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Abstract—We describe a novel approach to curve inference based on
curvature information. The inference procedure is divided into two
stages: a trace inference stage, to which this paper is devoted, and a
curve synthesis stage, which will be treated in a separate paper. It is
shown that recovery of the trace of a curve requires estimating local
models for the curve at the same time, and that tangent and curvature
information are sufficient. These make it possible to specify powerful
constraints between estimated tangents to a curve, in terms of a neigh-
borhood relationship called cocircularity and between curvature esti-
mates, in terms of a curvature consistency relation. Because all curve
information is quantized, special care must be taken to obtain accurate
estimates of trace points, tangents and curvatures. This issue is ad-
dressed specifically by the introduction of a smoothness constraint and
a maximum curvature constraint. The procedure is applied to two types
of images, artificial images designed to evaluate curvature and noise
sensitivity, and natural images.

Index Terms—Consistency relationship, curve detection, trace infer-
ence.

I. INTRODUCTION

URVES arise from the projection of various kinds of

structure in the visual world, such as occluding con-
tours of objects, curvature extrema in surfaces, and dis-
continuities in surface coverings and lighting. But curves
are not directly observable in images; rather, curves are
abstract entities (mappings) and images consist only of
intensities. All that is observable in images is information
about the trace of curves, or information about the set of
image locations through which the (projected) curve
passes. The curve must then be inferred from this infor-
mation. In this paper, we formulate such an inference pro-
cess in terms of traces, tangents, and curvatures, and de-
velop consistency relationships between them. The
specific result is a procedure for inferring the trace by
minimizing a natural functional.

The formation of images of curves is a forward prob-
lem, and is well posed. The inverse problem—the infer-
ence of curves from images—is underconstrained, how-
ever, since information is lost during the imaging process.
Additional constraints must be found, and we seek them
through an analysis of the discrete nature of the problem.
We show, in particular, how discretized versions of stan-
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dard notions from differential geometry lead naturally to
smoothness constraints, and how quantization leads to
minimization as a method for using these constraints.

Our approach differs from others in two fundamental
ways. First, the standard approach to inferring curves as-
sumes that the trace points are known. In spline interpo-
lation, for example, a collection of points is given, and
polynomial values are sought between them [24]. In our
formulation, however, the trace points must also be de-
termined. If images were purely binary, with dark points
corresponding to trace points, and with adjacent trace
points on the curve adjacent in the image, then trace in-
ferencing would be straightforward. But images contain
structure other than the raw traces, so that a preliminary
problem—the inference (or separation) of the trace from
other image structure—must be solved as well. We there-
fore separate the curve inference process into two distinct
stages, the first in which local information (such as the
trace) is determined, and the second in which the global
curve is inferred.

Other attempts at curve inferencing lumped the problem
of inferring the trace of the curve together with the prob-
lem of inferring the curve. However, this mixes local and
global information together, and makes it difficult to take
advantage of interactions between them. Martelli [18], for
example, minimized a functional of intensity differences
along the curve with a global constraint on curvature;
however, it was still necessary to specify the initial and
final points, and the final result was dependent on prop-
erties of the noise. In general the trace of a curve is not
the straightest sequence of pixels with the minimal inten-
sity change along them. Pavlidis also examined the min-
imization of global functionals through a split-and-merge
procedure [24].

Our decomposition of the curve inference process into
two stages corresponds naturally to their differential ge-
ometry. We show that reliable trace inferencing requires
information about tangents and curvatures as well, so the
goal of the first stage is to recover the trace together with
tangent and curvature fields. Once these fields are given,
since the tangent is the first derivative of the curve with
respect to arc length, integrals through them can be read-
ily found within the second stage. But there is still some-
thing of a chicken-and-egg problem, since the exact re-
covery of the trace requires information about the curve,
and vice versa. Our solution to this problem is to first
recover the trace, tangent, and curvatures only coarsely,
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so that discontinuities can be properly placed, and then,
in the second stage, to recover them more exactly. This
solution has an analogy in feedback, in which initial,
rough solutions are refined into final, accurate ones. A
parallel algorithm for accomplishing this second stage is
described in [37].

