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Introduction. A major recent development in computer networking is the notion of Software-Defined Networking
(SDN), which allows a network to customize its behaviors through centralized policies at a conceptually centralized
network controller. In particular, Openflow [4] has made significant progress by establishing (1) flow tables as a
standard data-plane abstraction for distributed switches, (2) a protocol for the centralized controller to install forwarding
rules and query state at switches, and (3) a protocol for a switch to forward to the controller packets not matching any
rules in its switch-local forwarding table. This progress has provided critical components in realizing the vision that
a network operator configures a network by writing a simple, centralized network control program, with a global
view of network state, thus decoupling the program from the complexities of managing distributed state. We refer
to the programming of the centralized controller as SDN programming, and a network operator who conducts SDN
programming as an SDN programmer, or just a programmer.

A critical component in realizing the full benefits of SDN is the SDN programming model, through which a pro-
grammer defines its network behaviors. Existing programming models require either explicit or restricted declarative
specification of flow patterns, introducing a major source of complexity in SDN programming.

In this project, we explore an SDN programming model that enables an SDN programmer to apply a high-level
algorithmic approach to define network-wide forwarding behaviors of network flows. Specifically, the programmer
simply defines a function f , expressed in a general-purpose, high-level programming language, which the centralized
controller conceptually runs on every packet entering the network. When designing the function f , the programmer
does not need to adapt to a new programming model but uses a standard programming language to design arbitrary
algorithms to classify input packets and return a network-wide forwarding path describing how each packet should be
forwarded to organize traffic. We refer to this model as SDN programming of algorithmic policies. We emphasize
that algorithmic policies and declarative policies do not exclude each other. Our system supports both, but this paper
focuses on algorithmic policies.

A Motivating Example. To motivate and illustrate the programming of an algorithmic policy, consider a network
whose simple policy consists of two parts. First, a security policy: TCP flows with port 22 should use a secure path;
otherwise, the default shortest path is used. Using the notion of algorithmic policy, an SDN programmer defines a
program f that will be conceptually invoked on every packet pkt:

def f():
(srcSw,srcPrt) = hostLocation(eth_src())
(dstSw,dstPrt) = hostLocation(eth_dst())
if tcp_dst_port_equals(22):
return securePath(srcSw,srcPrt,dstSw,dstPrt)

else:
return shortestPath(srcSw,srcPrt,dstSw,dstPrt)

This algorithm, and the program expressing it, are simple and intuitive. The programmer does not think about
or introduce switch forwarding table rules—it is the responsibility of the programming framework to derive those
automatically. In particular, neither the securePath nor the shortestPath functions specify details such as the
match conditions or priorities to use in Openflow rules. Such automation and abstraction provide many additional
advantages such as SDN program correctness, performance and stability. For example, the network may have mixed
Openflow and traditional routers; or the network may support only source routing. All these will be transparent to the
programmer.

In contrast, current mainstream SDN programming models (e.g., NOX [3]) require that programmers explicitly
introduce forwarding rules, considering issues such as match granularity, priority levels, and rule overlaps. One might
assume that the recent development of declarative SDN programming may help. For example, Frenetic [2] introduces
higher-level abstractions including restricted declarative queries and policies as means for programmers to introduce
switch-local flow rules. But such approaches require that a programmer extract decision conditions (e.g., conditional
and loop conditions) from an algorithm and express them declaratively. This may lead to easier composition and
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construction of flow tables, but it still places the burden on the programmer to think along a specific structure, leading
to errors, restrictions, and/or redundancies.

Key Challenge. Our approach provides SDN programmers with a simple and flexible conceptual model. But it may
come at the expense of performance bottlenecks, if naively implemented. Conceptually, in this model, f is invoked
on every packet, leading to a serious computational bottleneck at the controller; that is, the controller may not have
sufficient computational capacity to invoke f on every packet. Also, even if one is able to scale up the computational
capacity, the bandwidth demand due to every packet going through the controller may not be practical to be satisfied.
These bottlenecks are in addition to the extra latency of forwarding all packets to the controller for processing [1].

Rather than giving up the simplicity, flexibility, and expressive power of our high-level programming model, we
introduce the design and implementation of novel techniques to address the aforementioned performance challenges.
As a result, SDN programmers can enjoy simple, intuitive SDN programming, and at the same time achieve high
performance and scalability.

Novel Techniques. Our approach consists of three novel techniques.
• First, we develop a novel SDN dynamic optimizer that derives forwarding tables at distributed switches from generic

running control programs. Specifically, the optimizer develops a data structure called a trace tree that is based on the
simple observation that when the programmer-supplied algorithm policy function f is invoked on a specific packet,
the outcome can often be generalized and be applicable to a set of packets. As an example, f may have examined
only one specific field of the packet and hence the output will be the same for other packets with the same value
of the field. A trace tree captures the reusability of previous computations and hence can substantially reduce the
number of times that f will be invoked, reducing computational demand, especially when f is expensive.

• The construction of trace trees transforms arbitrary algorithms into a data structure that captures only the essential
information and hence leads to our second technique, policy distribution, which is a technique for the generation
and distribution of switch-local forwarding rules, totally transparent to SDN programmers. By pushing computation
to distributed switches, we significantly reduce the load on the controller as well as the latency. In particular, our
policy distribution algorithm realizes several novel optimizations, in particular (1) minimization of the number of
rules and priority levels in forwarding tables of individual switches; and (2) scalable, network-wide optimization of
forwarding tables, instead of traditional algorithms focusing on individual switch forwarding tables.

• Third, we introduce a scalable run-time scheduler that complements our optimizer. When flow patterns are inherently
non-localized, f may need to be invoked on the central controller many times. Our multi-core SDN scheduler
provides substantial horizontal scalability.

Initial Evaluation Results. We have proved the correctness of our key optimizations, developed a complete implemen-
tation of all techniques, and evaluated our system through stressing benchmarks. For example, using real HP switches,
our dynamic optimizer reduces TCP connection time by a factor of 100 at high load. In addition, our scheduler scales
linearly to 40+ cores, achieving a throughput of over 19 million simulated new flow requests per second on a single
machine, with 95-percentile latency under 10 ms; At 10 million requests per second rate, the 99-percentile latency is
only 0.5 ms.
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