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Diversity and Multiplexing: A Fundamental Tradeoff
In Multiple-Antenna Channels
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Abstract—Multiple antennas can be used for increasing the work has concentrated on using multigi@nsmit antennas
amount of diversity or the number of degrees of freedom in wire- to get diversity (some examples are trellis-based space—time
less communication systems. In this paper, we propose the point .o qas [6], [7] and orthogonal designs [8], [3]). However, the

of view that both types of gains can be simultaneously obtained derlvi id is still . ltiol th .
for a given multiple-antenna channel, but there is a fundamental UNGErYINg 1dea 1S Stll averaging over multiplie path gains

tradeoff between how much of each any coding scheme can(fading coefficients) to increase the reliability. In a system
get. For the richly scattered Rayleigh-fading channel, we give a with m transmit andn receive antennas, assuming the path
simple characterization of the o_pti_mal trad_eoff curve and use it to gains between individual antenna pairs are independent and
evaluate the performance of existing multiple antenna schemes. identically distributed (i.i.d.) Rayleigh faded, the maximal
Index Te:mSI—DivefSity, multiple input-multiple _0|UtpUt| _diversity gain ismn, which is the total number of fading gains
S\I/g::{lr%) multiple antennas, space-time codes, spatial multi that one cgn average 0\{er. o |
Transmit or receive diversity is a meansdombatfading.
A different line of thought suggests that in a MIMO channel,
|. INTRODUCTION fading can in fact béeneficial through increasing théegrees

ULTIPLE antennas are an important means to improx% :]reedo?avgna%le for co_mgqulcaltmn [2], [1]. Essentially,
the performance of wireless systems. Itis widely undel- "€ Path gains between individual transmit-receive antenna

stood that in a system with multiple transmit and receive aHgirs fade independently, the channel matrix is well conditioned

tennas (multiple-input-multiple-output (MIMO) channel), thdVith high probability, in which case multiple paralispatial
%Ipannelsare created. By transmitting independent information

spectral efficiency is much higher than that of the convention i el th hh il ch Is. the d
single-antenna channels. Recent research on multiple-anteptiga™ms In parallelthrough the spatial channels, the data rate can
increased. This effect is also callguhtial multiplexing5],

channels, including the study of channel capacity [1], [2] a X . > 1 . )
the design of communication schemes [3]-[5], demonstrate@réd is particularly important in the high-SNR regime where the

great improvement of performance system is degree-of-freedom limited (as opposed to power lim-

Traditionally, multiple antennas have been used to incredfed)- ',:OSth'n'r[]z] haT’ s.h;)nwn that in the high-SNR regime, :jhe
diversityto combat channel fading. Each pair of transmit anﬁapagty IO .ahcf a:jnnde wit t‘;ransmlt,n re;:]ewe antennas, anc
receive antennas provides a signal path from the transmitter-§l- Rayleigh-faded gains between each antenna pair is given
the receiver. By sending signals that carry the same informati
through different paths, multlplg mdependently_faded replicas C(SNR) = min{m, n}log SNR + O(1).
of the data symbol can be obtained at the receiver end; hence,
more reliable reception is achieved. For example, in a slolhe number of degrees of freedom is thus the minimurm.of
Rayleigh-fading environment with one transmit amdeceive andn. In recent years, several schemes have been proposed to
antennas, the transmitted signal is passed thraugdifferent exploit the spatial multiplexing phenomenon (for example, Bell
paths. It is well known that if the fading is independent acrossibs space—time architecture (BLAST) [2]).
antenna pairs, a maximal diversity gain (advantage) cdn be In summary, a MIMO system can provide two types of gains:
achieved: the average error probability can be made to dechyersity gain and spatial multiplexing gain. Most of current re-
like 1/SNR™ at high signal-to-noise ratio (SNR), in contrast tsearch focuses on designing schemes to extract either maximal
theSNR™! for the single-antenna fading channel. More receniversity gainor maximal spatial multiplexing gain. (There are

also schemes which switch between the two modes, depending
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of each type of gain any coding scheme can extract: highisrdifferent, we do conjecture an intimate connection between

spatial multiplexing gain comes at the price of sacrificingur results and the theory of error exponents.

diversity. Our main result is a simple characterization of the The rest of the paper is outlined as follows. Section Il presents

optimal tradeoff curve achievable lany scheme. To be more the system model and the precise problem formulation. The

specific, we focus on the high-SNR regime, and think of main result on the optimal diversity—multiplexing tradeoff curve

schemas a family of codes, one for each SNR level. A schenig given in Section lll, for block length> m + n — 1. In Sec-

is said to have a spatial multiplexing gainand a diversity tion IV, we derive bounds on the tradeoff curve when the block

advantage! if the rate of the scheme scales likdog SNR length is less tham + n — 1. While the analysis in this sec-

and the average error probability decays Ii1<,éSNR‘1. The tion is more technical in nature, it provides more insights to the

optimal tradeoff curve yields for each multiplexing gairthe problem. Section V studies the case when spatial diversity is

optimal diversity advantagé*(r) achievable byany scheme. combined with other forms of diversity. Section VI discusses

Clearly,r cannot exceed the total number of degrees of freeddahe connection between our results and the theory of error ex-

min{m, n} provided by the channel; antf(r) cannot exceed ponents. We compare the performance of several schemes with

the maximal diversity gainnn of the channel. The tradeoff the optimal tradeoff curve in Section VII. Section VIII contains

curve bridges between these two extremes. By studying time conclusions.

optimal tradeoff, we reveal the relation between the two types

of gains, and obtain insights to understand the overall resources ||. SysTEM MODEL AND PROBLEM FORMULATION

provided by multiple-antenna channels.
For the i.i.d. Rayleigh-flat-fading channel, the optimaf" Channel Model

tradeoff turns out to be very simple for most system parametersVe consider a wireless link with: transmit andn receive

of interest. Consider a slow-fading environment in which th@ntennas. The fading coefficiehy; is the complex path gain

channel gain is random but remains constant for a duratits@m transmit antenna to receive antenna We assume that

of | symbols. We show that as long as the block lengthe coefficients are independently complex circular symmetric

I > m+n — 1, the optimal diversity gaini*(r) achievable Gaussian with unit variance, and wrie = [h;;] € C"*™. H

by any coding scheme of block lengttand multiplexing gain is assumed to be known to the receiver, but not at the transmitter.

r (r integer) is preciselfm — 7)(n — r). This suggests an We also assume that the channel mafifxremains constant

appealing interpretation: out of the total resourcenafansmit  Within a block ofl symbols, i.e., the block length is much small

andn receive antennas, it &s though- transmit and- receive than the channel coherence time. Under these assumptions, the

antennas were used for multiplexing and the remaining » channel, within one block, can be written as

transmit andn — r receive antennas provided the diversity. It

should be observed that this optimal tradeoff dqes not depend y — SNR HX + W L

on/ aslong ag > m + n — 1; hence, no more diversity gain m

can be extracted by coding over block lengths greater than )

m + n — 1 than using a block length equal#o + n — 1. whereX € C™*! has entriess;j, i =1,...,m, j=1,...,1
The tradeoff curve can be used as a unified framework to coRgind the signals transmitted from antenaatime;; ¥ € C"*!

pare the performance of many existing diversity-based and m)@s entrieg;;, ¢ = 1, ..., n,j = 1, ..., | being the signals

tiplexing-based schemes. For several well-known schemes, ffgeived from antennaat time j; the additive noisé¥ has
compute the achieved tradeoff curviés) and compare it to the I-I-d- entriesw;; ~ CN(0, 1); SNR is the average SNR at each
optimal tradeoff curve. That is, the performance of a scheme/¢€1ve antenna. _ o
evaluated by the tradeoff it achieves. By doing this, we take into W& Will first focus on studying the channel within this single
consideration not only the capability of the scheme to comppck ofl symbol t|mes..ln Sectpn V, our results are generahzgd
against fading, but also its ability to accommodate higher dd@the case whenthere is a multiple of such blocks, each of which
rate as SNR increases, and therefore provide a more compftgeriences independent fading.
view. A rate R bits per second per hertz (b/s/Hz) codebdokas
The diversity—multiplexing tradeoff is essentially the tradeoff’ | = |27 ] codewords{X (1), ..., X(|C|)}, each of which is

between the error probability and the data rate of a systefffi x | matrix. The transmitted sign& is normalized such
A common way to study this tradeoff is to compute théa- that the average transmit power at each antenna in each symbol

bility function from the theory oferror exponentg10]. How- period is1. We interpret this as an overall power constraint on
ever, there is a basic difference between the two formulatioig® codebook’

while the traditional reliability function approach focuses on the ic|
asymptotics ofarge block lengthspur formulation is based on 1 Z 1X(6)||% < mi )
the asymptotics dfigh SNRbut fixed block length). Thus, in- IC| = F=

stead of using the machinery of the error exponent theory, we

exploit the special properties of fading channels and developvhere||.||  is the Frobenius norm of a matrix
simple approach, based on the outage capacity formulation [11],

to analyze the diversity—multiplexing tradeoff in the high-SNR |R||% 2 Z IIRin? = trace(RR').
regime. On the other hand, even though the asymptotic regime i
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B. Diversity and Multiplexing Reliable communication at rates arbitrarily close to the er-
Multiple-antenna channels providmatial diversity which godic capacity requires averaging across many independent re-

can be used to improve the reliability of the link. The basic idefizations of the channel gains over time. Since we are consid-
is to supply to the receiver multiple independently faded replic§§n9 coding over only a single block, we must lower the data
of the same information symbol, so that the probability that dif'€ @nd step back from the ergodic capacity to cater for the ran-
the signal components fade simultaneously is reduced. domness of the channHl. Since the channel capacity increases

As an example, consider uncoded binary phase-shift keyih@ea”y with log SNR, in order to achieve a certain fraction of
(PSK) signals over a single-antenna fading chanmek( n = the capacity at high SNR, we should consider schemes that sup-
I = 1 in the above model). It is well known [12] that the probaPOrta data rate which also increases with SNR. Here, we think
bility of error at high SNR (averaged over the fading gBiras ©f @ Schemeas a family of code$C(SNR)} of block lengthl,
well as the additive noise) is one at each SNR level. L&t(SNR) (b/symbol) be the rate of

the codeC (SNR). We say that a scheme achievespatial mul-
P.(SNR) ~ 1SNR‘1 tiplexing gainof r if the supported data rate
e ~ Z .
R(SNR) = rlog SNR (b/s/Hz)
In contrast, transmitting the same signal to a receiver equipped

with two antennas, the error probability is One can think of spatial multiplexing as achievingi@nvan-
ishing fraction of the degrees of freedom in the channel. Ac-
P.(SNR) ~ ESNR_? cording to this definition, any fixed-rate scheme has a zero mul-
16 tiplexing gain, since eventually at high SNR, any fixed data rate

Here, we observe that by having the extra receive antenf’?aonly a vanlshlr_1g fraction of the capa(_:|ty. _—
the error probability decreases with SNR at a faster speed OP‘OW to formalize, we have the following definition.
SNR 2. Similar results can be obtained if we change the binary Definition 1: A scheme{C(SNR)} is said to achievepatial
PSK signals to other constellations. Since the performance gaiultiplexing gain- anddiversity gaind if the data rate
at high SNR is dictated by the SNR exponent of the error prob-
ability, this exponent is called thdiversity gain Intuitively, it lim R(SNR) —r
corresponds to the number of independently faded paths that a SNR—oo log SNR
symbol passes through; in other words, the number of indepefiry the average error probability
dent fading coefficients that can be averaged over to detect the
symbol. In a general system with transmit anch receive an- lim log P.(SNR) -4 ©)
tennas, there are in total x » random fading coefficients to be SNR—oo  log SNR
averaged over; hence, theximal (full) diversity gaimprovided
by the channel isnn.

Besides providing diversity to improve reliability, mul-

For eachr, defined*(r) to be the supremum of the diversity
advantage achieved over all schemes. We also define

tiple-antenna channels can also support a higher data rate gr A d*(0)
than single-antenna channels. As evidence of this, consider :m A .
an ergodic block-fading channel in which each block is as in Tmax = sup{r: d*(r) > 0}

(1) and the channel matrix is i.i.d. across blocks. The ergo

capacity (b/s/Hz) of this channel is well known [1], [2] %mh are, respectively, the maximal diversity gain and the max-

imal spatial multiplexing gain in the channel.

C(SNR) = & [logdet <I+ SNR Hﬂfﬂ . Throughout the rest of the paper, we will use the special
m symbol = to denote exponential equality i.e., we write
f(SNR) = SNR" to denote

log f(SNR)

At high SNR

max{m, n} NR— 0 ) =0
C(SNR) = min{m,n} log SNR~|— Z E[log x3;]+0(1) o ’ logSNR
m i=|m—n|+1 and >, < are similarly defined. Equation (3) can, thus, be
written as
whereys3,; is chi-square distributed witki degrees of freedom. »
We observe that at high SNR, the channel capacity increases P.(SNR) = SNR™.

