas,
and a block length an system, and define the func-
tion

(25)

Lemma 6 says that the optimal error probability is
upper-bounded by with .

, also written as , is a piecewise-linear function
with for in the range of . Let

For and

is a linear function with the slope ,
and agrees with the upper bound on the SNR
exponent . For , is linear
with slope , hence has slope , which is strictly below

.
In summary, for a system with , the optimal

tradeoff curve can be exactly characterized for the range
; in the range that ,

however, the bounds and do not match. Examples
for systems with and are
plotted in Fig. 5, with and 2, respectively.

In the next subsection, we will explore how the Gaussian
coding bound can be improved.

Fig. 5. Upper and lower bounds for the optimal tradeoff curve.

B. Typical Error Event

The key idea in the proof of Theorem 2 is to isolate a “bad-
channel” event

error (26)

and compute the error probability in the second term with the
union bound values of. While this bound is tight for

, it is loose for . A natural attempt to improve
this bound is to optimize over the choices ofto get the tightest
bound. Does this work?

Let be the nonzero eigenvalues
of , and define the random variables

Since the error probability depends on the channel matrix only
through ’s, we can rewrite the bad-channel event in the space
of as . Equation (26) thus becomes

error (27)
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To find the optimal choice of , we first consider the error
probability conditioned on a particular realization of. From
(19) we have

error (28)

Equation (27) essentially bounds this conditional error proba-
bility by for all . In order to obtain the tightest bound
from (27), the optimal choice of is exactly given by

To see this, we observe that for any , the right-hand side
of (28) is larger than ; hence, further bounding error
by gives a tighter bound, which means the pointshould be
isolated. On the other hand, for any , the right-hand side
of (28) is less than; hence, it is loose to isolate thisand bound

error by .
The condition in fact describes the outage

event at data rate , since

Consequently, we conclude that the optimal choice ofto
obtain the tightest upper bound from (26) is simply the outage
event.

Discussion—Typical Error Event:Isolating the outage event
essentially bounds the conditional error probability by

error

Now the overall error probability can be bounded by

where the integral is over the entire space of. For convenience,
we assume , , which does not change the SNR
exponent of the above bound. Under this assumption

hence,

for

This integral is dominated by the term which corresponds to
that minimizes , i.e.,

with

is, in fact, the same as defined in (20), since the opti-
mizing always satisfies .

Here, the optimization over alls provides a closer view of
the typical error event. From the preceding derivation, since

is dominated by , a detection error typ-
ically occurs when falls in a neighborhood of ; in other
words, when the channel has a singularity level of.

In the case , we have ,
which is the same singularity level of the typical outage event;
therefore, the detection error is typically caused by the channel
outage. On the other hand, when , we have for
some , , corresponding to

at high SNR. That is, the typical error event occurs when the
channel is not in outage.

Discussion—Distance Between Codewords:Consider a
random codebook of size generated from the i.i.d.
Gaussian ensemble. Fix a channel realization . Assume
that is the transmitted codeword. For any other codeword

in the codebook, the PEP between and
, from (17), is

Let be the ordered nonzero eigen-
values of . Write
and for some unitary matrices . Write

. Since is isotropic, it has the same

distribution as . Following (21), the PEP can be
approximated as

where ’s are the row vectors of . Since ’s have
i.i.d. Gaussian distributed entries, we have for any

,

(29)

Given a realization of the channel with , an
error occurs when

for
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with a probability of order . In the following,
we focus on a particular channel realization that causes the
typical error event. As shown in Section IV-A, a typical error
occurs when the channel has a singularity level of, i.e.,

, for all .
In the case that , we have

Within the codebook containing codewords, with prob-
ability there will be some other codeword so close to

that causes confusion. In other words, when the channel
, a random codebook drawn from the i.i.d. Gaussian

ensemble with size will have error with high probability.
This is natural since the capacity of the channelcan barely
support this data rate.

On the other hand, if the typical error event occurs when

in
for

for some .2

This means the typical error is caused by some codewords
in that are atypically close to . Such a “bad codeword”
occurs rarely (with probability ), but has a large prob-
ability to be confused with the transmitted codeword; hence,
this event dominates the overall error probability of the code.
This result suggests that performance can be improved byex-
purgatingthese bad codewords.

C. Expurgated Bound

The expurgation of the bad codewords can be explicitly car-
ried out by the following procedure:3

• Step 1 Generate a random codebook of size , with
each codeword .