The second sense in which our approach differs from
standard ones is the manner in which we seek the con-
straints necessary to accomplish trace, tangent, and cur-
vature inferencing. In fitting surfaces to disparity data, for
example, it is now an accepted practice to assume a phys-
ical model, e.g., that the surfaces consist of thin plates
and membranes [29]. Energy considerations then lead to
elegant minimizations of second-order functionals. How-
ever, it is not at all clear that such physical assumptions
should motivate the trace inference process. We begin
with standard notions in differential geometry, and dis-
cretize them onto quantized grids. This leads to an anal-
agous formulation, but suggests that we include one more
derivative than is normally assumed. Rather than mini-
mizing a functional through curvature [29], we (implic-
itly) obtain a functional through curvature variation. This
additional derivative appears necessary for localizing dis-
continuities. The minimization is accomplished using
standard relaxation labeling techniques, and this formu-
lation substantially outperforms an earlier, more heuristic
attempt [32]. Of couse, for reasons of numerical stability
one must be careful how these derivatives are estimated,
and we present a novel approach to this as well. It is much
more accurate than those based, for example, on the chain
code [5], and much more natural than the ‘‘line process’’
of [10].

This is the first of two papers in a series. In this paper
we develop the inference of the (discrete) trace, tangent,
and curvature fields. Given these fields, in the second pa-
per [37] we show how to find integrals through them, i.e.,
how to actually infer the global curves and their discon-
tinuities. We begin, in this paper, by motivating the con-
straints, and end with several real examples that illustrate
the robustness of the approach.

II. BACKGROUND AND MOTIVATION

Two different kinds of information are lost during the
curve imaging process: 1) information about the third di-
mension, through projection, and 2) details about small-
scale variations because of sampling. The latter—quanti-
zation noise—introduces significant uncertainty in posi-
tional information and reduces the image to a finite set.
Consideration of the details of the quantization, and how
they affect the discretization of concepts from differential
geometry, forms the backbone of our approach. It also
improves the stability of this first stage with respect to
slight image perturbations or camera movements.

A. The Discrete Trace of a Curve

‘The entire effect of the imaging process can be formal-
ized as follows. Let the curve B be a mapping y: [ — E?,
from an interval / on the real line to Euclidian three-space,

such that

y(1) = (n(2), ya2), ys(1)) (2.1)

is a continuous function of ¢, a parameter running along
the curve. y,, ¥,, and y; are the Euclidian coordinates of
the trace of B, that is, the image of the mapping. Through
a projection operator II, B maps to a curve C in the plane

n
B—-C (2.2)

where the curve C is a mapping x: I — E?, with
x(1) = (x(1), x(1)) (2.3)

being a continuous function of the parameter ¢. Finally, a
sampling operator L takes the trace of C, which is the set
{(x)(2), x,(t))|t € I}, into a discrete trace on a square
sampling lattice with integer coordinates

P

trace C = T. (2.4)

T is a discrete trace, that is a set of points with integer
coordinates. The sampling function is given by

L= [x()+(GH].

Observe that I is a many-to-one mapping, which maps all
the points of the curve inside a unit square of the sampling
grid to the center point of the square. Therefore, both the
projection operator II and the sampling operator L are
noninvertible. Many distinct space curves—in fact an in-
finity of them, and some noncurves too—can give rise to
identical projections. Likewise, distinct planar projec-
tions may have indistinguishable discrete traces, as de-
picted in Fig. 1.

(2.5)

B. Smoothness Assumptions Permit Trace Inference

While the forward problems of obtaining a planar pro-
jection C from a space curve B, and obtaining a discrete
trace T from the planar projection are well posed, neither
of the corresponding inverse problems are. Additional
constraints are required to limit the family of solutions.
In the case of the inverse projection problem, constraints
about physical objects may come into play [2], [31], while
only general-purpose constraints, or constraints that must
hold over large classes of images, are available to invert
the sampling process. From this point on, we shall con-
sider only the projected curve C. Since small-scale details
are primarily what is lost by sampling, it is natural to im-
pose a certain order of smoothness on the projected curve
(except at discontinuities) giving rise to a given discrete
trace, and nothing more.

