
November 4, 2010 
 
 

Slides by Y. Richard Yang 
Presented by Leo Chen 

 

1 

Richard Alimi, Y. Richard Yang, Leo Chen, Harry Liu, David Zhang, Zhihui Lv, 

Zhigang Huang, Haibin Song, Xiaohui Chen, Ye Wang, Akbar Rahman,  

David Bryan, Lili Qiu, Yin Zhang 

Slides presented at CoXNet Workshop, Beijing, China, Nov. 2010. 



 Increasing content availability 
◦ Both user generated and publisher generated 

contents 

 

 Increasing consumption of content 
◦ E.g., Akamai estimates: 1,296 Tbps [Akami] 

2 



 Potential bottlenecks at  
◦ the uploader last (first) mile and/or 

  

◦ the middle mile 

 

 Solution 
◦ Replication/service capability inside the networks 

3 



 IP multicast 
◦ Lacking in global deployment  

 

 CDN 
◦ Closed systems with limited scopes 

 

 P2P cache 
◦ Application specific 

4 



5 

In-network storage/BW accounts, 

offered by multiple providers, 

accessible using a standard 

protocol, under application explicit 

control, to provide efficient content 

distribution. 



 A provider of data lockers is called a 
Content Delivery Storage Provider (CSP) 

 An CSP can be an ISP, or a third party (e.g., 
cloud storage provider) 

CSP 1 CSP 2 CSP 3 

6 



7 



8 



 Control 
◦ Content search/index & composition/authorization 

◦ Replication and request routing 

 Scaling, Efficiency (e.g., Proximity), Load Balancing and 
Reliability 

 

 Data 
◦ Storage/transport 

9 



“Weak” Coupling: 

Separation of Control 

and Data.   

“Strong” Coupling: 

Tight integration 

of Control 

functions into  

in-network storage. 

A potential extreme is virtual machines.  

Not considered for now. 

10 



 The data-locker decouples control functions 
out of data  functions as much as possible 
◦ Decoupled Control and Data Enroute (DeCaDE) 

 

 Control functions implemented either by 
applications or separate control protocols 

11 



12 

Reduce production 
complexity and provide 
open access 

Integrate with 
application policies 

Standard 
Protocol(s) 

Control Protocols 

Storage 



13 

Storage S
a 

P2P Control 

Storage S
b 

Client A 

Client B Client A 

Client B 

P2P Data 

P2P Control 

Native P2P Clients 

Data Locker-enabled P2P Clients 

P2P Data (alternative) 



14 

Storage S
a 

(4
) 

Storage S
c 

Source Client A 

Client B 

Client C 

  Control 

Data 



 Low network efficiency, in particular last mile 
◦ Upload from data locker account of a client, instead 

of client last mile 

 

 Instability due to high churns 
◦ Upload from data locker account of a client, even 

when client goes offline 

 

 

1

5 



16 

Content Publisher 

Client A Client B Client C 

Control 

Storage S
a Storage S

c 

Data 



 Separates the storage/bandwidth intensive 
(data) functions from the processing intensive 
(control) functions 
◦ Flexible/open/evolvable control platforms 
◦ Shared data infrastructure 

 
 Decoupled architecture is not new, e.g., 
◦ openflow 
◦ Google File System (GFS) 

17 



18 



 Data naming is an important problem 
   "There are only two hard problems in Computer 
Science:   
     cache invalidation and naming things."  
                                       -- Phil Karlton 

 There are many naming models, 
◦ E.g, Filename, URL, attribute, DONA 

 Key assumption 
◦ Content distribution deals with immutable data 

 For immutable data, no need to separate 
identifier and content 

 Design: 
◦ Each account at a server provides a key-value store with 

self-certifying keys 
◦ ID=Key: <Hash_of_DataBlock> 
◦ Value: <DataBlock> 

19 



20 

 A basic data command primitive is to indicate 
a data path 

Storage 
Server S 

C 

<src>  

  S  

    <dst>  



 The data path primitive from Client C to server S 
specifies 

 <data id>, 

 a <src>, 

 an account on S <S:account>, and 

 a <dst>. 