• Step 2 Define a set . For the first codeword , ex-
purgate all the codewords ’s with .

• Step 3 Repeat this procedure for each of the remaining
codewords, until for every pair of codewords, the differ-
ence .

By choosing to obtain the tightest upper bound of the error
probability, we get the following result.

2This result depends on the i.i.d. Gaussian input distribution only through the
fact that the difference between codewords�XXX has row vectors�xxx ’s satis-
fying

P (k�xxx k � �) � � (30)

for small�. In fact, this property holds for any other distributions, from which the
codewords are independently generated. To see this, assumerrr ; rrr 2 C be two
i.i.d. random vector with pdff(r). Now�rrr = rrr �rrr has a density at0 given
byf (0) = f (r)dr > 0. Hence,P (k�rrrk � �) = f (0)� . Also, (30)
is certainly true for the distributions with probability masses orf (r) dr =
1. This implies that (29) holds for any random code; hence, changing the en-
semble of the random code cannot improve the bound in Lemma 6.

3This technique is borrowed from the theory of error exponents. The connec-
tion is explored in Section VI.

Theorem 7 (Expurgated Bound):For the channel (1) with
data rate (b/s/Hz), the optimal error probability
is upper-bounded by

where

for defined in (25).

This theorem gives the following interesting dual relation
between the Gaussian coding bound derived in Lemma 6 and
the expurgated bound: for an system with transmit,

receive antennas, and a block length of, using the i.i.d.
Gaussian input, if at a spatial multiplexing gainone can get,
from isolating the outage event, a diversity gain of, then
with an system of transmit, receive antennas,
and a block length of at a spatial multiplexing gain of ,
one can get a diversity gain of from the expurgated bound.
Besides the complete proof of the theorem, we will discuss in
the following the intuition behind this result.

In the proof of Lemma 6, we isolate a “bad-channel” event
and compute the upper bound on the error probability

error (31)

The second term, following (21), can be approximated as

error pairwise error

where the last probability is taken over and . Since
approaches, this can also be written as

error

At spatial multiplexing gain , a diversity gain can be ob-
tained only if there exists a choice ofsuch that both terms in
(31) are upper-bounded by , i.e.,

s.t.:

(32)
Now consider a system with transmit, receive an-

tennas, and a block length of. Let the input data rate be
. We need to find a “bad-codewords” set to

be expurgated to improve the error probability of the remaining
codebook. Clearly, the more we expurgate, the better error
probability we can get. However, to make sure that there are
enough codewords left to carry the desired data rate, we need

That is, for one particular codeword, the average number
of other codewords that need to be expurgated is of order

. Hence, the total number of
codewords that need to be expurgated is much less than

, which does not affect the spatial multiplexing gain.
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Now with the expurgated codebook, the error probability (from
union bound and (21)) is

With the expurgation, for a diversity requirement, the
highest spatial multiplexing gain that can be supported is

with

s.t.:

(33)

Now compare (32) and (33), notice that both and
are i.i.d. Gaussian distributed. If we exchangeand , and
equate the parameters , , , ,

, the above two problems become the same. Now in
an system, is the same function of as

in an system; hence, ,
and . Theorem 7 follows.

Combining the bounds from Lemma 6 and Theorem 7, yield

where

(34)

The example of a system with is plotted
in Fig. 6. In general, for an system with , the
SNR exponent of this upper bound (to the error probability) is
a piecewise-linear function described as follows: let

the lower bound connects points

for

for

The connecting points for and are,
respectively

and

One can check that these two points always lie on the same line
with slope .

matches with for all , and yields a
gap for . At multiplexing gain , corresponding
to the points with , . For any block length

Fig. 6. Upper and lower bounds for system withm = n = l = 2.

, this gives a diversity gain , which again matches
with the upper bound .

When , the upper and lower bounds do not match
even at . In this case, the maximal diversity gain in
the channel is not achievable, and gives the optimal di-
versity gain at . To see this, consider binary detection
with and being the two possible codewords. Let

, and define as the -dimensional
subspace of , spanned by the column vectors of . We can
decompose the row vectors of into the components in
and perpendicular to it, i.e., , with for
any . Since is isotropic, it follows that contains
the component of in dimensions, and contains the rest
in dimensions. Now a detection error occurs with a
probability

since . If , which has a proba-
bility of order , the transmitted signal is lost. Intuitively,
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when , the code is too short to average over all the fading
coefficients; thus, the diversity is decreased.