The inverse trace inference problem is further exacer-
bated by the fact that, in general, the trace of a curve is
not directly observable in the image in which it is en-
coded. The trace itself must be inferred from the image
intensities. We contend that the trace inference problem
is closely linked to the sampling inversion problem, since
the smoothness assumptions about the planar curve must
influence the trace inference process. Thus, it will be
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(a) (b)

(©) (d)

Fig. 1. Various curves and corresponding discrete traces (shaded areas).
(a) Distinct planar curves may share a common discrete trace, (b) a small
orientation change is undiscernible, (c) a corner and a bend of high cur-
vature have identical traces, (d) two orientation changes in close prox-
imity and a smooth bend have similar discrete traces.

shown that it is not sufficient to infer only the trace of a
curve, but that tangent and curvature fields must be in-
ferred as well. Again, we formulate these discretely. The
tangent and curvature fields embody the smoothness as-
sumptions, and act as further constraints on the inverse
sampling problem. Thus, the tangent and curvature esti-
mates provide a local ‘‘model’’ of the curve in a neigh-
borhood around each putative trace point.

To illustrate the different orders of constraint, Fig. 2
depicts a discrete trace to which continuous curves have
been fitted. Given points in the discrete trace Fig. 2(a), a
discrete orientation constraint (through the discrete tan-
gent field) is added in Fig. 2(b), and then the combined
orientation and curvature constraints (through the discrete
tangent and curvature fields) are in Fig. 2(c).

Observe that the curves in Fig. 2(c) and (b) satisfy the
positional constraint in Fig. 2(a); that is, they all pass
through the indicated positions. Similarly, the curve in
Fig. 2(c) satisfies the tangent constraint in Fig. 2(b), but
not vice versa. Finally, the curve in Fig. 2(c) satisfies a
curvature constraint (depicted as short arcs of osculating
circles), and it is also the smoothest curve satisfying these
combined constraints. Thus, additional (smoothness) con-
straints limit the space of possible curves; what is re-
quired for our problem is to provide sufficient constraints
so that there is a unique curve which satisfies them. The
problem is then well posed. We now start to concentrate
on the trace inference problem, and begin our search for
constraints with a review of differential geometry. More
global smoothness constraints limiting the full space of
possible curves will, of course, influence the analysis.
These will also be discussed in appropriate places.

C. Overview of Differential Geometry

It is useful to review a few elementary notions of dif-
ferential geometry [7] to establish the context in which
the smoothness constraints will be formulated. The re-
view will be centered on curves in the plane, although
generalizations to higher dimensional curves exist.

(b)

Fig. 2. Three curves fitted to a given discrete trace: (a) positional con-
straint only, one fit among a large family of curves with a broad spectrum
of behavior; (b) position and orientation constraint, the family of curves
is more constrained; (c) position, orientation and curvature constraints
combined with a smoothness criterion, the family of solutions is reduced
to a single curve. Observe that the curve in (c) satisfics the orientation
(tangent) constraint and that both curves (c) and (b) satisfy the positional
constraint (a). But the curve in (a) does not satisfy the tangent (b) or
curvature (c) constraints.

Let I be an interval in one-dimensional Euclidian space
E'. A curve C is defined as a continuous mapping x: I —
E? from the interval to the plane where

x(1) = (n(1), x(1)), (2.6)

with ¢ € I being a parameter running along the curve, and
X, X, continuous functions of ¢. The curve is said to have
order of continuity k, denoted C*, if all derivatives up to
and including the kth derivative of x; and x, are continu-
ous. Taking the first derivative with respect to ¢ every-
where along C, we obtain the tangents

x'(1) = (xi(2), x3(1)) (2.7)

where the vectors x' () have bases at (x,(), x2(¢)). Their
magnitudes can be interpreted as the velocity of a particle
following the curve. A curve may be reparameterized in
terms of its arc length s, equivalent to a particle traveling
at constant unit velocity along the curve. In this case, the
tangent vectors are unit length vectors

x'(s) = (xi(s), x1(s)) (2.8)
where s = f(r) is a reparameterization of the curve, and
x|l = 1.