◦ Interpretation 
 If <src> is null: it is a pure read to transfer data from <S:account> to <dst> 

 If <dst> is null: it is a pure write to store data from <src> to <S:account> 

 Otherwise, it is a distribution pipeline from <src> to <S:account> to <dst> 

11/18/2010 DECADE/IETF79 21 



11/18/2010 DECADE/IETF79 22 

P1 

Storage 
Server A 

3 

4 

7 

6 

8 

5 

Distribution Request: 
data: D1  
pivot account: B:P2 
src: Token T1 
dst: P2 

Storage 
Server B 

P2 
Request data D1 

Response w/ Token T1 allowing accessing  
Data D1 

Get Object D1 using 
TokenT1 

Return Data D1 

- Client P1 has account on A 

- Client P2 has account on B 

P1 puts  

D1 in A 

1 
P2 learns 

that P1 

has D1 

2 



 if (no data across the server for <data id>)  
    server S gets data from <src>;  
 else 
     if (<src> is an account on same S) 
                             // local deduplication 
        link data, and ack succ else 
     else  
                             // remote BW deduplication 
       sends challenge for verification  

23 

Note: Could move dedup out to app, but then fully 

implementing dedup requires cross application/session 

synchronization. Also, hood for content checking. <src> 

can be protected, can also be chained. 



24 



25 

Topology   

Management 

Chunk  

(Data) 

Scheduling 

Who connects to whom? 

Who serves whom at what rates? Includes 
- A downloader requests from which uploaders 
- An uploader serves which downloaders at what 
rates 

We can consider both components as conducting resource control  

on resources, including  

• connection slots 

• upload/download bandwidth 

• storage capability 



 Because BW resource control is fundamental 
for  
◦ Robustness against selfish behaviors 

◦ Robustness against attacks 

◦ Construction of efficient flow distribution patterns 
(in particular for streaming) 

26 



 The flow patterns depend on application types 
and can be the key “secret sauce” of different 
designers 

 For live streaming 
◦ Assume that each peer u allocates capacity Cuv to a 

connected neighbor v 

 We call Cuv the link capacity of the link u to v 

◦ Constraints that {Cuv} should satisfy: 

 Quota: sum of Cuv over all neighbors {v} of u should be less 
than the upload capacity of u 

 Flow Pattern: For any peer p, the maximum flow (minimum 
cut) from source s to destination peer p, under link capacity 
constraints, should be at least the streaming rate R 

27 



 A hierarchical, weighted 
resource partitioning scheme 
◦ Each user is assigned a weight by 

the data locker provider 

◦ A user configures weight 
assigned to each concurrent 
application 

◦ Each application controls the 
partition of resource among 
open connections 



29 



30 

Client 

Resource Server 

Resource Server 

Resource Model 

Efficiency 

Optimization Resource 

Accounts 

Resource Access 

Protocol 

Application/Sailor 

Integration 

Resource Server 

Resource Server 

Resource Access 

Protocol 



DECADE Server DECADE Server 

DECADE-enabled P2P 

Client 

DECADE Client 

P2P App 

DECADE-enabled P2P 

Client 

DECADE Client 

P2P App 

11/18/2010 31 
11/18/2010 31 DECADE/IETF79 

DECADE 

Protocol 

P2P Protocols  

DECADE 

Protocol 

DECADE Protocol 



11/18/2010 DECADE/IETF79 32 

Network Access 

Buffer 
Connected 

Peers 

Peer 

Manager 

Buffer 

Map 

Exchanger 

In-network Storage enabled PPNG Client 

Token Generator 

Generate Token 

Upload 

Scheduler 

Download 

Scheduler 

In-network 

Distribution  

Primitive 

Native 

Transport 

Download 



11/18/2010 DECADE/IETF79 33 

Client 

Storage Access 

Read/Write/Distribute 

Objects 
Using Distribution 

Primitive 

Token Generator 

Generate Token 

Vuze Client 

Network Access 

Download 

Manager 

Upload Manager 

Plug-in      

API 

Redirector 

DECADE 

Client Peer Manager 



11/18/2010 DECADE/IETF79 34 

Data locker 1Plugin 1 Plugin 2

BT_HandShake

Vuze HandShake

BT_BitField

Distribution(Locker 2-> Locker 1 -> Client 1)