D. Space-Only Codes

In general, our upper and lower bounds on the diversity–mul-
tiplexing tradeoff curve do not match for the entire range of rates
whenever the block length . However, for the
special case of and , the lower bound is
in fact tight and the optimal tradeoff curve is again completely
characterized. This characterizes the performance achievable by
coding only over space and not over time.

In this case, it can be calculated from the above formulas that
and . The expurgated

bound dominates the Gaussian bound for all , and
hence , a straight line connecting the points

and . This provides a lower bound to the
optimal tradeoff curve, i.e., an upper bound to the error proba-
bility.

We now show that this bound is tight, i.e., the optimal error
probability is also lower-bounded by

(35)

To prove this, suppose there exists a schemecan achieve a
diversity gain and multiplexing gain such that
. First we can construct another schemewith the same mul-

tiplexing gain, such that the minimum distance between any pair
of the codewords in is bounded by

To see this, fix any codeword to be the transmitted code-
word, let be its nearest neighbor, and be the minimum
distance. We have

error transmitted

where is the -dimensional component of in the direction
of . Now if the minimum distance is shorter than

, the error probability given that is trans-
mitted is strictly larger than . Since the average error
probability is , there must be a majority of codewords,
say, half of them, for which the nearest neighbor is at least

away. Now take these one half of the codewords
to form a new scheme (or to be more precise take half of the
codeword for each code in the family), it has the desired min-
imum distance, and the multiplexing gainis not changed.

This scheme can be viewed as spheres, each of ra-
dius at least , packed in the space . Notice
that each sphere has a volume of . Now since

, for small enough , we have

for some . That is, with in a sphere of radius , there
are at most codewords. Consequently, all the other

codewords are strictly outside the sphere
with radius . This violates the power constraint (2), since

Thus, we prove that for , , the optimal diver-
sity–multiplexing curve .

V. CODING OVER MULTIPLE BLOCKS

So far we have considered the multiple-antenna channel (1)
in a single block of length. In this section, we consider the case
when one can code oversuch blocks, each of which fades in-
dependently. This is the block-fading model. Having multiple
independently faded blocks allows us to combine the antenna di-
versity with other forms of diversity, such as time and frequency
diversity.

Corollary 8 (Coding Over Blocks): For the block-fading
channel, with a scheme that codes overblocks, each of
which are independently faded, let the input data rate be

(b/s/Hz) ( b/block), the optimal error
probability is upper-bounded by

for defined in (34); and lower-bounded by

for defined in (14).

This means that the diversity gain simply adds across the
blocks. Hence, if we can afford to increase the code length,
we can reduce our requirement for the antenna diversity
in each channel use, and trade that for a higher data rate.

Compare to the case when coding over single block, since
both the upper and lower bounds on the SNR exponent are mul-
tiplied by the same factor, the bounds match for all when

; and for , with
for .

This corollary can be proved by directly applying the tech-
niques we developed in the previous sections. Intuitively, with
a code of length blocks, an error occurs only when the trans-
mitted codeword is confused with another codeword in all the
blocks; thus, the SNR exponent of the error probability is mul-
tiplied by . As an example, we consider the PEP. In contrast to
(21), with coding over blocks, error occurs between two code-
words when

where and are the channel matrix and the difference
between the codewords, respectively, in block. This requires

for

The probability of this event has an SNR exponent of ,
which is also the total number of random fading coefficients in
the channel during blocks.
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VI. CONNECTION TOERROREXPONENTS

The diversity–multiplexing tradeoff is essentially the tradeoff
between the error probability and the data rate of a communica-
tion system. A commonly used approach to study this tradeoff
for memoryless channels is through the theory of error expo-
nents [10]. In this section, we will discuss the relation between
our results and the theory of error exponents.

For convenience, we quote some results from [10].

Lemma 9 (Error Exponents):For a memoryless channel with
transition probability density , consider block codes with
length and rate (bit per channel use). The minimum achiev-
able error probability has the following bounds:

random-coding bound:

(36)

sphere-packing bound:

(37)

where are terms that go to as , and

, where the maximization is taken
over all input distributions satisfying the input constraint, and

In the block-fading model considered in Section V, one can
think of symbol times as one channel use, with the input super-
symbol of dimension . In this way, the channel is memo-
ryless, since for each use of the channel an independent realiza-
tion of is drawn. One approach to analyze the diversity–mul-
tiplexing tradeoff is to calculate the upper and lower bounds on
the optimal error probability as given in Lemma 9. There are
two difficulties with this approach.