The interesting aspect of the tangent is its orientation.
The geometric interpretation of the tangent to a curve is
depicted in Fig. 3(a). Letting P be a point on a curve, and
A a neighboring point, the tangent T at P is the limit of
the line AP as A approaches P along the curve. The tan-
gent yields the orientation of a curve at a point.

Taking the second derivative with respect to s every-
where along C, we obtain

x"(s) = (x{(s), x3(s)) (2.9)

where the vector x”(s) is normal to the vector x'(s), and
the magnitude of x”(s) is called the curvature of C. Cur-
vature is a measure of the rate of change of orientation
per unit arc length. The geometric interpretation for the
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(a) (b) (©
Fig. 3. (a) Tangent T is the limit of segment PA as A approaches P along

C. (b) The curvature x of C at P is the limit of the ratio a/J,qB\ as A
and B approach P independently along C. (c) The osculating circle O at
P is the limit of the circle that passes through A, P, and B as 4 and B
approach P independently along C.

curvature is depicted in Fig. 3(b). Let P be a point on a
curve, T the tangent at that point, and A a neighboring
point on the curve. Let « denote the angle between the
line AP and T, and IZI} | the arc length between A and B.

The curvature « at P is the limit of the ratio o/ |/Tl?| as A
approaches P along the curve. Related to this interpreta-
tion of curvature is the osculating circle. Referring to Fig.
3(c), let A, P, and B be three neighboring points on a
curve, and let O be a circle through these points. As 4
and B independently approach P along the curve, the cir-
cle O converges towards a limit, whose radius is precisely
the inverse of the curvature « at P.

D. Derivatives Through Curvature Consistency

Although third and higher order derivatives can be de-
fined for curves, practical considerations dictate that the
process must stop somewhere. Our position is that the
trace, tangent and curvature fields provide the local basis
for inferring global curves, and are necessary for placing
discontinuities, corners, or breakpoints. Moreover, as we
shall show, these are all the derivatives that can be com-
puted stably, and even then only when they are approxi-
mated coarsely, in this first stage of analysis of the image.
Qualitatively for people, interesting events along curves
consist only of abrupt changes of orientation and curva-
ture, local maxima of curvature, and inflection points
(i.e., zero crossings of curvature) [1], [13], [17], and [9].
These are the places that a human observer is most likely
to choose to segment long curves into shorter ones. Higher
order discontinuities such as discontinuities in curvature
variation do not seem to matter. Between the selected cor-
ner points, curves simply appear to be smooth.

Although this argument for limiting the number of de-
rivatives considered is informal and based on human per-
ception, any machine vision system will have to confront
this issue as well. While any number of derivatives can
be defined, only a finite (and, in fact, small) number of
them can actually be computed. Evolution, presumably,
has settled upon an optimal number.

In terms of differential geometry, then, the visual sys-
tem would appear to perceive curves as being piecewise-
C*, with segmentation occurring at discontinuities in the
first and (certain) second derivatives of the curves. In the
sequel, we shall show that curvature consistency—a nec-
essary relationship between discrete estimates of curva-
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ture along a smooth curve—amounts to a bound on the
third derivative, i.e., on the curvature variation. Higher
order discontinuities are implicitly smoothed over and ig-
nored.

There is a numerical reason for limiting the analysis to
curvature variation as well. Quantization can be modeled
as the addition of ‘‘noise’’ [21], and each derivative nu-
merically amplifies this noise. It is well known that the
numerical stability of computing higher-order derivatives
is poor. Although we shall come back to this point later
in this paper, for now suffice it to note that some number
of derivatives are necessary to control smoothness and to
signal discontinuities, and we shall take that number to be
3. Furthermore, real care must be used in computing them.