W'Fh SNR as min{m, n}log SNR (b/s/Hz), in contrast to o o\ probability?, (SNR) is averaged over the additive
log SNR for single-antenna channels. This result suggests that . .

. . . noiseW, the channel matri, and the transmitted codewords
the multiple-antenna channel can be viewednas{m, n}

parallel spatial channels hence the numbemin{m, n} is (assumed equally likely). The definition of diversity gain here

. differs from the standard definition in the space—time coding
the totalnumber of degrees of freeddim communicate. Now . . .
L . : . |t|erature (see, for example ,[7]) in two important ways.
one can transmit independent information symbols in paralfe
through the spatial channels. This idea is also cadipdtial ¢ This is theactual error probability of a code, and not the
multiplexing pairwise error probability between two codewords as is
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commonly used as a diversity criterion in space—time code
design. & .— (©mn)

« Inthe standard formulation, diversity gain is an asymptotic
performance metric of onfixed code. To be specific, the
input of the fading channel is fixed to be a particular code, € (. (m-1n-1)
while SNR increases. The speed that the error probability T’ /

(of a maximume-likelohood (ML) detector) decays as SNR

increases is called the diversity gain. In our formulation, ‘; (2, (m-2)(n-2))

we notice that the channel capacity increases linearly witr § /

log SNR. Hence, in order to achieve a nontrivial fraction of o (r, (m=-r)(n-1))

the capacity at high SNR, the input data rate must mlso .~

creasewith SNR, which requires a sequence of codebooks N /

with increasing size. The diversity gain here is used as ¢ oo, (min{m,n},0)
performance metric of such a sequence of codes, whicl ‘\.\A/
is formulated as a “scheme.” Under this formulation, any Spatial Multiplexing Gain: r=Rilog SNR

fixed code ha® spatial multiplexing gainAllowing both

the data rate and the error probability scale with tBBR  Fig. 1. Diversity—multiplexing tradeofi{*(r) for generain, n, andl > m+
is the crucial element of our formulation and, as we will' ~

see, allows us to talk about their tradeoff in a meaningful

way. A. Optimal Tradeoff Curve

The spatial multiplexing gain can also be thought of as the The main resultis given in the following theorem.

data rate normalized with respect to the SNR level. A commonTheorem 2: Assumel > m + n — 1. The optimal tradeoff
way to characterize the performance of a communicati@firved*(r) is given by the piecewise-linear function connecting

scheme is to compute the error probability as a function of SNRe points(k, d*(k)), k = 0, 1, ..., min{m, n}, where
for a fixed data rate. However, different designs may support
different data rates. In order to compare these schemes fairly, d*(k) = (m —k)(n —k). 4)
Forney [13] proposed to plot the error probability against the , ]
normalizedSNR In particular,d’, .. = mn andr} .. = min{m, n}.
A SNR The functiond*(r) is plotted in Fig. 1.
SNRuorm = CT(R) The optimal tradeoff curve intersects thaxis atmin{m, n}.

_ ) _ This means that the maximum achievable spatial multiplexing
whereC(SNR) is the capacity of the channel as a function Oéainr* is the total number of degrees of freedom provided

SNR. That isSNRyorm measures how far the SNR is above thgy the channel as suggested by the ergodic capacity result in
minimal required to support the target data rate. (3). Theorem 2 says that at this point, however, no positive di-
A dual way to characterize the performance is to plot the errgg ity gain can be achieved. Intuitively, as- = __, the data

max’?

probability as a function of the data rate, for a fixed SNR levelate approaches the ergodic capacity and there is no protection
Analogous to Forney’s formulation, to take into conS|derat|oggainst the randomness in the fading channel.

the effect of the SNR, one should use tiemalized data rate  on the other hand, the curve intersectsdraxis at the max-

Ryorm instead ofR imal diversity gaind*,. = mn, corresponding to the total
A R number of random fading coefficients that a scheme can average
BRuorm = C(SNR) over. There are known designs that achieve the maximal diver-

. ) ) sity gain at a fixed data rate [8]. Theorem 2 says that in order
which indicates how far a system is operating from the Shanngfi; cjeve the maximal diversity gain, no positive spatial multi-

limit. Notice that at high SNR., the capacvlty of' the mumple'plexing gain can be obtained at the same time.

antenna channel S(SNR) ~ min{m, n}log SNR; hence, the ™ 16 ptimal tradeoff curve® () bridges the gap between the

spatial multiplexing gain two design criteria given earlier, by connecting the two extreme
R points: (0, d,..) and(rk ... 0). This result says that positive

"= logSNR ~ min{m, 7} Ruorm diversity gain and spatial multiplexing gain can be achieved
is just a constant multiple AR ,opm -

simultaneously. However, increasing the diversity advantage
comes at a price of decreasing the spatial multiplexing gain, and
vice versaThe tradeoff curve provides a more complete picture
of the achievable performance over multiple-antenna channels
In this section, we will derive the optimal tradeoff between ththan the two extreme points corresponding to the maximum
diversity gain and the spatial multiplexing gain that any schendéversity gain and multiplexing gain. For example, the ergodic
can achieve in the Rayleigh-fading multiple-antenna channepacity result suggests that by increasing the minimum of
We will first focus on the case that the block lendgtlr » + the number of transmit and receive antennag{m, n}
n — 1, and discuss the other cases in Section IV. by one, the channel gains one more degree of freedom; this

Ill. OPTIMAL TRADEOFE THE! > m +n — 1 CASE
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Spatial Multiplexing Gain: r=Rflog SNR Spatial Multiplexing Gain: r=R/log SNR
Fig. 2. Adding one transmit and one receive antenna increases spatial @
multiplexing gain byl at each diversity level. -e - Optimal Tradeoff
0.4) -+~ Repetition Scheme
. . ’ — Alamouti Scheme
corresponds te}: . . being increased by. Theorem 2 makes a &

more informative statement: if we increase bottandn by 1,
the entire tradeoff curve is shifted to the right byas shown
in Fig. 2; i.e., for any given diversity gain requiremehtthe
supported spatial multiplexing gain is increasediby

To understand the operational meaning of the tradeoff curve,
we will first use the following example to study the tradeoff
performance achieved by some simple schemes.

d

Diversity Gain:

Example £ x 2 System):Consider the multiple antenna
channel with two transmit and two receive antennas. Assume ‘ y ;)\\\ 20
I > m+n—1 = 3. The optimal tradeoff for this channel K y e,/
is plotted in Fig. 3(a). The maximum diversity gain for this Spatial Multiplexing Gain: r=R/log SNR
channel isd* = 4, and the total number of degrees of )

max

freedom in the channel is; .. = 2.

Fig. 3. _Diversity—multiplexing tradeoff for (a» = n = 2,1 > 3. (b)
In order to get the maximal diversity gaif}, .., each informa- Comparison between two schemes.
tion bit needs to pass through all the four paths from the trans-

mitter to the receiver. The simplest way of achieving this is t&):nax strictly. Similarly, the maximal spatial multiplexing gain

repeat the same symbol on the two transmit antennas in two CgBpieved by a scheme is, in general, different from the degrees

secutive symbol times of freedomy%,_ in the channel.
£ 0 Consider now the Alamouti scheme as an alternative to the
X = [ 0 zJ (5) repetition scheme in (5). Here, two data symbols are transmitted

in every block of lengtl?2 in the form

dr ... can only be achieved with a multiplexing gain= 0. If

we increase the size of the constellation for the symhohs lzl —m;]
X =

SNR increases to support a data rBte= r log SNR(b/s/H?z) ; (6)

for somer > 0, the distance between constellation points T2 Ty

shrinks with the SNR and the achievable diversity gain \%.is well known that the Alamouti scheme can also achieve the

decreased. The tradeoff achieved by this repetition SChem‘?u'ﬁdiversity gaindy,. . justlike the repetition scheme. However,

plotted in Fig. 3(b}. Notice the maximal spatial multiplexing in terms of the tradeoff achieved by the two schemes, as plotted

gain achieved by this schemelig2, corresponding to the point ip Fig. 3(b), the Alamouti scheme is strictly better than the rep-

,Eilng’so)' since only one symbol is transmitted in two Symboetition scheme, since it yields a strictly higher diversity gain

The reader should distinguish between the notion of the mai?—rlg(r;z po;ilrt:vaecﬁir; ?/tézl tr)n %ngérrfogglgér; hn? eniwsmcr;a(ljr:réul-
imal diversity gain achieved by a scheni®) and the max- P 99 y '

imal diversity provided by the channél, . For the preceding symbol is transmltte_d_ per symbol time. This is twice as much
" rax as that for the repetition scheme. However, the tradeoff curve
example,d(0) = d*,. but for some other scheme&0) <

achieved by the Alamouti scheme is still below the optimal for
IHow these curves are computed will become evident in Section VII. anyr > 0.
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In the literature on space—time codes, the diversity gain ofahere the probability is taken over the random channel matrix
scheme is usually discussed for a fixed data rate, correspondhigWe can simply pick) = I to get an upper bound on the
to a multiplexing gainr = 0. Thisis, in fact, thenaximal diver- outage probability.
sity gaind(0) achieved by the given scheme. We observe thatif On the other hand, satisfies the power constraint
the performance of a scheme is only evaluated by the maxinmelce(Q) < m and, hencemI — Q is a positive-semidefinite
diversity gaind(0), one cannot distinguish the performance ahatrix. Notice thaflog det(-) is an increasing function on the
the repetition scheme in (5) and the Alamouti scheme. Mocene of positive-definite Hermitian matrices, i.e.,Afand B
generally, the problem of finding a code with the highest (fixedre both positive-semidefinite Hermitian matrices, written as
rate that achieves a given diversity gain is not a well-posed ong:> 0 and B > 0, then
any code satisfying a mild nondegenerate condition (essentially,

a full-rank condition like the one in [7]) will have full diver- A—B >0==logdet A > logdet B.

sity gain, no matter how dense the symbol constellation is. Thl'*ﬁerefore, if we replacé by m1,,, the mutual information is
is because diversity gain is an asymptotic concept, while fjoreased

any fixed code, the minimum distance is fixed and does not de-

pend on the SNR. (Of course, the higher the rate, the higher ]og det ([ + SNR HQHT> < logdet(I + SNRHH")
the SNR needs to be for the asymptotics to be meaningful.) In m

the space—time coding literature, a common way to get arouRghce, the outage probability satisfies

this problem is to put further constraints on the class of codes.

In[7], for example, each codeword symhg} is constrained to p [10g det (I + SNR HHT> < R}

come from the same fixed constellation (c.f. [7, Theorem 3.31]). m

These constraints are, however, not fundamental. Incontrast,by > p,_ (g) > P [bg det (I+ SNRHHT> < R} G)
defining the multiplexing gain as the data ratermalizedby

the capacity, the question of finding schemes that achieves #itehigh SNR

maximal multiplexing gain for a given diversity gain becomes i
log Pllogdet(I + SNRHH'") < R]

meaningful. i
J oA log SNR
B. Outage Formulation log P [log det (I n Sr'\r'L—RHHT) < R}
As a step to prove Theorem 2, we will first discuss another = SNIF%IEOO log SR
commonly used concept for multiple-antenna channels: the m
outage capacity formulation, proposed in [11] for fading log P [logdet (I+ iﬁ'l—RHHT) < R}
channels and applied to multiantenna channels in [1]. = SNIF%TEOO log SNR .

Channel outage is usually discussed for nonergodic fadin% ) .
channels, i.e., the channel matitk is chosen randomly but is Therefore, on the scale of interest, the bounds are tight, and we

held fixed for all time. This nonergodic channel can be writteRave

as Pou(R) = P [1og det (I + SNRHHT) < R} 9)
Y, = SNR Hz, + w;, fort=1,2,...,00 (7) andwe can without loss of generality assume the input (Gauss-
m ian) distribution to have covariance mattix= 1.
wherez; € C™, y, € C™ are the transmitted and received sig- In the outage capacity formulation, we can ask an analogous
nals at timef, andw, € C" is the additive Gaussian noise. Anquestion as in our diversity-tradeoff formulation: given a target
outage is defined as the event that the mutual information of thige R which scales witlSNR asr log SNR, how does the outage

channel does not support a target data rate probability decrease with theNR? To perform this analysis,
we can assume, without loss of generality, that> n. This is
{H: I(z1; 9, |H=H) < R}. because

The mutual information is a function of the input distribution log det <I-|- SNR HHT> ~ log det <I+ SNR HTH>
P(x;) and the channel realization. Without loss of optimality, m m

the input distribution can be taken to be Gaussian with a covagis .o swapping: andn has no effect on the mutual informa-
ance matrixQ, in which case tion, except a scaling factor @f/» on the SNR, which can be

SNR , ignored on the scale of interest.
Iz y, |H = H) = log det <I A HQHT) - We start with the following example.