• The computation of the error exponents involves optimiza-
tion over all input distributions; a difficult task in general.

• Even if the sphere-packing exponent can be com-
puted, it does not give us directly an upper bound on the di-
versity–multiplexing curve. Since we are interested in ana-
lyzing the error probability for a fixed (actually, we con-
sidered for most of the paper), the terms have
to be computed as well. Thus, while the theory of error ex-
ponents is catered for characterizing the error probability
for large block length , we are more interested in what
happens for fixed but at the high-SNR regime.

Because of these difficulties, we took an alternative approach
to study the diversity–multiplexing tradeoff curve, exploiting
the special properties of the multiple-antenna fading channel.
We, however, conjecture that there is a one-to-one correspon-
dence between our results and the theory of error exponents.

Conjecture 10: For the multiple-antenna fading channel, the
error exponents satisfy

i.e., the diversity–multiplexing tradeoff bounds are scaled ver-
sions of the error exponent bounds, with both the rate and the
exponent scaled by a factor of .

While we have not been able to verify this conjecture, we have
shown that if we fix the input distributionto be i.i.d. Gaussian,
the result is true.

There is also a similar correspondence between the expur-
gated bound derived in Section IV-C and the expurgated expo-
nent, the definition of which is quoted in the following lemma.

Lemma 11 (Expurgated Bound):For a memoryless channel
characterized with the transition probability density ,
consider block codes with a given lengthand rate (bits per
channel use). The achievable error probability is upper-bounded
by

where

, where the maximization is taken over
all input distributions satisfying the input constraint, and

We conjecture that

(38)

for given in Theorem 7. Again, we have only been able
to verify this conjecture for the i.i.d. Gaussian input distribution.

VII. EVALUATION OF EXISTING SCHEMES

The diversity–multiplexing tradeoff can be used as a new
performance metric to compare different schemes. As shown
in the example of a -by- system in Section III, the tradeoff
curve provides a more complete view of the problem than just
looking at the maximal diversity gain or the maximal spatial
multiplexing gain.

In this section, we will use the tradeoff curve to evaluate
the performance of several well-known space–time coding
schemes. For each scheme, we will compute the achievable
diversity–multiplexing tradeoff curve , and compare it
against the optimal tradeoff curve . By doing this, we
take into consideration both the capability of a scheme to
provide diversity and to exploit the spatial degrees of freedom
available. Especially for schemes that were originally designed
according to different design goals (e.g., to maximize the
data rate or minimize the error probability), the tradeoff curve
provides a unified framework to make fair comparisons and
helps us understand the characteristic of a particular scheme
more completely.
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A. Orthogonal Designs

Orthogonal designs, first used to design space–time codes in
[3], provide an efficient means to generate codes that achieve
the full diversity gain. In this section, we will first consider a
special case with transmit antennas, in which case the
orthogonal design is also known as the Alamouti scheme [8].
In this scheme, two symbols are transmitted over two
symbol periods through the channel as

The ML receiver performs linear combinations on the received
signals, yielding the equivalent scalar fading channel

for (39)

where is the Frobenius norm of . is chi-square
distributed with dimension : . It is easy to
check that for small

In our framework, we view the Alamouti scheme as an inner
code to be used in conjunction with an outer code which gen-
erates the symbols ’s. The rate of the overall code scales as

(b/symbol). Now for the scalar channel (39),
using similar approach as that discussed in Section III-C, we
can compute the tradeoff curve for the Alamouti scheme with
the best outer code (or, more precisely, the best family of outer
codes). To be specific, we compute the SNR exponent of the
minimum achievable error probability for channel (39) at rate

. To do that, we lower-bound this error proba-
bility by the outage probability, and upper-bound it by choosing
a specific outer code.

Conditioned on any realization of the channel matrix ,
channel (39) has capacity . The outage
event for this channel at a target data rateis thus defined as

It follows from Lemma 5 that when outage occurs, there is a
significant probability that a detection error occurs; hence, the
outage probability is a lower bound to the error probability with
any input, up to the SNR exponent.