E. Tangent and Curvature Fields

So far, we have thought about curves intrinsically, i.e.,
as given functions x(s) of an arc-length parameter s.
However, since this is primarily the object we are after,
and not given, it is necessary to formulate some of our
algorithms extrinsically in terms of the Euclidian space in
which the curves are embedded. Consider a retinotopic
restriction of the plane E? to finite domain D C E*. We
shall be interested in 2 fields on D, one which is a map-
ping that associates tangent vectors x’(s) to points in D,
and the other which associates curvatures x”(s). We refer
to these fields as tangent and curvature fields, respec-
tively. The fields form the basis of our representation for
(a local description of) curves. Thus, those points in the
trace of a curve will have unit tangents mapped to them,
while others will have null tangents. Discontinuities will
have multiple tangents.

F. Discrete Representation of Trace, Tangent, and
Curvature

Since our problem begins in the discrete domain, we
choose a representation for curves based on their traces,
with associated tangent fields and curvature fields. These
latter fields are represented discretely as well, to reflect
the fact that curve inference consists of a two-stage pro-
cess. In this first step, the goal is to estimate the trace,
tangent, and curvature fields finely enough so that discon-
tinuities can be placed, but coarsely enough so that over-
whelmingly restrictive assumptions are not made. The
compromise solution, then, is with discrete tangent and
curvature fields, which serve as inequality bounds on
which the next, global stage can be based [37].

The discrete trace of a curve consists of a set of points
in the discrete plane. The discrete tangent field is formed
by finding, for each point of the discrete trace, the quan-
tized orientation of the curve as it runs through that point.
It thus consists of a set of unit tangents to curves, char-
acterized by their position and orientation. Hence, letting
6, denote the discrete orientation of the tangent at a par-
ticular position, A = 1, + -+, m, the actual orientation
0* lies in the interval

T

0 — — <

- (2.10)

T
* <O+ —.
6 0, 7
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The discrete curvature field is similarly formed by asso-
ciating to each unit tangent the quantized curvature at that
point.

It is desirable to have a uniform representation for all
points in the discrete plane, capable among other things
of distinguishing between trace points and nontrace points.
If, for example, the orientation of a curve is allowed to
have one of 8 values, i.e., the orientation is quantized to
multiples of e = /8, each point of the discrete plane
could be associated with a vector of 8 elements, each one
a predicate rrue or false according to whether or not a
curve passes through that point with approximately that
(quantized) orientation. Alternatively, the true or false
predicates could be replaced by real numbers in the inter-
val [0, 1] where the extremes assert presence or absence
of a curve with absolute certainty, while intermediate val-
ues represent less certain assertions. Thus, for curve
points, there is at least one element of the certainty vector
with a value near 1, while for noncurve points, all ele-
ments are near 0. Some points may have more than one
near-1 value, e.g. curve crossings, and orientation dis-
continuities.’ The following notation is used for the cer-
tainty of tangent N\ at position (x;, y;):

pi(A\) fori=1,---,n (2.11)

assuming an image with n pixels and m possible orienta-
tions of tangents at each pixel. p;(A) = 1 indicates that
tangent A is definitely associated with (x;, y;).

With each orientation vector element p;(\) is associ-
ated a single discrete measure of curvature, ;(\). It be-
comes part of the discrete curvature field when the cor-
responding tangent is part of the discrete tangent field.
For a generalization in which there is a set of discrete
curvatures associated with each discrete trace position, see
[37].

A=1,,m

III. CurVE INFERENCE AS A TWO-STAGE PROCEDURE

Sufficient background material has now been developed
to specify the two stages involved in inferring a curve.

Stage 1. Trace Inference and Orientation Selection

Taking an image as input, infer the discrete trace, tan-
gent, and curvature fields subject to quantization and
maximal curvature constraints.