Example (Single-Antenna ChannelLonsider the single-an-
nna fading channel

y = VSNRhz + w

Optimizing over all input distributions, the outage probabilit){e
is
Pout (R)

= inf P [Iog det (1 4 NR HQHT> < R}
Q>0, trace(Q)<m m

whereh € C is Rayleigh distributed, ang, z, w € C. To
achieve a spatial multiplexing gain of we set the input data
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rate toR = rlog SNR for 0 < r < 1. The outage probability Let A\; = SNR™™. At high SNR, we havél + SNR);) =
for this target rate is SNR( )" where(z)* denotesmax{0, z}. The preceding
P,.t(rlog SNR) = P (log (1 + SNR||h||?) < rlog SNR) expression can thus be written as

=P (1+ SNR||A||*> < SNR")
~P (||h||2 < SNR—“—’")).

Notice that||h||?> is exponentially distributed, with density
pH;luz(f/) = ¢~ t; hence,

out

H SNR(I—e)" < SNRT]

Z(l—a,;)+<r .

i

=P

Pout(rlog SNR) ~ P (||h||2 < SNR_(l_T)) Here, the random vectar indicates the level of singularity
1 ex (—SNR_“_T)) of the channel matril. The largery;’s are, the more singular
- P His. Thesetd = {a: ) .(1 — ;)" < r} describes the outage
~gNR-(-7). event in terms of the singularity level. With the distributiorof
given in Lemma 3, we can simply compute the probability that
This simple example shows the relation between the datac A to get the outage probability
rate and the SNR exponent of the outage probability. The re-
sult depends on the Rayleigh distributionfobnly through the Pout(rlog SNR)
near-zero behavio®(||h||> < €) ~ ¢; hence, is applicable to = ( ) dov
any fading distribution with a nonzero finite density néawe
can also generalize to the case that the fading distribution has
P(||h||* < €) ~ €, in which case the resulting SNR exponent /
is k(1 — r) instead ofl — 7.
In a generalm x n system, an outage occurs when the .H(SNR—aq SNR™ aJ exp[ Z SNR- aq] do.
channel matrix is “near singular.” The key step in computing
the outage probability is to explicitly quantify how singular
H needs to be for outage to occur, in terms of the target dzﬁﬁme we are only interested in the SNR exponerRQ, i.e.,
rate and the SNR. In the preceding example with a data rate . log Poyut (7 1og SNR)
R = rlogSNR, outage occurs whefjh/|2 < SNR™(—7), SNR oo log SNR
with a probability SNR™"~"). To generalize this idea to e can make some approximations to simplify the integral.

multiple-antenna systems, we need to study the probability “FEH:st the termK (logSNR) has no effect on the SNR
the singular values ol are close to zero. We quote the lo'mexponent since

robability density function (pdf) of these singular values [14
p y y (pdf) g [14]. log (K1, (log SNR)")

Lemma 3:Let R be anm x n random matrix with i.i.d. — 0.
log SNR
CN(0, 1) entries. Supposer > n, 1 < p2 < -+ < g .
be the ordered nonzero agenvaluesl-ﬁﬂ then the joint pdf Secondly, for anyy; < 0, the termexp(—SNR™") decays

. (log SNR)" H SNR—(m—n+1)as

1=1

i<j

of pu;’s is with SNR exponentially. At high SNR, we can, therefore, ignore
the integral over the range with any; < 0 and replace the
(g, - H pn H — uj)’e” 2 above integral rangel with A’ = AN R™+ (R"T is the set
i<j of realn-vectors with nonnegative elements). Moreover, within
_ N _ (10) 47, exp(—SNR™*") approaches for ; > 0 ande for a; = 0,
whereK,, , is a normalizing constant. Define and thus has no effect on the SNR exponent, and
a; := —log u;/log SNR, for all 4. n
The joint pdf of the random vecter = [a, ..., o] is Pout(rlog SNR) = / [ snR-Cmmrmtbes
p(a) = K., (log SNR)™ TT SNR™ (=t T (SNR™™ — SNR™)* da. (11)
i=1 i<j
H (SNRfai _ SNR*“J eXp[ Z SNR™ m] . By definition, o; > «; for any: < j. We only need to con-
i sider the case that;’s are distinct, since otherwise the integrand
This can be obtained from (10) by the change of vanabI(!:QsZero In this case, the tefSNR ™ — SNR™*/| is dominated
i = SNR™®, y SNR™%/ for anyi < j. Therefore,

Now consider (9) withR = rlog SNR, letA; < Ay < -+ < Poui(rlog SNR) = / H SNR™(Zi=lHm=n)a: g0 (12)
A, be the nonzero eigenvaluestHT, we have ’
P,«(R)=P [log det (I + SNRHHT) < R} Finally, asSNR — oo, the integral is dominated by the term
n with the largest SNR exponent. This heuristic calculation is
H (1+SNR),) < SNR’"] ) made rigorous in the Appendix and the result stated precisely
iy in the following theorem.
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Theorem 4 (Outage Probability)For the multiple-antenna the restn — k rows as a linear combination of them. These add
channel (1), let the data rate e = rlogSNR, with » < upto

min{m, n}. The outage probability satisfies
{m, n} 9ep Y dkémk+(7z—k)k:mn—(m—k)(n—k)

Pout(r1og SNR) = SNR et (") w3 o
which is the dimensionality dR ;.
where We also observe that the closure®f is
min{m,n} —
dout (1) = inf‘ Z 2i — 14 |m —n|a; (14) Ry = U = Ry U1
ac A’ .
i=1 which means that/,,_, the set of matrices with rank less than
and k, is the boundary dR, and is the union of some lower dimen-
_ sional manifolds. Now consider any poili, in Rj; we sayXy
A ={aeRrmintmntt|g > > Qmin{m,n} = 0, is near singular if it is close to the boundaddy_; . Intuitively,
we can findX,'s projectionX; 1 in U}, _1, and the difference

4 Xy — X1 has atleastly, — di, 1 dimensions. NowX;, being
and Z (I—a)" <r near singular requires that its components in thgse di_1
¢ dimensions to be small.

df)ut(r) can be explicitly computed. The resultidg,(r) coin- Consider the i.i.d. Gaussian distributed channel matrix
cides withd*(r) given in (4) fOf allr. H e ¢c»*™ = U,. The event that the smallest singular value
Proof: See the Appendix. O of H is close t00, \; < €', occurs whenH is close to its

rp_rojection,H’ in U,_1. This means that the component of
in d, — d,_; dimensions is of ordee®'/2, with a prob-
ability e(¢=—d=-0)b1 Conditioned on this event, the second
i smallest singular value ol being small,\s < €2, means
- : —(m—n+2i—1)a; that H' € U, _, is close to its boundary, with a probability
PlaeB) = /B 11:[1 SNR d ¢ldn—1—dn—2)b> By induction, (15) is obtained.
-~ Now the outage event at multiplexing gainis {>_,(1 —
a;)T < r}. There are many choices of that satisfy this sin-

The analysis of the outage probability provides useful i
sights to the problem at hand. Again assuming> n, (12)
can in fact be generalized to any &t R"*

~SNR™ ming e 27 (m—n+2i—1)a; )

In particular, we consider for arly= [bs, ..., b,] € R"* the gularity condition. According to (15), for each of thesss,
setB, = {a: a; > b;}. Now the probability P(A; < SNR™*, V%) has an SNR exponent
>-(2¢ — 1+ m — n)o;. Among all the choices of that lead
Pla e B,)=P ()\i < SNR™", Vi) to outage, one particular choie&, which minimizes the SNR

. ~ 3 (m—nt2i-1)p, exponen® " (2i — 1+ m — n)a; has the dominating probability;
=SNR ‘ : this corresponds to thgpical outage event. This is a manifes-
Notice thatSNR is a dummy variable, this result can also bé&ation ofLaplace’s principle[15].
written as The minimizinga® can be explicitly computed. In the case
; log P(\; < ¢, V) thatr takes an integer value we have
11m

e—0 loge af =1, fori=1,...,n—k

K3

:Z(m—n—l—?i—l)bi, form >n
i=1
min{m,n}
= Y (Jm—n|+2i—1)b;, forgenerain, n (15)

i=1

and
af =0, fori=n—k+1,...,n.

Intuitively, since the smaller singular values have a much higher
probability to be close to zero than the larger ones, the typical
. _ _ o outage event has — k smallest singular values; = SNR™*,
which characterizes the near-S|ngU|ar distribution of the Chan%e‘argest Singu|ar values are of order This means that the

matri_x H. o _ typical outage event occurs when the channel mdiikes in
This result ha_s a geometric interpretation as follows.A~er 5 neighborhood of the submanifoRl,, with the component in
0,1, ..., n, define mn — dim(Ry) = (m — k)(n — k) dimensions being of order
Ri 2 [X € "%, rank(X) = k} SNR*'l, which hasaprobabilitSNR*(m*k)(”*’“). For the case
N thatr is not an integer, say, € (k, k& + 1), we have
U = {X € "™ rank(X) < k}
k af =1, fori=1,....,n—k—1
:URj. a; =0, fori=n—-k+1,...,n
=0 and
It can be shown thaR. is a differentiable manifold; hence, *

; ; ; ; ) " w=k+1—r.
the dimensionality oRR ;. is well defined. Intuitively, we observe Ok "

that in order to specify a rank matrix inC"*™, one needs to That is, by changing the multiplexing gairbetween integers,
specifyk linearly independent row vectors of dimensianand only one singular value off, corresponding to the typical
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outage event, is adjusted to be barely large enough to suppofThis result says that conditioned on the channel outage
the data rate; therefore, the SNR exponent of the outageent, it is very likely that a detection error occurs; therefore,

probability, do.u (1), is linear between integer points. the outage probability is a lower bound on the error probability.
The outage formulation captures the performance under infi-
C. Proof of Theorem 2 nite coding block length, since by coding over an infinitely long

Let us now return to our original diversity—multiplexingPlock, the input can be reliably detected as long as the data rate

tradeoff formulation and prove Theorem 2. First, we show thigt Pelow the mutual information provided by the random real-

the outage probability provides a lower bound on the erré@tion of the channel. Intuitively, the performance improves as
probability for channel (1). the block length increases; therefore, it is not too surprising that

. the outage probability is a lower bound on the error probability
Lemma 5 (Outage Bound)For the channel in (1)_, let the datayiih any finite block lengthi. Sincedo.(-) = d*(-), Theorem 2,
rate scale ag = rlog SNR (b/s/Hz). For any coding scheme nowever, contains a stronger result: with a finite block length

the probability of a detection error is lower-bounded by 1 > m+n—1, this bound is tight. Thatis, no more diversity gain
3 —doue (1) can be obtained by coding over a block longer thas n — 1,
Pe(SNR) > SNR (16) since the infinite block length performance is already achieved.
wheredy () is defined in (14). Consider now the use of a random code for the multiantenna

Proof: Fix a codeboolC of size2%!, and letX € C™*! fading channel. A detection error can occur as a result of the
be the input of the channel, which is uniformly drawn from theombination of the following three events: the channel matrix
codeboolkC. Since the channel fading coefficientshhare not H is atypically ill-conditioned, the additive noise is atypically
known at the transmitter, we can assume Kias independent |arge, or some codewords are atypically close together. By going
of H. to the outage formulation (effectively takirigo infinity), the

Conditioned on a specific channel realizatiin= H, write  problem is simplified by allowing us to focus only on the bad
the mutual information of the channel a6X; Y |H = H), channel event, since for largethe randomness in the last two
and the probability of detection error &error| H = H). By events is averaged out. Consequently, when there is no outage,
Fano’s inequality, we have the error probability is very small; the detection error is mainly
caused by the bad channel event.

With a finite block lengthl, all three effects come into play,
and the error probability given that there is no outage may not be

Rl <1+ P(errorfH=H)RI+I(X;Y |H =H)

hence,
negligible. In the following proof of Theorem 2, we will, how-
Plerror| H = H) > 1 — I(X;Y|H=H) 1 ever, show that under the assumption m +n — 1, given that
RI Rl there is no channel outage, the error probability (for an i.i.d.
Let the data rate b& = rlog SNR Gaussian input) has an SNR exponent that is. not.smaller th_an
[X:Y | H = 1) that of the outage probability; hence, outage is still the domi-
P H=H >1— ; _ ~nating error event, as in the— oo case.
(error] )2 Irlog SNR Irlog SNR

Proof of Theorem 2:With Lemma 5 providing a lower
The last term goes 0 asSNR — oo. Now average oveH to - bound on the error probability, to complete the proof we only
get the average error probability need to derive an upper bound on the error probability (a lower
bound on the optimal diversity gain). To do that, we choose the
Pe(SNR) = Eg[P(error| H = H)]. input to be the random code from the i.i.d. Gaussian ensemble.