Data

BT_Request

Redirect

Vuze Client 1 Vuze Client 2

BT_Piece

Data locker 2

Read

 Data

intercept the 

message



 For performance comparison of Native and 
using Data Lockers, always consider two 
scenarios with the same amount of total 
network bandwidth resource 

 

 Evaluation on both file sharing and live 
streaming 

35 



11/18/2010 DECADE/IETF79 36 

Storage 

Server

PPNG 

Client

PPNG 

Client

PPNG 

Client
P2P Client PPNG 

Client

PPNG 

Client

PPNG 

Client
P2P Client

Test Controller

Planetlab

Amazon EC2

Yale lab
Tracker

Storage 

Server

Source 

Server



37 



 Note: The same total number of Vuze clients; but some Native Vuze clients could 
not finish downloading; the total download traffic of Native is lower 

38 

Native Vuze Data Locker Vuze 



39 

Native Vuze Data Locker Vuze 



Native All One ISP 

only 
40 



41 

0.65 

0.88 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Native Data Locker

Application Performance 
(Resource Efficiency) 

Implication: 
 
Speed up 
= (0.88-0.65)/0.65 
= 35%  



 Statistical multiplexing gain 

 

 Server deduplication to change the location of 
bottleneck 

 

 Decoupled faster control cycle to speedup 
distribution 
◦ Not implemented by current prototype 

42 



Improvement with  
In-network Storage 

Client upload volume 430 MB → 12 MB 

 

System resource 

efficiency* 

65% → 88%  
(35% speedup) 

 

11/18/2010 DECADE/IETF79 43 

*System resource efficiency: fraction of total available upload capacity 

used 

 



44 



Improvement with  
In-network Storage 

Startup delay At 80-percentile: reduced to 1/3 
when no storage 
 

Piece lost rate About the same, at  0.02% 
 

Average # of 
freezes 

Reduced to 2/3 when no storage 

11/18/2010 DECADE/IETF79 45 



 Storage Model 
◦ key-value store with self-certifying keys 

 Read/Write 
◦ [RWDirect] with deduplication 

 Resource Management 
◦ Work-conserving proportional allocation 

46 



 Presented preliminary design 

 

 Pursuing the direction in IETF DECADE 
Working Group 

 

 Participation welcome! 

47 



48 

Backup Slides 



 Poor documentation, ongoing protocol 
changes and rapid introduction of new 
features make P2P protocol support in 
caching system a constantly moving target. 
 
                     -- PeerApp  



 Initially motivated by P2P CDN 
◦ Advantages 

 Highly-scalable 

 Robust 

 Space for innovation 

 Many novel techniques 

 Many players with novel ideas 

◦ Problems 

 Low network efficiency 

 High churns 

50 



 [Use Case II: Global CDN by Aggregation; CDI] Can an 
aggregator build an Akamai-like global CDN utilizing multiple 
CSPs? 

 

 

 

 

 

 

 

 

 [Use Case III Video conference (i.e., UGC)] 

◦ Can a video conferencing application (e.g., iPhone video) 
utilize CSPs to distribute video from one participant to 
multiple other participants?) 