2) Curve Synthesis

Taking the discrete trace, tangent, and curvature fields
as input, locate discontinuities and find integral curves
running through the fields subject to discontinuity and
smoothness constraints.

Stage 2, curve synthesis, will be treated in a subsequent
paper [37]. We now concentrate on Stage 1.

IV. TRACE INFERENCE AND ORIENTATION SELECTION

The goal of the first stage of our curve inference process
is the recovery of local information. Clearly, this must

'More formaily, at orientation discontinuities we represent the tangents
obtained through the limiting process in both directions, or the so-called
Zariski tangent space [11]. These are important for the second, global stage
of curve inference; see [37].

include the recovery of trace points. If the curve were
known, then trace points could be separated from other
image structure simply by calculating them. But the curve
is not known, so we are forced to estimate the structure
of the curve in the neighborhood of each putative trace
point. As we shall show, coarse estimates of the tangent
and curvatures provide sufficient local information about
the curve. These estimates provide a partial local model
for the curve sufficient to gather evidence about individual
trace points from their neighbors.

Two terms used above—local and coarse—warrant fur-
ther expansion because they are related in a fundamental
way. Observe that, when searching for a book in the li-
brary, one first searches through broad categories before
finely scanning the exact titles. Analogously, curve re-
covery is facilitated by first obtaining a rough—or coarse—
estimate of its structure to guide subsequent analyses. The
need for a local analysis follows for similar reasons, since
few (if any) assumptions can be made a priori about the
global structure of the curve. Moreover, given the pres-
ence of noise from both sensors and quantization, such a
coarse, local analysis becomes necessary; imaging trying
to exactly estimate the tangent of a contour from an image
to three decimal places without strict a priori assump-
tions, such as the straightness of the sides of a block [3].
Seeking higher order approximations suffers the same
problems as well.

Similar arguments could be made in detail about the
tangents and curvatures. If the curve were known, then
these could be computed exactly. But since it is not, then
they must be estimated as well. There is something of a
hierarchy of information here, with the (estimated) tan-
gents supplying constraints on the positions of nearby (es-
timated) trace points, with the (estimated) curvatures sup-
plying constraints on the (estimated) tangents and their
(estimated) locations, and, finally, with curvature con-
sistency relationships supplying constraints on (esti-
mated) curvatures. Moreover, this hierarchy holds for
quantization as well. Observe that a quantization of the
image plane imposes a quantization on orientation which
is necessarily coarser than the quantization on position.
Next, the quantizations of position and orientation impose
a still coarser quantization on curvature, and so on for
higher order properties, with change in curvature being
the highest one can go. This, then, provides the rationale
in principle for restricting our local models to coarse
changes in curvature: one simply cannot compute the nec-
essarily coarser higher order properties. We now develop
these constraints in detail, based on quantizations of the
differential geometry already described. In the end we will
have obtained an inference procedure for estimating
(quantized) trace, tangent, and curvature fields such that
a particular functional with terms through curvature vari-
ation is minimized.

A. The Two Steps of Stage 1

The Stage 1 inference procedure consists of two distinct
steps, a measurement step and an interpretation step. The
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functional minimization and tangent field inference are
accomplished in the second step. In particular,

Step 1: Measurement

Convolution of linear operators against the image to ob-
tain initial tangent estimates at each position and for each
(quantized) orientation.

Step 2: Interpretation

Selection of a subset of the tangents signaled in Step 1
according to the functional minimization procedure to be
defined.

Classically, of course, the linear operators amount to
“‘line detectors’ [27], although our selection procedure
is much more complicated than simply taking the
“‘strongest’’ convolutions. Rather, it amounts to selecting
those ‘‘strong’’ convolutions that are strongly supported
by—or consistent with—the other convolutions in their
neighborhood according to the estimated local curve
model. We now discuss the two steps in turn.