Now for anys > 0, for any i in the set Consider at data rat® = r log SNR (b/symbol)
A

Ds={H:I(X;Y|H=H — §)llog SNR

=1 X Y] ) < (r =)o } P.(SNR) = P,.+(R)P(error| outage) + P(error, no outage

the probability of error is lower-bounded Hy— # + o(1); < Pout(R) + P(error, no outage
hence,

r—20

P.(SNR) > (1 - + 0(1)> P(Ds). The second term can be upper-bounded via a union bound.

AssumeX (0), X (1) are two possible transmitted codewords,

Now choose the inpuX to minimize P(D;s) and apply The- andAX = X (1) — X(0). SupposeX (0) is transmitted, the

r

orem 4, we have probability that an ML receiver will make a detection error
,_ s in favor of X (1), conditioned on a certain realization of the
P.(SNR) > (1 - + 0(1)> SNR~dout(r=8) channel, is
T

= SNR™ o (r=),
P(X(0) = X(1)|H = H)

Taked — 0, by the continuity ofd,..(r), we have (SNR 2

m

H % H(AX)

< ||w||2> 17)

P.(SNR) > SNR™eut (7). O P
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wherew is the additive noise on the direction B A X)), with For! > 2(min{m, n}) — 1+ |m —n| = m +n — 1, the
variancel /2. With the standard approximation of the Gaussiaminimum always occurs with (1 — «) = r; hence,
tail function: Q(t) < 1/2exp(—t2/2), we have

min{m, n}

SNR dg(r) = min (20 — 14 |m —n|)y
P(X(0) = X(1)|H = H) < exp {—m ||H(AX)||2} . S ai=min{m, n}—r ;
ompare with (16); we havéz (r) = dout(r), V7. The overall

Averaging over the ensemble of random codes, we have t \%or probability can be written as

average pairwise error probability (PEP) given the channel re-

alization [7] P.(SNR) = P,utage(R) + P(error, no outage
SNR 1 = SNR™%(") 4 p(error, no outagp
P(X(0) — X(1)|H = H) < det (I—i— Py HHT) & SNR™4out () 4 gNR—46 (™)
(18) = SNR_dout (7’)_

Now at a data ratd? = rlog SNR (b/symbol), we have in ) ] )
total SNR"" codewords. Apply the union bound, we have Notice that the typical error is caused by the outage event, and
the SNR exponent matches with that of the lower bound (16),

P(error| H = H) <SNR' det <I+ SZNR HHT> which completes the proof. O

An alternative derivation of the bound (18) on the PEP gives

I min{m, n} SNR some insight to the typical way in which pairwise error occurs.
=SNR H ( + om. Ai ) Let \;, ¢ = 1, ..., min{m, n} be the nonzero eigenvalues of
i=1 HHT, andAz; € C!' be the row vectors oA X. SinceAX is
This bound depends dff only through the singular values. Letisotropic (i.e., its distribution is invariant to unitary transforma-
A =SNR™@ fori =1, ..., min{m, n}, we have tions), we have
. ) min{m, n}
P(error| a) < SNR™I2Z(—a0)* =], 19 4
(error|a) < (19) HAX)EL Y AfAz?
Averaging with respect to the distribution ef given in i=1
Lemma 3, we have where denotes equality in distribution. Consider
- P NR ?
P(error, no outage o p(a)P(error| o) da P(S H Hax)|| < 1)
F

é /A/ . p(a)SNR—l[Z(l—ai)+—7’] dOl mln{m,n}
(A) =P > XAz <4mSNR™' | .

where the(A’)¢ is the complement of the outage evetitde- i=1
fined in (14). With a similar argument as in Theorem 4, we can

approximate this as This probability is bounded by

, _ 4mSNR™! .
P(error, no outage P<)\i||A-"’i|| S S,y T min{m, “}>
< / SNR™ 2 (Im=nl+2i-DasgNR—) J(1—e)* =] 4, min{m, n}
—Jeae < P( > Alam)? < 4mSNR—1>
:/ SNR da(r, ) do i=1
(A)e < P (M|l Az]|? <4mSNR™, i =1, ..., min{m, n}).
with The upper and lower bounds have the same SNR exponent;
min{m, n} hence,
dg(r, a) = Z (26— 14 |m—n|)a; <SNR 2
i=1 P H H(AX)|| < 1)
F

min{m,n}
+1 ( Z (1—a;)t - 7") - (20) = P (\]|Azg])? < 4mSNR™Y, i =1, ..., min{m, n})
=1 = P (||Az;]|* < 4m(SNRX;)) ™", i = 1, ..., min{m, n}).
The_prob_ability is dominated by the term corresponding’to Provided that\; > SNR™!, from (15)
that minimizesdg(r, «) ()
P(error, no outage< SNR™%¢ (") P (| Az < (SNRX,)!, Vi) = [ (SNRx)™
=1
with 1
When)\; < SNR

dc;(r) = dG<’F7 6] ) = (){%1}\1’ d(;(r Oé) (||sz||2 (SNR/\ ) ) - SNRO
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Combining these, we have o) —~— Optimal
SNRIIL 9 min{m, n} q ’ ==+ Union Bound
- : ) —! A
Pl =— H SHAX)| <1)= II (min{1,SNRA}) slope=min—1
F i=1 <
which has the same SNR exponent as the right-hand side of (18 U
On the other hand, given that o
2 5
SNR HEH(AX) <1 3
m |2 F >
there is a positive probability’(||w||> > 1) > 0 that an error g
occurs. Therefore, a
2
P(X(0) — X(1)|H = H) iP(MHlH(AX) < 1).
m || 2 F
(21) r=R/log SNR (per symbol period)

This suggests that at high SNR, the pairwise error occurs tylg- 4. Union bound of PEP
ically when the difference between codewords (at the receiver - '
end) is of orded, i.e., it has the same order of magnitude as tr}

- . (raadeoff curve. Therefore, we conclude that the union bound on
additive noise.

the average PEP is a loose bound on the actual error probability.
This strongly suggests that to get significant multiplexing gain,
. . ) . acode design criterion based on PEP is not adequate.

Thte key Ildet?] of th.e prgof O(; '{he%rtem 2 Its' tﬁtf'nd thebrlght The reason that this union bound is not tight is as follows.
way 10 apply the union bound to obtain a tight upper OurQupposeX(O) is the transmitted codeword. When the channel
on the error probability. A more naive approach is to d'rECt_%atrixH is ill-conditioned,H X (i) is close taH X (0) for many
apply the union bound b‘?‘sed_o” the PEF.)' Howe_.\ver, the fOIIOW'Pg. Now itis easy to get confused with many codewords, i.e., the
ar%umepdt sh(r)]ws that th'hs um;)]n ppgngls noF tight. q d overlap between many pairwise error events is significant. The

onsider the case when the 1.1.d. Gaussian random €ode, iz, 4 ng approach, by taking the sum of the PEP, overcounts
used. It follows from (21) that the average PEP can be aPPIYKis “had-channel” event, and is, therefore, not accurate.

imated as SNR To derive a tight bound, in the proof of Theorem 2, we first
P(pairwise erroy = P < . |IH(AX)|2 < 1) isolate the outage event
m

D. Relationship to the Naive Union Bound

) . P, < P(outage) x 1+ P(error with no outage
where A X is the difference between codewords. Denétas
the event that every entry df has norm||H,;||> < SN R—!. andthen bound the error probability conditioned on the channel

Given thatF occurs, having no outage with the union bound based on the conditional
9 1 9 5 PEP. By doing this, we avoid the overcounting in the union
[ H(AX)[[F < SNR™(mn)~[|AX |7 bound, and get a tight upper bound of the error probability. It

turns out that whed > m + n — 1, the second term of the

o . ) . , Ppreceding inequality has the same SNR exponent as the outage
P(pairwise errof 7) > P(SNR||H(AX)||% < 4m) = SNR™  nropapility, which leads to the matching upper and lower bounds
on the diversity gairl*(r). The intuition of this will be further
discussed in Section IV.

hence,

and
P(pairwise erroy > P(F)SNR? = SNR™™".

Intuitively, whenF occurs, the channel is in deep fade and it
is very likely that a detection error occurs. The average PEP isn the casé < m+n—1, the techniques developed in the pre-
therefore, lower-bounded BNR™™". vious section no longer gives matching upper and lower bounds

Now, let the data rat& = r log SNR, the union bound yields on the error probability. Intuitively, when the block lengtis

Punion(R) = SNR'” P(pairwise erroy small, With_g random code from the i.i.d. Ga_\ussian ensemble,
S gNR-(mn—tr) 22) the probability thgt some codewords are atyplcall_y close to each
= : other becomes significant, and the outage event is no longer the
The resulting SNR exponent as a functionrofd,;,(r) = dominating error event. In this section, we will develop different
mn — Ir, is plotted in Fig. 4, in comparison to the optimakechniques to obtain tighter bounds, which also provide more in-
tradeoff curved*(r). As spatial multiplexing gaim increases, sights into the error mechanism of the multiple-antenna channel.
the number of codewords increasesS&R'", hence, the SNR ) )
exponent of the union boundl, ... (r) drops with a slope-. A Gaussian Coding Bound
Under the assumptioh> m + n — 1, even when we applied Inthe proof of Theorem 2, we have developed an upper bound
(22) to have an “optimistic” bound, it is still below the optimalon the error probability, which, in fact, applies for systems with

IV. OPTIMAL TRADEOFE THE! < m + n — 1 CASE
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any values ofn, n, andl. For convenience, we summarize this Upper and Lower Bounds, m=n=k=2

result in the following lemma. .
9 —e— Upper boundd_ (1)

Lemma 6 (Gaussian Coding Boundfor the multiple-an- —+— Lower bound d(r)
tenna channel (1), let the data rate®e= rlog SNR (b/s/Hz).

o
-

The optimal error probability is upper-bounded by = i
o ]
P.(SNR) < SNR™%¢(") (23) é
c
[
where
gl .
min{m,n} %
dg(r) = min Z (20 — 14+ |m —nl)ay er 1
e o

min{m, n}

+1 Z (I1—o)—r

=1

Spatial Multiplexing Gain r=R/log SNR
S S Upper and Lower Bounds, m=n=4, I=5
Q1 Z 2 Cmin{m,n}, v v 4 T = s - .
A min{m,n}. Ui rBound d (l’)
G =< ae o, 1mintmnt; . (24) —e— Uppe ot
{ [0, 1] Z (I—ai)>r —+— Lower Bound d(r)

i

where the minimization is taken over the set

o-

The functiondg(r) can be computed explicitly. For conve- .
nience, we call a system with, transmit,n receive antennas,
and a block lengtfi an (m, n, I) system, and define the func-
tion

min{m, n}

Gm,n ’) = mi 21—1 - i
() = min Z:; (2i = 1+ |m — n|)a

Diversity Advantage d (r)

min{m, n}

+ 11 Z (1—a;)—2]. (25 slope=-1 |
1=1 /
Lemma 6 says that the optimal error probability is Spatial Multiplexing Gain r=R/log SNR

upper-bounded bSNR™(") with dg(r) = G, i(l7).
Gm, ", l(l‘), also written ag(w)’ is a piecewise-linear function Fig. 5. Upper and lower bounds for the optimal tradeoff curve.
with G(z) > 0 for « in the range of0, [ min{m, n}]. Let

B. Typical Error Event

k= [M-‘ . The key idea in the proof of Theorem 2 is to isolate a “bad-

2 channel” evenfl € B
Fori=1,..., ki and P.(SNR) < P(H € B) x 1 + P(error, H ¢ B)  (26)
z € [[(min{m, n} — i), {(min{m, n} —i+1)] and compute the error probability in the second term with the

. . . ) ) union bound values af. While this bound is tight fof > m +
G(z) is alinear function with the slope (2 — 1 +|m —n[)/l, , _1 itis|oose for < m+n—1.Anatural attempt to improve
anddg(r) = G(Ir) agrees W.'th the upper bound on t,he SNRhis bound is to optimize over the choices®fo get the tightest
exponentloy(r). Forz < l(min{m, n} — k1), G(z)islinear p. -4 Does this work?
with slope—1, hencelg(r) has slope-I, whichis strictly below | Mi,i = 1, ..., min{m, n} be the nonzero eigenvalues
dout (7). ) i of HH', and define the random variables

In summary, for a system with< m + n — 1, the optimal
tradeoff curvei*(r) can be exactly characterized for the range = )
r > min{m, n} — kq; in the range that < min{m, n} — k1, log SNR”
however, the bounds; (r) andd,.(r) do not match. Exarmples Since the error probability depends on the channel matrix only
for systems withmn =n= | =2andm = n =4, l=5are through);’s, we can rewrite the bad-channel event in the space
plotted in Fig. 5, witht; = 1 and 2, respectively. of o asa € B'. Equation (26) thus becomes

In the next subsection, we will explore how the Gaussian
coding bound can be improved. P.(SNR) < P(e € B') x 1+ P(error, « ¢ B').  (27)

log \;
8 i=1,..., min{m, n}.
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To find the optimal choice of8’, we first consider the error with
probability conditioned on a particular realization @f From .
(19) we have da(r) = min d(r, ).