Let , the outage probability

That is, for the Alamouti scheme, the tradeoff curve
is upper-bounded (lower bound on the error probability) by

.
To find an upper bound on the error probability, we can use a

quadrature amplitude modulation (QAM) constellation for the
symbols ’s. For each symbol, to have a constellation of size

, with , we choose the distance between grid points

to be . Assume that one point in the constellation is
transmitted. Let be one of the nearest neighbors. From (21),
the PEP

Now, since for the QAM constellation there are at most four
nearest neighbors to , the overall error event is simply the
union of these for pairwise error event. Therefore, the error
probability is upper-bounded by four times the PEP, and has the
same SNR exponent .

Another approach to obtain this upper bound is by using the
duality argument developed in Section IV-C. Channel (39) is
essentially a channel with one transmit, receive antennas,
and a block length . Consider the dual system with one
transmit, one receive antenna, and a block length . It is
easy to verify that the random coding bound for the dual system
is . Therefore, for the original
system, the expurgated exponent is .

Combining the upper and lower bounds, we conclude
that for the Alamouti scheme, the optimal tradeoff curve is

. This curve is shown in Fig. 7 for
cases with receive antenna and receive antennas,
with different block length.

For the case and , the Alamouti scheme is op-
timal, in the sense that it achieves the optimal tradeoff curve

for all . Therefore, the structure introduced by the Alam-
outi scheme, while greatly simplifies the transmitter and re-
ceiver designs, does not lose optimality in terms of the tradeoff.

In the case , however, the Alamouti scheme is in general
not optimal: it achieves the maximal diversity gain ofat ,
but falls below the optimal for positive values of. In the case

, it achieves the first line segment of the lower bound ;
for the case that , its tradeoff curve is strictly below optimal
for any positive value of .

The fact that the Alamouti scheme does not achieve the full
degrees of freedom has already been pointed out in [16]; this
corresponds in Fig. 7 to . Our results give a stronger
conclusion: the achieved diversity–multiplexing tradeoff curve
is suboptimal for all .

It is shown in [3], [17] that a “full rate” orthogonal design
does not exist for systems with transmit antennas. A
full rate design corresponds to the equivalent channel (39), with
a larger matrix . Even if such a full rate design exists, the
maximal spatial multiplexing gain achieved is just , since
“full rate” essentially means that only one symbol is transmitted
per symbol time. Therefore, the potential of a multiple-antenna
channel to support higher degrees of freedom is not fully ex-
ploited by the orthogonal designs.

B. V-BLAST

Orthogonal designs can be viewed as an effort primarily to
maximize the diversity gain. Another well-known scheme that
mainly focuses on maximizing the spatial multiplexing gain is
the vertical Bell Labs space–time architecture (V-BLAST) [4].
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(a)

(b)

(c)

Fig. 7. Tradeoff curves for Alamouti scheme.

We consider V-BLAST for a square system withtransmit
and receive antennas. With V-BLAST, the input data is di-
vided into independent substreams which are transmitted on dif-
ferent antennas. The receiver first demodulates one of the sub-
streams by nulling out the others with a decorrelator. After this

substream is decoded, its contribution is subtracted from the re-
ceived signal and the second substream is, in turn, demodulated
by nulling out the remaining interference. Suppose for each sub-
stream, a block code of lengthsymbols is used. With this suc-
cessive nulling and canceling process, the channel is equivalent
to

for (40)

where are the transmitted, received signals and
the noise for theth substream; is the SNR at the output of the
th decorrelator. Again, we apply an outer code in the input’s

so that the overall input data rate (b/symbol),
and compute the tradeoff curve achieved by the best outer code.

This equivalent channel model is not precise since error prop-
agation is ignored. In the V-BLAST system, an erroneous deci-
sion made in an intermediate stage affects the reliability for the
successive decisions. However, in the following, we will focus
only on the frame error probability. That is, a frame of length
symbols is said to be successfully decoded only if all the sub-
streams are correctly demodulated; whenever there is error in
any of the stages, the entire frame is said to be in error. To this
end, (40) suffices to indicate the frame error performance of
V-BLAST.