1) Step I: Initial Tangent Estimates: The requirement
for the first step is a set of operators that estimate the
presence of a tangent at each position in the image. Since
discretely the tangent can be viewed as a short, straight
line segment, templates tuned to this structure are the ob-
vious candidates. Such templates amount, of course, to
so-called ‘‘line detectors’’ [27], [33], and we use the fol-
lowing one (see Fig. 4):

G(x,y) = LSF(x) - exp (—y*/03) (4.1.a)

with
LSF(x) = exp (—x*/d3) — Bexp (—x*/0a3)

+ Cexp (—x%/d?). (4.1.b)

The classical rationale for choosing such operators is
clear: they are template representations of short, straight
line segments. The Gaussian kernels have the attractive
property that they smooth over intensity variations along
the tangent direction, but sharpen them in the orthogonal
direction [36]. Such operators resemble the receptive
fields of so-called simple-cells in primate visual cortex
[14], and hence are also attractive from a biological point
of view.

2) Step 2: Interpreting the Initial Tangent Esti-
mates: Classical treatments of curve detection also in-
volve two steps, the first of which is very similar to the
one just described. But the second step—interpretation of
the operator convolutions—is usually much simpler than
the scheme that we shall be describing. Since the operator
templates match high-contrast straight lines so well, it is
often assumed that simply selecting the strongest convo-
lutions is sufficient for obtaining a local representation of
the contour (what we are calling a tangent field). But this
is not the case for any pattern other than widely spaced,
straight lines. Curvature, comers, and nearby contours all
affect the convolutions, and all are sufficient to invalidate
the maximum convolution selection strategy [33], [35]. A
richer model for curves is clearly needed.

From the differential geometry reviewed in Section II,

ok

Fig. 4. The initial convolutions are performed with this *‘line detector’
operator, which is a difference of three Gaussians in the x direction,
multiplied by a single Gaussian in the y direction.

it is clear that our model must at least include curvature.
Recall that, in the neighborhood of each point, the oscu-
lating circle is a substantially better approximation to the
curve than the tangent (Fig. 3). We shall later argue that
curvature is also a high-enough approximation to separate
closely spaced curves, so that incorrect convolutions that
cover distinct curves can be properly interpreted. There-
fore, we shall focus on curvature, and shall begin to de-
rive an estimation procedure based on (a quantized ver-
sion of) it. Our goal, briefly stated, is to minimize the
curvature variation at each point by maximizing circular-

ity.

V. PosiTiION, ORIENTATION, AND CURVATURE
CONSTRAINTS

In this section, we shall first establish the neighborhood
circularity measure in terms of a pairwise relation be-
tween (estimated) tangent elements, called cocircularity,
which determines an orientation constraint. Introducing
the maximum curvature constraint that arises from grid
quantization is then straightforward. Second, it will be
shown that the orientation constraint is not sufficient and
that interaction between neighbors should be mediated by
a curvature consistency constraint. This constraint can be
applied provided local estimates of curvature are avail-
able. It will be shown that these estimates can be obtained
by partitioning neighborhoods into regions called curva-
ture classes, and that tangent estimates can be obtained by
propagating support through these regions. Consistency
of curvature is achieved by comparison of the curvature
classes.

Finally, a level of constraint is required to achieve the
high localization accuracy which is characteristic of cur-
vilinear patterns in images. This positional constraint is a
form of lateral maxima selection whereby a pixel-wide
region is determined to be part of the curve. It is required
because support for tangent elements may occur over a
relatively wide area near curves, whereas the discrete trace
of a curve is composed only of the set of pixels through
which the curve actually passes. This level of constraint
thus insures the correctness of the trace inference.

A. Cocircularity

The standard approach to estimating curvature is to fit
a polynomial to a collection of points, and then to differ-
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entiate the polynomial twice [24]. This, however, ampli-
fies noise, and hence is unusable in our quantized context.
We shall present a different scheme, in which the infor-
mation contained in tangent estimates provides the basis
for curvature estimates through the cocircularity relation-
ship.