P(error| a) < SNR™/S( =) =r], (28) dg(r) is, in fact, the same as defined in (20), since the opti-

mizing o* always satisfie3 (1 — o) —r > 0.

& Here, the optimization over alls provides a closer view of

the typical error event. From the preceding derivation, since

P.(SNR) is dominated bgNR %< (" ") a detection error typ-
B2 {a: Z(l —a)t < T}' ically occurs when falls in a neighborhood of*; in other

words, when the channel has a singularity levehbdf

To see this, we observe that for amye 5*, the right-hand side  Inthe casé > m+n—1, we have) , f = min{m, n}—r,

of (28) is larger tharl; hence, further bounding (error| o)  which is the same singularity level of the typical outage event;

by 1 gives a tighter bound, which means the pairghould be therefore, the detection error is typically caused by the channel

isolated. On the other hand, for anyZ 5B*, the right-hand side outage. On the other hand, wher: m + n — 1, we have for

of (28) is less tham; hence, itis loose to isolate thisand bound somer, Y «f < min{m, n} — r, corresponding to

P(error| a) by 1. min{m, n}

The condition) (1 — o)™ < r in fact describes the outage I(H) = log H (1 + SNR )\i>
event at data rat® = rlog SNR, since m

Equation (27) essentially bounds this conditional error prob
bility by 1 for all « € B’. In order to obtain the tightest bound
from (27), the optimal choice df’ is exactly given by

=1

SNR min{m, n} 1—ay
ogdet (1+ XA ) < ! SNR'™
m > log 1:[1 m
SNR ., s
< JI(1+==X) <SNR > rlog SNR
; m
oNR ’ N at high SNR. That is, the typical error event occurs when the
= H SNR(I—)" < SNR". channelH is not in outage.

Discussion—Distance Between Codewor@onsider a
Consequently, we conclude that the optimal choicédb random codebook of .size SNR'" gengrated from the i.i.d.
obtain the tightest upper bound from (26) is simply the outageaussian ensemble. Fix a channel realizator- H. Assume

event. thatX (0) is the transmitted codeword. For any other codeword
Discussion—Typical Error Eventlsolating the outage event X (k), & # 0 in the codebook, the PEP betwe&r(0) and
essentially bounds the conditional error probability by X(k), from (17), is
P(error| a) < min {1, SNR*”Z“*‘”)h’"]} P(X(0) = X(k)) SNR
PN S - P I () - XO) I} < ).
Now the overall error probability can be bounded by Let;, i = 17T' ., min{m, n} be the ordered nonzero eigen-
values ofHH'. Write A = diag (\;, ¢ = 1, ..., min{m, n})
P.(SNR) < / p(a)SNRIRZ-a)™ =" g, and H = U\/AVT for some unitary matrice&’, V. Write
Ja AX 2 X(0) — X (k). SinceAX is isotropic, it has the same

where the integral is over the entire space.ofor convenience, distribution asAX’ 2 VIAX. Following (21), the PEP can be
we assumey; € [0, 1], Vi, which does not change the SNRapproximated as

exponent of the above bound. Under this assumption
P(X(0) — X(k))

pla - SNR—Z(?i—l—l—]’m—n‘)oz7 SNR
(a) = P = IMAX)][F < [l

hence, , L
= P(JA(AX")||% < 4mSNR™)
P.(SNR)< / SNR™ %6 () g = P (\if|Az||? <SNR7Y, i =1, ..., min{m, n})
for o where Az;’s are the row vectors oAX’. SinceAz;'s have

i.i.d. Gaussian distributed entries, we have for ahy €
(2i — 14+ |m —n|)a; [0, 1]min{m:n},

min{m, n} . T

dg(ra)= Y Ny mmgjs"}(l o] | P(||Azi||2§SNR_'3i7 i=1,..., min{m, n})
i=1 - () =

= SNR™'2Z P (29)

This integral is dominated by the term which corresponds to Given a realization of the chann&l with \; = SNR™“¢, an
a* that minimizesiy(r, o), i.e., error occurs when

P.(SNR) < SNR™4 (™) |Az]|? < SNR™A=) fori=1, ..., min{m, n}

=1
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with a probability of ordeSNR~'22(1=9) | the following, Theorem 7 (Expurgated Bound}:or the channel (1) with
we focus on a particular channel realizatiiri that causes the data rateR = rlog SNR (b/s/Hz), the optimal error probability
typical error event. As shown in Section IV-A, a typical erroiS upper-bounded by

occu[s yvhen thg channel has a singularity levelgfi.e., \; = P.(SNR) < SNR ™ exr(7)
SNR™ %, for all <.

In the case thaf (1 — af) — r = 0, we have where
P(X(0) — X(k) | H = H*) = SNR' 202 — gNR~™", dexp(r) = Gy (Ir)

Within the codebook containingSNR” codewords, with prob- for Gi(x) defined in (25).

ability SNR® there will be some other codeword so close to _ . . N . .

X (0) that causes confusion. In other words, when the channeIThIS theorem gives the following interesting dual relation
H = H* arandom codebook drawn from Ehe iid Gaussiéhetween the Gaussian coding bound derived in Lemma 6 and
ensemble with siz6NR'" will have error with high probability. the expurgated bound: foc; amt;ln,kl)lsysterzlr? Vi\j't.rm ”ﬁ”s_”_"g

This is natural since the capacity of the chanHélcan barely " receive _a”tenf‘as’ and a bloc _eng_t pusIng the 1.1.d.
support this data rate. Gaussian input, if at a spatial multiplexing gairone can get,

On the other hand, if the typical error event occurs whefﬁ(,)m isolating the outage event, a diversity gaindfthen

S(1—af)—r>0 with an (m, [, n) system ofm transmit,/ receive antennas,

! and a block length of. at a spatial multiplexing gain af/n,

. |Az;||? < SNR—(—o), one can get a diversity gain &f from the expurgated bound.
P{3XyinC: fori—1 min{m, n} Besides the complete proof of the theorem, we will discuss in

i the following the intuition behind this result.
= SNRI"1220-2) = SNR™P In the proof of Lemma 6, we isolate a “bad-channel” event

for somep > 0.2 H € B and compute the upper bound on the error probability

This means the typical error is caused by some codewords P, < P(H € B) x 1 + P(error, H ¢ B). (31)
in C that are atypically close tX (0). Such a “bad codeword” . .
occurs rarely (with probabilitNR~?), but has a large prob- The second term, following (21), can be approximated as
ability to be confused with the transmitted codeword; hence, r o
this event dominates the overall error probability of the code. P(error, H ¢ B) ;SNRITP(pa|rW|se erro;I;T ¢ B)
This result suggests that performance can be improveekby =SNR" P (SNR|H(AX)||F < 1)

purgatingthese bad codewords. where the last probability is taken ovHr ¢ B andAX. Since

C. Expurgated Bound P(H € B) approaches, this can also be written as

The expurgation of the bad codewords can be explicitly ca®?(error, H ¢ B) < SNR” P(|H(AX)||7 <SNR™' |H¢B) .

ried out by the following procedure: At spatial multiplexing gain-, a diversityd gain can be ob-

« Step 1 Generate a random codebook of s&¢R'", with  tained only if there exists a choice Bfsuch that both terms in

each codewor& (k) € ™!, (31) are upper-bounded BNR™?, i.e.,
* Step 2 Define a sef3’. For the first codeword (0), ex- IBcC ™ st
purgate all the codeword$(k)’s with X (k)—X (0) € B'. P(H € B) < SNR™

» Step 3 Repeat this procedure for each of the remainingdG(T) = max{ d

P(||H(AX)|7 <SNR™'|H ¢ B)
codewords, until for every pair of codewords, the differ-

> —(lr+d)
enceX (k) — X(j) ¢ B'. < SNR (@2)
By choosing3’ to obtain the tightest upper bound of the error Now consider a system withn’ transmit, »’ receive an-
probability, we get the following result. tennas, and a block length &f. Let the input data rate be

ohi t depends on the Li.d. Gaussian inout distribu it htR’ = 7’ log SNR. We need to find a “bad-codewords” d&tto

IS result depenas on the L.1.d. Gaussian Input aistribution only throug H HH s

fact that the difference between codeworiX' has row vectorsz;’s satis- B(—é expurgated to improve the error probability of the remaining

fying codebook. Clearly, the more we expurgate, the better error
probability we can get. However, to make sure that there are

2 l .
P(llaz:|" <€) 2« (30) enough codewords left to carry the desired data rate, we need
for smalle. In fact, this property holds for any other distributions, from which the N —U'r’
codewords are independently generated. To see this, agsume € C! be two P(AX €eB ) < SNR :

i.i.d. random vector with pdf (r). Now Ar = r, —r, has a density dt given . .
by far(0) = [ F2(r)dr > 0.Hence P(||Ar||> < ¢) = fa,(0)e'. Also, (30) That is, for one particular codeword, the average number

is certainly true for the distributions with probability masses[of*(r)dr = of other codewords that need to be expurgated is of order

oo. This implies that (29) holds for any random code; hence, changing the %*NRI’T’P(AX c B’) < SNR®. Hence. the total number of
semble of the random code cannot improve the bound in Lemma 6. ' !

3This technique is borrowed from the theory of error exponents. The conn&?del\,’v,ords _that need to be expurgatgd 1S n_1uch_ less _than
tion is explored in Section VI. SNR"™, which does not affect the spatial multiplexing gain.
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Now with the expurgated codebook, the error probability (from

union bound and (21)) is

P, <SNR'P(||[H(AX)|%2 <SNRT'|AX ¢ B) .

With the expurgation, for a diversity requiremedft, the

highest spatial multiplexing gain that can be supported i

d=1 (d') with
-1
Vdggp(d) o
IB ccm xSt
P(AXeB') < SNR™'™
= !'max{ »’

P(|H(AX)||3 <SNR™'|[AX ¢B)
é SNR_(Z/T,+d,)

(33)

Now compare (32) and (33), notice that bdth and AX
are i.i.d. Gaussian distributed. If we exchafgendA X, and
equate the parametets = m,n’ = 1,1’ =n,d =Ir = n'r,

I'v" = d, the above two problems become the same. Now it

an (m, n, 1) system,ld_} (nx) is the same function of as

exp

de(x) inan(m, I, n) system; hencdd_! (d) = Gy.1.n(d),

exp

= G7*,  (Ir). Theorem 7 follows.

m,l,n

andd exp (1)

Combining the bounds from Lemma 6 and Theorem 7, yielc @

P.(SNR) < SNR™%(™)
where

dy(r) £ max{da(r), dexp(r)}.

(34)

The example of a system with, = n = [ = 2 is plotted
in Fig. 6. In general, for afim, n, [) system withl > m, the

SNR exponent of this upper bound (to the error probability) is
0

a piecewise-linear function described as follows: let

kr=[(l = |m—n[-1)/2]
ko = [(n = |l =m| =1)/2]
ks = min{m, n}

ks = min{l, m}

the lower bound);(r) = max{dg(r), dexp, ()} CONNECts points

(1, (m —i)(n —i)),

(w,m’), forj =ks—ko, ..., ka—

fori=rks, ks —1, ..., ks — kg

1, k.

The connecting points far= ks — k; andj = k4 — ko are,

respectively

(k'g — k’17 k% + k1|m — 7’L|)
and
(k3 + ka|l = m|) /1, n(ks — k2)).

One can check that these two points always lie on the same line

with slope—I.

d;(r) matches withl,,.(r) for all > k3 — k1, and yields a
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Fig. 6. Upper and lower bounds for system with=n = [ = 2.

[ > m, this gives a diversity gaimn, which again matches
with the upper bound, (7).