The performance of V-BLAST depends on the order in which
the substreams are detected and the data rates assigned to the
substreams. We will start with the simplest case: the same data
rate is assigned to all substreams; and the receiver detects the
substreams in a prescribed order regardless of the realization of
the channel matrix . In this case, the equivalent channel gains
are chi-square distributed: , with . The
data rates in all substreams are (b/symbol),
for . Now each substream passes through a scalar
channel with gain . Using the same argument for the orthog-
onal designs, it can be seen that an error occurs at theth sub-
stream with probability

with the first substream having the worst error probability. The
frame error probability is bounded by

Since the upper and lower bounds have the same SNR exponent,
we have

The tradeoff curve achieved by this scheme is thus
. The maximal achievable spatial multiplexing gain is

, which is the total number of degrees of freedom provided by
the channel. However, the maximal diversity gain is, which
is far below the maximal diversity gain provided by the
channel. This tradeoff curve is plotted in Fig. 8 under the name
“V-BLAST(1).”

We observe that in the above version of V-BLAST, the
first stage (detecting the first substream) is the bottleneck
stage. There are various ways to improve the performance of
V-BLAST, by improving the reliability at the early stages.
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Fig. 8. Tradeoff performance of V-BLAST.

Clearly, the order in which the substreams are demodulated
affects the performance. In [4], it is shown that fixing the same
date rate for each substream, the optimal ordering is to choose
the substream in each stage such that the SNR at the output
of the corresponding decorrelator is maximized. Simulation
results in [4] show that a significant gain can be obtained
by applying this ordering. Essentially, choosing the order of
detection based on the realization ofchanges the distribution
of the effective channel gains in (40). For example, for the
first detected substream, the channel gainis the maximum
gain of possible decorrelators, the reliability of detecting this
substream and hence the entire frame is therefore improved.

Since the ’s are not independent of each other, it is com-
plicated to characterize the tradeoff curve exactly. However, a
simple lower bound to the error probability can be derived as fol-
lows. Assume that for all substreams , the correct trans-
mitted symbols are given to the receiver by a genie, and hence
are canceled. With the remaining two substreams, let the corre-
sponding column vectors in be and . Write ,
where has unit length, for . ’s are indepen-
dent of the norms , and are independently isotropically dis-

tributed on the surface of the unit sphere in. It is easy to check
that

for small . The gains of the two possible decorrelators are
. Given that ,

with high probability (of order ) both gains are small. In other
words

Consequently, the error probability of this scheme is lower-
bounded by

The upper bound of the tradeoff curve
is plotted in Fig. 8 under the name “V-BLAST(2).”

Another way to improve the performance of V-BLAST is to
fix the detection order but assign different data rates to different
substreams. As proposed in [18], since the first substream passes
through the most unreliable channel (being small with the
largest probability), it is desirable to have a lower data rate trans-
mitted by that substream. In our framework, we can in fact opti-
mize the data rate allocation between substreams to get the best
performance. Let the data rate transmitted in theth substream
be , for . The probability of error for the
th substream is

Now, the overall error probability has an SNR exponent
. The minimization is taken over all the

substreams that are actually used, i.e., . We can choose
the values of ’s to maximize this exponent

subject to:

The optimal rate allocation is described as follows.

• For , only one substream is used. i.e., , and
for . The tradeoff curve is thus
.

• For , two substreams are used
with

and

Hence,

and

The tradeoff curve is
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• Define

Let . The tradeoff curve connects points
for . For , sub-

streams are used, with ratesatisfying
and for .

The resulting tradeoff curve is plotted in Fig. 8 as
“V-BLAST(3).”

We observe that for all versions of V-BLAST, the achieved
tradeoff curve is lower than the optimal, especially when the
multiplexing gain is small. This is because independent sub-
streams are transmitted over different antennas; hence, each sub-
stream sees only random fading coefficients. Even if we as-
sume no interference between substreams, the tradeoff curve is
just . None of the above approaches can reach
above this line. The reliability of V-BLAST is thus limited by
the lack of coding between substreams.

Now to compare V-BLAST with the orthogonal designs, we
observe from the tradeoff curves in Figs. 7 and 8 that for low
multiplexing gain, the orthogonal designs yield higher diversity
gain, while for high multiplexing gain, V-BLAST is better. Sim-
ilar comparison is also made in [16], where it is pointed out
that comparing to V-BLAST “orthogonal designs are not suit-
able for very high-rate communications.” Note that we used the
notion of high/low multiplexing gain instead of high/low data
rate. As discussed in Section II, the multiplexing gain indicates
the data rate normalized by the channel capacity as a function
of SNR. This notion is more appropriate since otherwise com-
paring schemes at a certain data rate may yield different results
at different SNR levels.