CSP 1 CSP 2 CSP 3 

Aggregato

r 
Sourc

e 

11/18/2010 51 



 Q: How to write into CSP? 
 [DirectWrite] 

 Client writes into specific 
CSP server (cluster) store 
 Still allow DNS to direct 

to preferred server by CSP 

 Clients provide replication/ 
request routing 

 [IndirectWrite] 
 [RW-IndirectPull] 

 Client maintains a source 
 Publishes source location to CSP 

 CSP provides internal caching,  
replication and request routing  
among internal caches 

 CSP pulls from source when 
source data first requested 

 [RW-IndirectStaging] 
 Variation of [RW-Pull], client uploads  

to a staging service 

Locker 

Servers 

Client1 

52 



 Account holder can list keys in its own 
account, delete keys; keys have expiration 
time 
 

 Not provided: listing of content at 
aggregation levels (management can have so) 
◦ Distributed indexing implement by Application 
◦ [Considering the possibility of Special account (e.g., 

public account)] 

53 



 P2P systems depend on user contributions 
 

 Non-contributing users can be a serious 
problem  
◦ 70% of Gnutella users share no files and nearly 50% of 

all responses are returned by the top 1% of sharing 
hosts 
 

 BW resource control is a major mechanism to 
design incentives and handle selfish behaviors 
◦ BitTorrent Tit-for-Tat 

 Attacked by BitTyrant 
◦ Provable Proportional Sharing [STOC’07; SIGCOMM’08] 

54 



 A recent study [IMC’08] showed how to attack 
the Akamai streaming servers due to sharing 
of server bandwidth but no isolation 

 
◦ “We demonstrate that it is possible to impact 

arbitrary customers’ streams in arbitrary network 
regions …” [IMC’08] 

55 



DECADE 

server

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

DECADE plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

DECADE plugin

DECADE 

server

Remote 

controller

Planetlab

Amazon EC2

Yale lab
Vuze client with 

DECADE plugin
HTTP 

Server

PL 

manager
Tracker

 Remote controller cannot control Vuze clients to seed, so 

we use one Vuze client at Yale for seeding  

 Tracker: Vuze client provides tracker capability, so we 

don’t deploy our own tracker 

• DECADE server 

 

• Vuze client: 

Open source P2P 

clients that can seed 

and/or download  

 

• Decade plugin: 

Plugin to support 

DECADE function for 

Vuze.   

 

• Remote controller: 

Shows all Vuze clients 

in UI and controls them 

to download the 

specific BitTorrent file, 

collects statistic data 

from Vuze clients. 



 Settings 
◦ 70 peers 

◦ Native: Peer Upload Capacity: 40 KBps  

◦ Data locker: Server Capacity: 40 KBps * 70  

 

 Performance metrics 
◦ Client upload bandwidth 

◦ System resource efficiency: fraction of total network 
BW used 

57 



Hardware Environment Software Environment 

DECADE 

server 

Server in EC2 Ubuntu 

DECADE server software version 

HTTP server Server at Yale Windows 2003 Server 

Tomcat  

Tracker server Server at Yale 

 

Windows 2003 Server 

Vuze client 

Vuze client 

with DECADE 

plugin 

Download clients: Virtual machine 

at Planetlab 

Seed client: at Yale 

Vuze client for Windows & Linux 

JRE 1.6 

DECADE plugin software version 

Remote 

controller 

Server at Yale Windows 2003 server 

JRE 1.6 

Remote controller software version 

11/18/2010 58 



Test steps: 

1. The Vuze client at Yale seeds 

2. Manually upload the BitTorrent file to HTTP server 

3. Remote controller starts up Vuze clients in PlanetLab 

4. Vuze clients at Planetlab fetch BitTorrent file from HTTP server  

5. Vuze clients at PlanetLab receives peer list from tracker server 

6. Vuze clients at PlanetLab network send BT_Request to peers and get BT_Piece message from peers 

7. All Vuze clients report statistics to remote controller 

Precondition: 

 Start remote controller 

and all Vuze clients 

 

 Vuze clients register 

with remote controller; 

remote controller 

assigns the IP address 

of decade server 

11/18/2010 59 

DECADE 

server

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

DECADE plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

DECADE plugin

DECADE 

server

Remote 

controller

Planetlab

EC2

Yale lab
Vuze client with 

DECADE plugin

Tracker 

Server
HTTP 

Server

(7)(3)