Whenl < m, the upper and lower bounds do not match
even atr = 0. In this case, the maximal diversity gaimn in
the channel is not achievable, add0) gives the optimal di-
versity gain atr = 0. To see this, consider binary detection
with X (0) and X (1) being the two possible codewords. Let
AX = X(1) — X(0), and defineax as thel-dimensional
subspace af", spanned by the column vectorsaX . We can
decompose the row vectors Hf into the components if2a x
and perpendicular to it, i.eH = H, + H,, with Hyv = 0 for
anyv € Qax. SinceH is isotropic, it follows thatd ; contains
the component aff in nl dimensions, and, contains the rest
in n(m — ) dimensions. Now a detection error occurs with a
probability

P(X(0) — X(1)) =P (|HAX||7 < SNR™Y)
=P (|H:AX|)% <SNR™)

gap forr < ks — k. At multiplexing gain- = 0, corresponding since H,AX = 0. If |H;||% < SNR™!, which has a proba-
to the points withj = 0, d;(0) = nky4. For any block length bility of orderSNR™™', the transmitted signal is lost. Intuitively,
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when! < m, the code is too short to average over all the fadifgNR"(1 — SN R_‘S) codewords are strictly outside the sphere
coefficients; thus, the diversity is decreased. with radiusSNR/2. This violates the power constraint (2), since

D. Space-Only Codes ﬁ > IIXillF = SNR (1 - SNR_ﬁ) .
In general, our upper and lower bounds on the diversity—mul- ¢
tiplexing tradeoff curve do not match for the entire range of ratghus, we prove that fot = 1, m < n, the optimal diver-
whenever the block length < m + n — 1. However, for the sity—multiplexing curvei(r) = n(1 — r/m).
special case of = 1 andm < n, the lower boundi;(r) is
in fact tight and the optimal tradeoff curve is again completely V. CODING OVER MULTIPLE BLOCKS

characterized. This characterizes the performance achievable bg ; h idered th ltiol h (1
coding only over space and not over time. o far we have considered the multiple-antenna channel (1)

In this case, it can be calculated from the above formulas tH3@ Single block of length Inthis section, we consider the case
dg(r) = m — r andde,(r) = n(1 — r/m). The expurgated when one can code ovérsuch blocks, each of which fades in-
- exp — .

bound dominates the Gaussian bound for-at [0, m], and dependently. This is the block-fading model. Having multiple
henced;(r) = n(1—r/m), a straight line connectiﬁg the pOimsindependently faded blocks allows us to combine the antenna di-

(0, n) and(min{m, n}, 0). This provides a lower bound to thev_ersity( with other forms of diversity, such as time and frequency
optimal tradeoff curve, i.e., an upper bound to the error probg'-vers'ty'
bility. Corollary 8 (Coding Overk Blocks): For the block-fading
We now show that this bound is tight, i.e., the optimal erraghannel, with a scheme that codes oweblocks, each of
probability is also lower-bounded by which are independently faded, let the input data rate be
) . R = rlog SNR (b/s/Hz) {r log SNR b/block), the optimal error
P.(SNR) > SNR™"(" = sty (35) probability is upper-bounded by

To prove this, suppose there exists a schémoan achieve a P®)(SNR) < SNR™F>di()
diversity gaind and multiplexing gain such that-/m+d/n > ] ]
1. First we can construct another sche@avith the same mul- for di(r) defined in (34); and lower-bounded by
tiplexing gain, such that the minimum distance between any pair (k) . —kXdout (1)
of the codewords ik’ is bounded by P;"(SNR) > SNR

IAX|2 S SNRL 4/, for dou¢(r) defined in (14).

This means that the diversity gain simply adds acrosg:the
To see this, fix any codewot® (0) to be the transmitted code-blocks. Hence, if we can afford to increase the code legth
word, letX (1) be its nearest neighbor, and\ be the minimum we can reduce our requirement for the antenna diveity)

distance. We have in each channel use, and trade that for a higher data rate.
Compare to the case when coding over single block, since
P(error| X (0) transmitted > P(X(0) — X (1)) both the upper and lower bounds on the SNR exponent are mul-

~p (SNR||H(AX)||2 < 1) tiplied by the same factak, the bounds match for al when
-p (SNR||h||2||AX||2 < 1) I > m+mn—1;and forr > min{m, n} — ki, with k; =
- [l—=|m—n|-1)/2]forl <m+n—1.
whereh is then-dimensional component df in the direction 1S corollary can be proved by directly applying the tech-

of AX. Now if the minimum distancélA X || is shorter than nigues we developed in the previous sections. Intuitively, with
SNR-(1-4/m)/2 the error probability given thak (0) is trans- a code of length blocks, an error occurs only when the trans-

mitted is strictly larger tharsNR™". Since the average errormitted codeword is confused with another codewor_q in_ all the
blocks; thus, the SNR exponent of the error probability is mul-

probability isSNR™, there must be a majority of codewords?'©" :
say, half of them, for which the nearest neighbor is at |eat§?lled by k. As an example, we consider the PEP. In contrast to

SNR—(1—d/n)/2 away. Now take these one half of the codeworo@l)' with coding ovek: blocks, error occurs between two code-
to form a new schem@ (or to be more precise take half of the/Vords when
codeword for each code in the family), it has the desired min- SNR &
imum distance, and the multiplexing gairs not changed. P Z |H (AX)||% < ||lw]|?

This scheme&’ can be viewed aSNR" spheres, each of ra- t=1
dius at leas6NR™('=%/™)/2 'packed in the spac@™. Notice
that each sphere has a volumeS)R~"('=%/") Now since
r/m+ d/n > 1, for small enougtd > 0, we have

whereH,; and AX; are the channel matrix and the difference
between the codewords, respectively, in bléckhis requires

. SNR/(4m)||H,(AX,)|)* < |jw])?, fort=1,..., k.
SNR"—8—m(1=d/n) 5 g\R™e
The probability of this event has an SNR exponent:oin,
for somee > 0. Thatis, with in a sphere of radiGN R*/?, there which is also the total number of random fading coefficients in
are at mostSNR"~® codewords. Consequently, all the othethe channel during blocks.
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VI. CONNECTION TO ERROR EXPONENTS lim Egp(Irlog SNR)

o o . . SNRoo  logSNR dout(r)

The diversity—multiplexing tradeoff is essentially the tradeoff ) ) ) >
between the error probability and the data rate of a communid&: the diversity-multiplexing tradeoff bounds are scaled ver-
tion system. A commonly used approach to study this tradedSiPns of the error exponent bounds, with both the rate and the
for memoryless channels is through the theory of error exp@_(ponent scaled by a factor bf log SNR.
nents [10]. In this section, we will discuss the relation between\while we have not been able to verify this conjecture, we have
our results and the theory of error exponents. shown that if we fix the input distributiopto be i.i.d. Gaussian,

For convenience, we quote some results from [10]. the result is true.
h There is also a similar correspondence between the expur-
gated bound derived in Section IV-C and the expurgated expo-
nent, the definition of which is quoted in the following lemma.

Lemma 9 (Error Exponents)For a memoryless channel wit
transition probability density(y|z), consider block codes with
lengthk and rateR (bit per channel use). The minimum achiev

able error probability has the following bounds: Lemma 11 (Expurgated BoundFor a memoryless channel
random-coding bound: characterized with the transition probability dg]sjig/yu),
P, < —kE,u (R 36 consider block codes with a given lendttand rateR (bits per

i T eXp[ ( )] (36) channel use). The achievable error probability is upper-bounded

sphere-packing bound: by
P. > exp[—k (Eg [R = 01(1)] + 02(1))] (37) _
P, <exp [—k’Eew (R)]

whereo; (1), 02(1) are terms that go t6 ask — oo, and

Eran (E) = 0%1’?%(1 [EO(/)) - pE] where

Ey (R) = sup [Eo(p) - pR] - E..(R) =sup [E.(p) — pR]
p>0

Ey(p) = max, Ey(p, q), where the maximization is taken

over all input distributiong satisfying the input constraint, and = (p) = max, E.(p, ¢), where the maximization is taken over
1+4p all input distributions; satisfying the input constraint, and

Ealp. ) = ~tog [ | [ty oy de] Tyt [ [ )

In the block-fading model considered in Section V, one can 1/p
think of  symbol times as one channel use, with the input super- . [/ Vo(ylz)p(yle') dy dw da’.
symbol of dimensionn x [. In this way, the channel is memo-
ryless, since for each use of the channel an independent realizape conjecture that
tion of H is drawn. One approach to analyze the diversity—mul- E..(Irlog SNR)
tiplexing tradeoff is to calculate the upper and lower bounds on lim

. o o R SNR— 00 log SNR = dexp(r) (38)
the optimal error probability as given in Lemma 9. There are , : i
two difficulties with this approach. for dexp () givenin Theorem 7. Again, we have only been able

to verify this conjecture for the i.i.d. Gaussian input distribution.
» The computation of the error exponents involves optimiza-

tion over all input distributions; a difficult task in general. VII. EVALUATION OF EXISTING SCHEMES

+ Even if the sphere-packing expondiy, (i) can be com-  The diversity—multiplexing tradeoff can be used as a new
puted, it does not give us directly an upper bound on the gierformance metric to compare different schemes. As shown
versity—multiplexing curve. Since we are interested in angy the example of &-by-2 system in Section Ill, the tradeoff
lyzing the error probability for a fixed (actually, we con- curve provides a more complete view of the problem than just
sideredk = 1 for most of the paper), the(1) terms have |ooking at the maximal diversity gain or the maximal spatial
to be computed as well. Thus, while the theory of error exaultiplexing gain.
ponents is catered for characterizing the error probability In this section, we will use the tradeoff curve to evaluate
for large block length:, we are more interested in whatthe performance of several well-known space—time coding
happens for fixed: but at the high-SNR regime. schemes. For each scheme, we will compute the achievable

Because of these difficulties, we took an alternative approagp(ersny—multlplexmg tradeoff curvei(r), and compare it

to study the diversity—multiplexing tradeoff curve, exploitingd2inst the optimal tradeoff cur(r). By doing this, we

the special properties of the multiple-antenna fading chann I§e into consideration both the capability of a scheme to

We, however, conjecture that there is a one-to-one corresp fovide diversity and to exploit the spatial degrees of freedom

dence between our results and the theory of error exponents"?‘va”able' Especially for schemes that were originally designed

according to different design goals (e.g., to maximize the

Conjecture 10: For the multiple-antenna fading channel, thelata rate or minimize the error probability), the tradeoff curve

error exponentsZ,..,(R?), Es,(R) satisfy provides a unified framework to make fair comparisons and
lim E,qn(lrlog SNR) helps us understand the characteristic of a particular scheme

SNR— o0 logSNR da(r) more completely.
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A. Orthogonal Designs to beSNR™"/2. Assume that one poimt, in the constellation is

Orthogonal designs, first used to design space—time coded/fSmitted. Let, be one of the nearest neighbors. From (21),

[3], provide an efficient means to generate codes that achidpg PEP

the full diversity gain. In this section, we will first consider a N [SNR||H||% —r/2
special case withn = 2 transmit antennas, in which case the Pleo —e) =P < 2 SNR <1

orthogonal design is also known as the Alamouti scheme [8].

. —(1—r
In this scheme, two symbols,, z, are transmitted over two =P (IIHII% < SNR™¢ ))
symbol periods through the channel as ~ gNR—mn(1-r)
_ el
Y = SNR H T +W. Now, since for the QAM constellation there are at most four
2 To :1:1 nearest neighbors tey, the overall error event is simply the

The ML receiver performs linear combinations on the receivatpion of these for pairwise error event. Therefore, the error
signals, yielding the equivalent scalar fading channel probability is upper-bounded by four times the PEP, and has the

5 same SNR exponemtn(1l — r).
Y. =\ /% T +w, fori=1,2 (39) Another approach to obtain this upper bound is by using the
K2 2 K (2] ?