C. D-BLAST

While the tradeoff performance of V-BLAST is limited due to
the independence over space, diagonal BLAST (D-BLAST) [2],
with coding over the signals transmitted on different antennas,
promises a higher diversity gain.

In D-BLAST, the input data stream is divided into sub-
streams, each of which is transmitted on different antennas time
slots in a diagonal fashion. For example, in a system, the
transmitted signal in matrix form is

(41)

where denotes the symbols transmitted on theth antenna
for substream . The receiver also uses a successive nulling and
canceling process. In the above example, the receiver first es-
timates and then estimates by treating as inter-
ference and nulling it out using a decorrelator. The estimates of

and are then fed to a joint decoder to decode the first
substream. After decoding the first substream, the receiver can-
cels the contribution of this substream from the received signals
and starts to decode the next substream, etc. Here, an overhead
is required to start the detection process; corresponding to the
symbol in the above example.

In this subsection, we assume that each is a block of sym-
bols of length . In a frame of length, there are
substreams. A frame error occurs when any of these substreams
is incorrectly decoded; therefore, the probability of a frame error
is, at high SNR, times the error probability in each
substream; and, thus, has the same SNR exponent as the sub-
stream error probability.4 In the following, we will focus on the
detection of only one substream, denoted as . In
a square system, each substream passes through an equiv-
alent channel as follows:

...
...

...
. . .

...
...

(42)

where , and is the gain of the nulling decorrelator
used for . We first ignore the overhead in D-BLAST and write
the data rate as the number of bits transmitted in each use of
the equivalent channel (42).

The important difference between (42) and (40), the equiv-
alent channel of V-BLAST, is that here the transmitted sym-
bols ’s belong to the same substream and one can apply an
outer code to code over these symbols; in contrast, the’s in
V-BLAST correspond to independent data streams. The advan-
tage of this is that each individual substream passes through all
the subchannels; hence, an error in one of the subchannels, pro-
tected by the code, does not necessarily cause the loss of the
stream.

It can be shown that ’s are independent with distribution
, with . The tradeoff curve achieved

by the optimal outer code can be derived using a similar ap-
proach as the proof of Theorem 2: by deriving a lower bound on
the optimal error probability from the outage analysis; and an
upper bound by picking the i.i.d. Gaussian random code as the
input.

Given a channel realization (unknown to the trans-
mitter), the capacity of (42) is

At data rate (b/s/Hz), the outage probability for
this channel is defined as

Write , with , we have

’s are independent and chi-square distributed, with density

4In practice, the error probability does depend onl ; choosing a small value
of l makes the error propagation more severe; on the other hand, increasingl

requires a larger overhead to start the detection process.
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where is a normalizing constant. Now the random variables
are also independent;

hence the pdf of is

The outage probability is thus

where corresponds to the outage
event. At high SNR, we have

As , the integral is dominated by the term with the
largest SNR exponent, and

with

(43)

With the same argument as Lemma 5, it can be shown that the
curve is an upper bound on the optimal achievable
tradeoff curve in D-BLAST. On the other hand, by picking the
input to be the i.i.d. Gaussian random code and using a similar
approach as in Section III-C, one can show that for , the
diversity achieved at any spatial multiplexing gainis given by

. Therefore, the optimal tradeoff curve achieved by
D-BLAST is

as given in (43).
The optimization (43) can be explicitly solved. For

, the minimizing for is
for , , and
for . The resulting tradeoff curve

connects points for .
is plotted in Fig. 9, and compared to the optimal

tradeoff curve. We observe that the tradeoff of D-BLAST is
strictly suboptimal for all . In particular, while it can reach
the maximal spatial multiplexing gain at , the maximal
diversity gain one can get at is just , out of
provided by the channel.

The reason for this loss of diversity is illustrated in the fol-
lowing example.

Example: D-BLAST for System:Consider a system,
for which the channel matrix is denoted as , where

has i.i.d. entries. Decompose into the
component in the direction of

Fig. 9. Tradeoff curve for D-BLAST.

and the component that is perpendicular to,
. The equivalent channel (42) has channel gains given

by

Note that and are exponentially distributed.
However, in D-BLAST, the term of is discarded by the
nulling process, and the symbol passes through an equivalent
channel with gain . Consequently, the received
signals from each substream depend only on three independent
fading coefficients, and the maximal diversity for the nulling
D-BLAST in this case is just . In a general system, the
component of in dimensions is nulled out, and
the maximal diversity is only .