(2)

(6) (4)
(5)

(1)



Test steps: 

1. The Vuze client at Yale seeds 

2. Manually upload the BitTorrent file to HTTP server 

3. Remote controller starts up Vuze clients at PlanetLab 

4. Vuze clients at Planetlab fetch BitTorrent file from HTTP server  

5. Vuze clients at PlanetLab receives peer list from tracker server 

6. Vuze clients at PlanetLab send BT_request to peers and get Redirect messages 

7. Vuze clients at PlanetLab download objects from DECADE servers 

8. All Vuze clients report statistics to remote controller 

Precondition: 

 Create DECADE 

server instances at 

EC2 

 The rest is the same 

as Vuze/Native 

11/18/2010 60 

DECADE 

server

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

DECADE plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

Decade plugin

Vuze client with 

DECADE plugin

DECADE 

server

Remote 

controller

Yale lab
Vuze client with 

DECADE plugin
Tracker HTTP 

Server

(1)

(8)(3)

(2)

(6) (4)
(5)

(7)

(7)

Planetlab

Amazon EC2



61 

DECADE 

Server

PPNG 

Client

PPNG 

Client

PPNG 

Client

PPNG 

Client PPNG 

Client

PPNG 

Client

PPNG 

Client

PPNG 

Client

Trial 

Controller

Planetlab

EC2

Yale lab

Source

Tracker
Browser To 

Display Result

DECADE 

Server
PPNG 

Manager

Google App Engine

Streaming 

Files

11/18/2010 



 Streaming Rate: 40 KBps 

 Source Capacity: 200 KBps 

 [Native] Peer upload capacity: 64 KBps  

 [Data locker] Servers 
◦ 5 servers at different Amazon EC2 locations 

◦ Each server has capacity: 51.2 Mbps  

◦ P4P/ALTO Map to assign clients to close-by Data 
Locker servers 

62 



Components Platform Software 

Decade Server • Run in EC2, (US East, US West, 
EU, and Asia Pacific) 
• EC2 images 

• OS: Ubuntu 10.04 
• 3-party lib 
• EC2 control scripts 

PPNG Client • Run at PlanetLab  • PPNG Client 
• DECADE Client lib 
• 3-party lib  

Tracker • Run at Yale • PPNG original tracker 

Source  • Run at Yale • PPNG  original source 
• DECADE integration 

Trial Controller • Run at Yale • Experiment control scripts 
• Log collecting scripts 

Media Player Server Run in PPNG Client • Integrated in PPNG Client 

GoogleMap Webpage Run at Yale • Google Map API 
• Runtime scripts 

Online Statistic Run at GoogleApp Engine • Client log reporter 
• Log server 

63 11/18/2010 



cdn-source cdn-add-piece 

dec-put 

http 

Current version, only source explicitly put data into Data Locker  

is legacy PPNG blocks 

is DECADE blocks 

11/18/2010 64 



peer-encode dec-download-

subpiece 
pp-encode udp-sender 

11/18/2010 65 

If the message is a legacy subpiece 

request, and if dst is a DECADE peer 

change it to DECADE request 



peer-decode 
dec-peer-

decode 

dec-response-

constructor 

dec-peer-

encode 
peer-encode 

If is a DECADE request 

dec-get 
recv-subpiece 

Legacy PPNG 

Blocks 

If is a DECADE response 

Otherwise 

Get data from Data 

Locker 

11/18/2010 66 



 Client a with locker La needs to select peers 

 Consider peer b 
◦ Let C0a,b be the cost from a to b 

 Three cases 
◦ If b is a legacy peer 

  Ca,b = C0a,b 

◦ else if (b supports DL but no locker) 

 Cab = C0La,b 
◦ else // b supports DL and has locker Lb 

 Cab = C0La,Lb 



68 