_ _ _ _ duality argument developed in Section IV-C. Channel (39) is
where||H|| is the Frobenius norm of. || H||} is chi-square essentially a channel with one transmitp receive antennas,
distributed with dimensiogmn: [ H||% ~ x3,,,. Itis easy to and a block lengtli = 1. Consider the dual system with one
check that for smalt transmit, one receive antenna, and a block ledgthmn. It is

P (||H||2F < 6) ~ €M easy to verify that the random coding bound for the dual system
. : . IS G1,1, mn(mnr) = 1 — r/(mn). Therefore, for the original
In our framework, we view the Alamouti scheme as aninner _, ’ ’ 1
: . : . . ?Xstem, the expurgated exponentsis’; ,,,,,(r) = mn(1 —r).
code to be used in conjunction with an outer code which ge Combining the upper and lower bounds, we conclude
erates the symbols;’s. The rate of the overall code scales 3hat for the Alamouti scheme, the optimal tradeoff curve is
R = rlog SNR (b/symbol). Now for the scalar channel (39), (r) = mn(1 — r)*. This curve is shown in Fig. 7 for
using similar approach as that discussed in Section III-C, nggg;u\j\;itm _ 1 receive aﬁtenna and — 2 receive anténnas
can compute the tradeoff curve for the Alamouti scheme Wi%ith different_block lenathi o '
the best outer code (or, more precisely, the best family of outerFOr the case, — 1 ar?dl.> 2, the Alamouti scheme is op-
chgs). To be. specific, we compu_tg the SNR exponent of tﬁr%al, in the sense that it achieves the optimal tradeoff curve
minimum achievable error probability for chan.nel (39) at rat&*(r) for all r. Therefore, the structure introduced by the Alam-
[k = rlog SNR. To do that, we lower-bound this error probag, i peme  while greatly simplifies the transmitter and re-
bility b)_/ _the outage probability, and upper-bound it by ChOosmtc:’eiver designs, does not lose optimality in terms of the tradeoff.
a %’sﬁg;gozgggﬁofne' realization of the channel maffixe I Inthe case, = 2, however, the Alamouti scheme is in general
yre 9 ' notoptimal: it achieves the maximal diversity gainiaftr = 0,
channel (39) has capacityg(1 + SNR||H||%/2). The outage

event for this channel at a target data r&tes thus defined as but faI_Is bel-ow the op_t|ma_\l for positive values afIn the cas.e
[ = 2, itachieves the first line segment of the lower boyn(");

{H: log [1 n 5NR||H||%} < R} ' for the case thdt> 3, its tradeoff curve is strictly below optimal
2 for any positive value of-.

It follows from Lemma 5 that when outage occurs, there is a The fact that the Alamouti scheme does not achieve the full

significant probability that a detection error occurs; hence, tliegrees of freedom has already been pointed out in [16]; this

outage probability is a lower bound to the error probability witkorresponds in Fig. 7 td(1) = 0. Our results give a stronger

any input, up to the SNR exponent. conclusion: the achieved diversity—multiplexing tradeoff curve
Let R = rlog SNR, the outage probability is suboptimal for all- > 0.
SNR||H||% It is shown in [3], [17] that a “full rate” orthogonal design
Pout(R) =P (10%‘ [1 + > ] R> does not exist for systems with, > 2 transmit antennas. A
SNR| H|=2 full rate design corresponds to the equivalent channel (39), with
=P (1 4 F SNR’") a larger matrixH. Even if such a full rate design exists, the
2 maximal spatial multiplexing gain achieved is just 1, since
=P (||H||% < SN R*(lf"ﬁ) “full rate” essentially means that only one symbol is transmitted
_ Cmn(i_r)t per symbol time. Therefore, the potential of a multiple-antenna
=SNR : channel to support higher degrees of freedom is not fully ex-

That is, for the Alamouti scheme, the tradeoff cumig:) ploited by the orthogonal designs.
is upper-bounded (lower bound on the error probability) bé/
dows (1) = mn(1 — 7). . V-BLAST

To find an upper bound on the error probability, we can use aOrthogonal designs can be viewed as an effort primarily to
guadrature amplitude modulation (QAM) constellation for themaximize the diversity gain. Another well-known scheme that
symbolsez;’s. For each symbol, to have a constellation of sizenainly focuses on maximizing the spatial multiplexing gain is
SNR", with » < 1, we choose the distance between grid pointke vertical Bell Labs space—time architecture (V-BLAST) [4].
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Alamouti Scheme: m=2,n=1,1>=2 substream is decoded, its contribution is subtracted from the re-
' ' ' ceived signal and the second substream is, in turn, demodulated
by nulling out the remaining interference. Suppose for each sub-
stream, a block code of lengtlsymbols is used. With this suc-
cessive nulling and canceling process, the channel is equivalent

to
SNR
Y, =\ — 9,T; +w;, fori=1,...,n (40)
n

wherez;, y,, w; € C' are the transmitted, received signals and
the noise for théth substreany? is the SNR at the output of the
ith decorrelator. Again, we apply an outer code in the inplgt
so that the overall input data raté = rlog SNR (b/symbol),
and compute the tradeoff curve achieved by the best outer code.
This equivalent channel model is not precise since error prop-
agation is ignored. In the V-BLAST system, an erroneous deci-
% 05 1 15 2 sion made in an intermediate stage affects the reliability for the
Spatial Multiplexing Gain: r=R/log SNR successive decisions. However, in the following, we will focus
(@) only on the frame error probability. That is, a frame of length
symbols is said to be successfully decoded only if all the sub-
streams are correctly demodulated; whenever there is error in

N w »
T T
1 '

Diversity Advantage: d

-y
T
!

Alamouti Scheme: m=n=I=2

— Upper Bound any of the stages, the entire frame is said to be in error. To this
~—+ LowerBound | end, (40) suffices to indicate the frame error performance of
—e— Alamouti Scheme V-BLAST

The performance of V-BLAST depends on the order in which
the substreams are detected and the data rates assigned to the
substreams. We will start with the simplest case: the same data
rate is assigned to all substreams; and the receiver detects the
substreams in a prescribed order regardless of the realization of
the channel matrid. In this case, the equivalent channel gains
are chi-square distributeg? ~ x3., with P(g? < €) ~ €2. The
data rates in all substreams de = r/nlog SNR (b/symbol),

w

Diversity Advantage: d
N

e

0 S a‘t’i-:l Mult |§ n Ga.:}-_f’ R 5SNR fori =1, ..., n. Now each substream passes through a scalar
P Hipiexing aain: - r=Hil0g channel with gairy,. Using the same argument for the orthog-
(b) onal designs, it can be seen that an error occurs athhsub-
Alamouti Scheme: m=n=2,I>=3 stream with probability
' [— Optimal Tradeoff PO(SNR) = SNRi-7/m*
o4 —o= Alamouti Scheme | with the first substream having the worst error probability. The
g frame error probabilityP. (SNR) is bounded by
o] n
€3t i
% P{Y(SNR) < P.(SNR) < )~ P(SNR).
i=1
-‘52' Since the upper and lower bounds have the same SNR exponent,
g we have
o, ) N
P.(SNR) = SNR™(=7/m)"

o 05 » 15 > The tradeoff curve achieved by this scheme is tHus =

Spatial Multiplexing Gain: r=R/log SNR (1—r/n)*. The maximal achievable spatial multiplexing gain is
© n, which is the total number of degrees of freedom provided by

the channel. However, the maximal diversity gairl jsvhich

is far below the maximal diversity gain? provided by the

channel. This tradeoff curve is plotted in Fig. 8 under the name

We consider V-BLAST for a square system withitransmit  “V-BLAST(1).”

andn receive antennas. With V-BLAST, the input data is di- We observe that in the above version of V-BLAST, the

vided into independent substreams which are transmitted on diifst stage (detecting the first substream) is the bottleneck

ferent antennas. The receiver first demodulates one of the satage. There are various ways to improve the performance of

streams by nulling out the others with a decorrelator. After thi&BLAST, by improving the reliability at the early stages.

Fig. 7. Tradeoff curves for Alamouti scheme.
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"=+~ Optimal Tradeoff tributed on the surface of the unit spher€ih Itis easy to check
d—©n> | V-BLAST(1) that
y g - - V-BLAST(2)
~ V-BLAST(3
) == ) P(1—(01,0:)° <e) et
= \".\ for small e. The gains of the two possible decorrelators are
e |hil|2(1 = (01, B2)?), i = 1, 2. Given thatl — (6, 65)? < ¢,
8 . with high probability (of ordeil) both gains are small. In other
2 N words
@ .
(]
& P(g2_, <SNR™®) > SNR™ ("~ Do,

o

Consequently, the error probability of this scheme is lower-

bounded by
. P.(SNR) > P~ D(SNR) > SNR™(n=D=r/n),
Spatial Multiplexing Gain r= Rflog(SNR) The upper bound of the tradeoff curer) < (n—1)(1—7/n)

is plotted in Fig. 8 under the name “V-BLAST(2).”

Y "+~ Optimal Tradeoff Another way to improve the performance of V-BLAST is to

O V-BLAST(1) fix the detection order but assign different data rates to different

(0,n) "\ o x:gﬂggg substreams. As proposed in [18], since the first substream passes
* through the most unreliable channgl, (being small with the
/ 3 largest probability), it is desirable to have a lower data rate trans-

mitted by that substream. In our framework, we can in fact opti-
mize the data rate allocation between substreams to get the best
performance. Let the data rate transmitted inithesubstream
ber;log SNR, for: = 1, ..., n. The probability of error for the

ith substream is

P@(SNR) = SNR™—m),

Diversity Gain d’

Now, the overall error probability has an SNR exponent
min;. . >0 4(1 — 7;). The minimization is taken over all the
----------- X . substreams that are actually used, i-e.>> 0. We can choose
Spatial Multiplexing Gain r= R/log(SNR) the values of-;’s to maximize this exponent

Fig. 8. Tradeoff performance of V-BLAST. d(r) - rll,l}.&.t,)in L:I%lgoz(l B TL)]
subject tOiZn =7 r;€0,1]Vi.

Clearly, the order in which the substreams are demodulated i

affects the performance. In [4], it is shown that fixing the sanTehe optimal rate allocation is described as follows.

date rate for each substream, the optimal ordering is to choose

the substream in each stage such that the SNR at the outpuf , ]

of the corresponding decorrelator is maximized. Simulation @ = 9 fori =1,...,n — 1. The tradeoff curve is thus

results in [4] show that a significant gain can be obtained n(l ).

by applying this ordering. Essentially, choosing the order of « Fors € [1/n, 2/n+1/(n — 1)], two substreams are used

Forr < 1/n, only one substream is used. i»g,,= r, and

detection based on the realizationtfchanges the distribution with
of the effective channel gaing in (40). For example, for the
first detected substream, the channel ggiris the maximum n(l=rn) = (n =11 =rn)
gain ofn possible decorrelators, the reliability of detecting this and
substream and hence the entire frame is therefore improved. r=Tn 4 Tn_1.
Since theg,’s are not independent of each other, it is com- Hence,
plicated to characterize the tradeoff curve exactly. However, a
simple lower bound to the error probability can be derived as fol- rn=1/n+(n—-1)/2n—1)(r —1/n)
lows. Assume that for all substreafhs. . ., n, the correcttrans- and
mitted symbols are given to .th'e receiver by a genie, and hence o1 = n)(2n — 1)(r — 1/n).
are canceled. With the remaining two substreams, let the corre-
sponding column vectors il beh, andh,. Write h; = ||h;]|6;, The tradeoff curve is

wheref; € C™ has unit length, foi = 1, 2. §,’s are indepen- 1 nn—1) (1
dent of the norm#h; ||, and are independently isotropically dis- L (2n—1) \n ")
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* Define In this subsection, we assume that eagﬂ is a block of sym-

X bols of length’. In a frame of lengtl, there aré /I’ —m(m—1)

|
-

= k— ' substreams. A frame error occurs when any of these substreams
P L isincorrectly decoded; therefore, the probability of a frame error
is, at high SNR{/l'—m(m—1) times the error probability in each
Let ro = 0. The tradeoff curvei(r) connects points gypstream; and, thus, has the same SNR exponent as the sub-

(ri, n— k) fork = 0,...m. Forr € [ri—1, ri, k sub-  stream error probability.In the following, we will focus on the
streams are used, with ratesatisfyingd~i_, .17 =7 detection of only one substream, denotedas.. . , z,, €C' . In

andd(r) =i(1—rj)fori=n—-k+1,..., n. asquarer x n system, each substream passes through an equiv-
The resulting tradeoff curve is plotted in Fig. 8 adléntchannel as follows:
“V-BLAST(3).” m g, 0 - 07rm
We observe that for all versions of V-BLAST, the achieved | y, SNR | 0 g5 0 2
tradeoff curve is lower than the optimal, especially when the | . | =\/ 7~ | . . - . | tw (42

multiplexing gainr is small. This is because independent sub-

streams are transmitted over different antennas; hence, each sub- "

stream sees only random fading coefficients. Even if we aswherez;, y, € "', andg? is the gain of the nulling decorrelator

sume no interference between substreams, the tradeoff curveged for:rl We first ignore the overhead in D-BLAST and write

justd(r) = n — r. None of the above approaches can reache data rate? as the number of bits transmitted in each use of

above this line. The reliability of V-BLAST is thus limited by the equivalent channel (42).