Since nulling causes the degradation of diversity, it is
natural to replace the nulling step with a linear minimum
mean-square error (MMSE) receiver. The equivalent channel
for MMSE D-BLAST is of the same form as in (42), except
that the channel gains ’s are changed. Denote the channel
gains for the original nulling D-BLAST as , and for
MMSE D-BLAST as . It turns out the MMSE D-BLAST
achieves the entire optimal tradeoff curve . This is a direct
consequence of the fact that given any realization of, the
mutual information of the channel is achieved by successive
cancellation and MMSE receivers [19]

Therefore, the optimal outage performance can be achieved,
i.e., the SNR exponent of the outage probability for the MMSE
D-BLAST matches defined in Theorem 4. Now using
the same argument which proved Theorem 2, it can be shown
that for , with the i.i.d. Gaussian random code, the
optimal tradeoff curve is achieved.

The difference in performance between the decorrelator and
the MMSE receiver is quite surprising, since in the high-SNR
regime, one would expect that they have similar performance.
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What causes the difference in performance? For the ex-
ample, the equivalent channel gains for the MMSE D-BLAST
are

An explicit calculation shows that at high SNR, themarginal
distributionsof the gains and are asymptotically
the same, for each stage. The difference is in theirstatis-
tical dependency: under the MMSE receiver, the gains
and from the two stages arenegativelycorrelated; under
the decorrelator, the gains and are independent. The
gain is small when the channel gain from the second
transmit antenna is small, but in that case the interference caused
by transmit antenna 2 during the demodulation ofis also
weak. The MMSE receiver takes advantage of that weak inter-
ference in demodulating in stage 1. The decorrelator, on the
other hand, is insensitive to thestrengthof the interference as it
simply nulls out thedirectionoccupied by the signal. Combined
with coding across the two transmit antennas, the negative cor-
relation of the channel gains in the two stages provides more
diversity in MMSE D-BLAST than in decorrelating D-BLAST.

The preceding results are derived by ignoring the overhead
that is required to start the D-BLAST processing. With the over-
head, the actual achieved data rate is decreased, therefore, both
the nulling and MMSE D-BLAST do not achieve the optimal
tradeoff curve.

In summary, for the examples shown in this section, we ob-
serve that the tradeoff curve is powerful enough to distinguish
the performance of schemes, even with quite subtle variations.
Therefore, it can serve as a good performance metric in com-
paring existing schemes and designing new schemes for mul-
tiple-antenna channels. It should be noted that other than for
the channel (for which the Alamouti scheme is optimal),
there is no explicitly constructed coding scheme that achieves
the optimal tradeoff curve forany . This remains an open
problem.

VIII. C ONCLUSION

Earlier research on multiantenna coding schemes has focused
either on extracting the maximal diversity gain or the maximal
spatial multiplexing gain of a channel. In this paper, we present
a new point of view that both types of gain can, in fact, be
simultaneously achievable in a given channel, but there is a
tradeoff between them. The diversity–multiplexing tradeoff
achievable by a scheme is a more fundamental measure of its
performance than just its maximal diversity gain or its maximal
multiplexing gain alone. We give a simple characterization
of the optimal diversity–multiplexing tradeoff achievable by
any scheme and use it to evaluate the performance of many
existing schemes. Our framework is useful for evaluating and
comparing existing schemes as well as providing insights for
designing new schemes.

APPENDIX

PROOF OFTHEOREM 4

From (11), we only need to prove

where

and

As before, we can assume without loss of generality .
We first derive an upper bound on . Consider

where

Denote , we claim

that is,

(44)

To see that, first let and consider

(45)

For the second term, since , we must have
for some . Without loss of generality, we assume .

Now

where and is a finite constant. Also notice
, we have
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To find a lower bound on , note that is contin-
uous, therefore, for any , there exists a neighborhoodof

, within which . Now

Since for any , we have

which proves (44).
Equation (44) says as , the integral

is dominated by the term corresponding
to the minimum SNR exponent . The proof of (44)
is, in fact, a special case of theLaplace’s method,which is
widely used in obtaining asymptotic expansions of special
functions such as Bessel functions [15].

Now to derive a lower bound on , for any ,
define the set

Now

Following the preceding argument, has
SNR exponent

which, by the continuity of , approaches as .

Combining the upper and lower bound, we have the desired
result.
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