the lack of coding between substreams. The important difference between (42) and (40), the equiv-
Now to compare V-BLAST with the orthogonal designs, walent channel of V-BLAST, is that here the transmitted sym-

observe from the tradeoff curves in Figs. 7 and 8 that for loibls z,’s belong to the same substream and one can apply an

multiplexing gain, the orthogonal designs yield higher diversityuter code to code over these symbols; in contrastgisein

gain, while for high multiplexing gain, V-BLAST is better. Sim-V-BLAST correspond to independent data streams. The advan-

ilar comparison is also made in [16], where it is pointed ouage of this is that each individual substream passes through all

that comparing to V-BLAST “orthogonal designs are not suithe subchannels; hence, an error in one of the subchannels, pro-

able for very high-rate communications.” Note that we used thected by the code, does not necessarily cause the loss of the

notion of high/low multiplexing gain instead of high/low datastream.

rate. As discussed in Section Il, the multiplexing gain indicates It can be shown thag,’s are independent with distribution

the data rate normalized by the channel capacity as a functigh~ 2., with P(g? < ¢) ~ 2. The tradeoff curve achieved

of SNR. This notion is more appropriate since otherwise comy the optimal outer code can be derived using a similar ap-

paring schemes at a certain data rate may yield different resyteach as the proof of Theorem 2: by deriving a lower bound on

at different SNR levels. the optimal error probability from the outage analysis; and an
upper bound by picking the i.i.d. Gaussian random code as the

While the tradeoff performance of V-BLAST is limited dueto  Given a channel realizatio = H (unknown to the trans-
the independence over space, diagonal BLAST (D-BLAST) [2pitter), the capacity of (42) is
with coding over the signals transmitted on different antennas, NR
promises a higher diversity gain. Z log ( + —g )

In D-BLAST, the input data stream is divided into sub-
streams, each of which is transmitted on different antennas timgqata rater = r log SNR (b/s/Hz), the outage probability for
slots in a diagonal fashion. For example, i & 2 system, the tpis channel is defined as
transmitted signal in matrix form is

BLAST A . ) SNR
0 z§1) :1:§2) P (R)—P<H. Zlog(l—i—Tgi)grlogSNR)

2x1
V2P 2l c¢ @ - SNR
1420 2) < sNR7|
1:[1< += gz> <

=P

Wherezz(.k) denotes the symbols transmitted on ttleantenna
for substreant. The receiver also uses a successive nulling aw ite 9> = SNR™, with a; > 0, we have
canceling process In the above example the rece|ver first es-
tlmatesmg and then estlmates1 by treatmg:z:2 as inter- PBLAST(Ry = P<Z(1 —a)t < T>
ference and nulling it out using a decorrelator. The estimates of out o)
z{" andz{" are then fed to a joint decoder to decode the first 2
substream After decoding the first substream, the receiver can="
cels the contribution of this substream from the received signals fo2 (@) = Ki i

and starts to decode the next substream, etc. Here, an overhe
j'iin practice, the error probability does depend/grchoosing a small value

is reqwred to start the detection process; Correspondlng © thﬁ‘ I’ makes the error propagation more severe; on the other hand, incréasing
symbol in the above example. requires a larger overhead to start the detection process.

s are independent and chi-square distributed, with density

—1 —32/2
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whereK; is a normalizing constant. Now the random variables D-BLAST Tradeoff, m=n

a; = —logg?/logSNR, i = 1, ..., n are also independent; o Sﬂﬁ?:;'mdeom MMSE
hence the pdf oft = [ay, ..., a,]is

fa(z) = H fai ()

> ©o.n?

(1, (-1?)

2

- . SNR™™
= H K;(log SNR)SNR™** exp(— ) .
1=1

The outage probability is thus
PR (R) = [ fula)da

whereA = {a: Y (1 — a;)* < r} corresponds to the outage
event. At high SNR, we have O 1)2)

Diversity Advantage d

(1, n(n-1)/2)

out

n
PBLAST (’l” 10gSNR) = / H SNR—’L'LE& dz. Spatial Multiplexing Gain r=R/log SNR (per symbol period)
A
. . L ! . Fig. 9. Tradeoff curve for D-BLAST.
As SNR — oo, the integral is dominated by the term with the

largest SNR exponent, and _ _
and the component that is perpendicular kg, h;, > =

PBLAST (165 SNR) = SNR™ %t~ () hy — hy)j2. The equivalent channel (42) has channel gains given
with by
N 91 = b2 ~ x3
doui T (r) = inf Z Q. (43) 95 =[lh2||* ~ x5

a: Z(l—(ﬁ)"’ﬁr =1

: _ Note thaf|hq»||* and||h; 12 ||? are exponentially distributed.
W|tr:lérgissTame_argument asbLem dmaS,r:t can .be SlhOVrV‘F‘ thaglmSWever, in D-BLAST, the term ok, |z, is discarded by the

cur(;/e fcf’ut (77) IS an upépero our? 0?] ¢ E opémz)a a.ck!evahﬁulling process, and the symhl passes through an equivalent

tradeoff curve in D-BLAST. On the other hand, by picking the, - oo \with gairg; = |lh112]|. Consequently, the received

nals from each substream depend only on three independent

input to be the i.i.d. Gaussian random code and using a simi
ing coefficients, and the maximal diversity for the nulling

approach as in Section IlI-C, one can show that/for n, the fad

diversity achieved at any Spatial multiplexing gairs giV(_an by D-BLAST in this case is juss. In a generah x n system, the
dBLAST (1), Therefore, the optimal tradeoff curve achieved onmponent off in n(n — 1)/2 dimensions is nulled out, and

out
D-BLAST is the maximal diversity is only.(n + 1)/2.
dBLAST(r> :dBLAST(r) Since nulling causes the degradation of diversity, it is
out natural to replace the nulling step with a linear minimum
as given in (43). mean-square error (MMSE) receiver. The equivalent channel

The optimization (43) can be explicity solved. Fof®" MMSE D-BLAST is of the same form as in (42), except
that the channel gaing;’s are changed. Denote the channel

k=0, ..., n,the minimizinga* forr € [n —k—1, n — k] is : S : )

af=1fori=1,...,n—k—1a% , =r—(n—k—1),and gains for the original nulling D-BLAST ag, and for
a; —0fori > n _ k. The resultir;lgtradeoﬁ curvgBLAST (5 MMSE D-BLAST asg;"™*¢. It turns out the MMSE D-BLAST
cénnects po_ints(n ~k k(k 4+ 1)/2) fork = 0,...,n achieves the entire optimal tradeoff cudigr). This is a direct

dBLAST (1) is plotted in Fig. 9, and compared to the'(;pti'maq:onsequence of the fact that given any realizatiorHgfthe

tradeoff curve. We observe that the tradeoff of D-BLAST jdutual information of the channel is achieved by successive
strictly suboptimal for all. In particular, while it can reach ¢@ncellation and MMSE receivers [19]

the maximal spatial multiplexing gain at= n, the maximal - ) mse

diversity gain one can get at= 0 is justn(n + 1)/2, out ofn? I(X;Y) = Z log (1 + gi™™™) -

provided by the channel. k=1

The reason for this loss of diversity is illustrated in the folT herefore, the optimal outage performance can be achieved,
lowing example. i.e., the SNR exponent of the outage probability for the MMSE

D-BLAST matchesd,,(r) defined in Theorem 4. Now using

Example: D-BLAST faix2 System: Consider &x2 system, - the same argument which proved Theorem 2, it can be shown
for which the channel matrix is denotedHs= [h1, h.], where ¢ for) > 25, — 1, with the i.i.d. Gaussian random code, the

h; € C? ha_s i.i.d.C._/\/'(O_./ 1) entries. Decomposk; into the optimal tradeoff curvel* (r) = dou, () is achieved.
component in the direction df, The difference in performance between the decorrelator and
h (hy, ho) the MMSE receiver is quite surprising, since in the high-SNR
12 = E 2 regime, one would expect that they have similar performance.
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What causes the difference in performance? ForRthe2 ex- APPENDIX
ample, the equivalent channel gains for the MMSE D-BLAST PROOF OFTHEOREM 4
are From (11), we only need to prove
(g7 = ol + el renRy2 [T sNR-tmnee.
1 SNR[[ha|[2 + 1 (SNR)= |, Hl
mmse\2 __ 2 _ (,dec\2 =
(92 ) _||h2|| - (92 ) . .H(SNR—OM' _SNR_aj)2dOé
An explicit calculation shows that at high SNR, therginal i<jd
distributions of the gainsgdec and g™ are asymptotically = GNR ™ eut(r)
the same, for each stage The difference is in theistatis- where
tical dependencyunder the MMSE receiver, the gaigg™ o min{m.n}
andgy™s¢ from the two stages amegativelycorrelated; under dout (1) = alélfv Z (2i = 14 [m = n[)a;
the decorrelator, the gaig“c andgge° areindependentThe i=1
gaingy™ is small when the channel gaky from the second @nd

tbransmn ar_1tenna|s small, bgtmthatcase thelqterfergnce causgd_ /. Q1> > mingmn} > 0, Z (1—a;)t < T}.
y transmit antenna 2 during the demodulationzgfis also ;

weak. The MMSE receiver takes advantage of that weak int@s before, we can assume without loss of generality n
ference in demodulating; in stage 1. The decorrelator, on the e first derive an upper bound di(SNR). Consider
other hand, is insensitive to tiserengthof the interference as it F(SNR) < F(SNR)
simply nulls out thalirectionoccupied by the signal. Combined - n
with coding across the two transmit antennas, the negative cor- e / H SNR—(Im—nl+Da; H (SNR™% — 0)% da
relation of the channel gains in the two stages provides more A

i<j
diversity in MMSE D-BLAST than in decorrelating D-BLAST. o S
. . . . — SNR (lm—n|+2i—1)a; da
The preceding results are derived by ignoring the overhead Ja H
that is required to start the D-BLAST processing. With the over- !
head, the actual achieved data rate is decreased, therefore, both = / SNR™(®) do

the nulling and MMSE D-BLAST do not achieve the optimal
where
tradeoff curve.
In summary, for the examples shown in this section, we ob- /() = > filai) = (Im—n|+2i = Da,.
serve that the tradeoff curve is powerful enough to distinguish . i i
the performance of schemes, even with quite subtle variatioPsE:‘nOtea e
Therefore, it can serve as a good performance metric in com- F(SNR) = SNR™/(*")
paring existing schemes and designing new schemes for nthat is,
tiple-antenna channels. It should be noted that other than for log F(SNR)
the2 x 1 channel (for which the Alamouti scheme is optimal), lim —2Z W) —fla®). (44)
there is no explicitly constructed coding scheme that achieves SNR—oo  log SNR
the optimal tradeoff curve faanyr > 0. This remains an open  To see that, first lef = [0, mn]™ and consider

roblem. _
P F(SNR)g/ SNR_f(“)da+/ SNR™7(™) doy
ANl ¢

= arginf 4 f(a), we claim

< vol[A’ N I]SNR=F(e) +/ [T SNR7() da.
VIIl. CONCLUSION Ie =1
(45)

Earlier research on multiantenna coding schemes has focubedthe second term, sinee ¢ [0, mn]™, we must havey; >
either on extracting the maximal diversity gain or the maximahn for some;. Without loss of generality, we assume > mn.
spatial multiplexing gain of a channel. In this paper, we preseNbw
a new point of view that bqth types of gain can, in fact, b ° SNR=F11) go, < /°° gNR-(Im=nl+DmngNR=F1(1) 4
simultaneously achievable in a given channel, but there is/a, 0
tradeoff between them. The diversity—multiplexing tradeoff < ESNR™™™
achievable by a scheme is a more fundamental measure of ihs B . - .
performance than just its maximal diversity gain or its maximjiooeret Ty, andk is a finite constant. Also notice
multiplexing gain alone. We give a simple characterizati SNR™dt < oo, we have
of the optimal diversity-multiplexing tradeoff achievable by ~ F(SNR) < vol[I]SNR~/(*")
any scheme and use it to evaluate the performance of many n oo
existing schemes. Our framework is useful for evaluating and + ESNR™™" H / SNR™1(2) da;
comparing existing schemes as well as providing insights for _ i=2 70
designing new schemes. < SNR™F(@7),
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To find a lower bound o (SNR), note thatf(«) is contin-
uous, therefore, for any > 0, there exists a neighborhoddf
a*, within which f(a) > f(a*) + 6. Now

F(SNR) > /

JINA' )
= vol[I N AJSNR™(F(e)+8),

SNR=((@)+8) 4,

SinceF(SNR) > SNR™F(@)+® for anys > 0, we have
F(SNR) > SNR™/(=")

which proves (44).

Equation (44) says asSNR — oo, the integral

JASNR™/) do is dominated by the term corresponding

to the minimum SNR exponeSNR~7(®"). The proof of (44)
is, in fact, a special case of tHeaplace’s methodwhich is

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003

Combining the upper and lower bound, we have the desired

(1]
(2]

result.
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