1) Definition: The relation of cocircularity applies to
distinct tangents to a circle [see Fig. 5(a)]. A property of
this spatial configuration is that the tangents form angles
of equal magnitude, but of opposite sign, with the line
joining the points of tangency [see Fig. 5(b)]. Thus, ab-
straction can be made of the circle, and the symmetry of
the configuration can be retained as the characteristic of
cocircularity. Note that when the radius of the circle be-
comes infinite, we obtain a special case of cocircularity,
colinearity. Cocircularity is therefore a function of both
the orientations and the positions of the tangents.

Definition: Two unit tangents A and N’ are cocircular,
denoted

AN

iff there exists a circle to which they are both tangent.

Cocircularity is a kind of symmetry relation between
tangents, and bears some relationship to the way in which
[4] define a local symmetry. But our discretization and
use of the notion differs substantially from theirs.

2) Cocircularity in the Discrete Case: When position
and orientation are quantized, tangent pairs are seldom
exactly cocircular. The small perturbations introduced by
quantization must somehow be taken into account. To do
this, we begin by allowing the position of the tangents to
be anywhere within the circle of radius 1 /2 pixel centered
at the pixel. Likewise, we let their orientation vary within
a neighborhood of size e, for orientations quantized to
multiples of e. The tangent pair is thus cocircular if there
exists at least one assignment of the position and orien-
tation variables for which cocircularity as defined above
is true.

Let (x;, y;) and (x;, y;) be the coordinates of nodes i
and j, and let (x, y) be an arbitrary point within the circle
of radius 1/2 centered at (x;, y;), and (x', y') a point in
a circular neighborhood of (x;, y;); let A and A’ be unit
tangents at these locations and 6, and 6, be their respec-
tive orientations; let § be an orientation in an e-neighbor-
hood of 8,, and 6’ an orientation in an e-neighborhood of
0y (see Fig. 6). The orientation of the line joining the
centers of the pixels is given by

6, = arctan (Ay/Ax) (5.1)

ij
where Ax = x; — x;and Ay = y; — y;.

We wish to determine the minimum and maximum val-
ues. that may be taken by 6,, the orientation of the line
joining the tangents as (x, y) and (x’, y') are allowed to
vary within their circular neighborhoods. As in Fig. 7,
the extrema coincide with the two intersecting tangents
common to the circular neighborhoods. In the case of cir-
cles of equal radii, it can be shown that the angle between
the common tangent and the line joining their centers is

(a)

(b)

Fig. 5. In (a), unit tangents A and B are both tangent to the same circle,
therefore A is cocircular to B (denoted A ><B). This condition is geo-
metrically equivalent to that depicted in (b) where « = —8.

N
1\

Fig. 6. Two unit tangents N and X\’ with respective orientations 8y, A
whose positions are restricted to the circle of radius 1,/2 centered at the
pixel positions (x;, y;), (x;, y;); the line with orientation §; joining the
centers of the pixels; the line with orientation 6, joining the tangents.

Fig. 7. The interval for the orientation 6, of the line joining two curve

tangents located in circles of radius 1/2 centered at (x;, y;) and (x;, y;)
; — a, 8; + a) where 6 is the orientation of the line joining the
centers of the circles, and « depends on the distance dj; separating them.
The sine of « is 1/2 divided by the distance from O to (x;, y;), which
is d;;/2, hence o = arcsin (1/d;).

given by
o = arcsin (1/dy). (5.2)

Let the function I' (8, v) designate the interior angle
between a pair of lines with orientations 8 and v, as in
Fig. 8. Let the sign of this function be the same as the
direction in which the first line must rotate in order to
close the interior angle and coincide with the second, that
is, positive for counterclockwise and negative for clock-
wise rotations. The formal definition of this function, as-
suming that 0 < 8 < wand 0 < y < , is the following:

Y - 8, if |y - 8] = 7
T

2<7—B$1r;

B, vy) = Yy — B -, if

if—7r$7—6<—§.

(5.3)

Yy—-B8+m,
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B 8 B

5
Fig. 8. The interior angle function I' (8, ) is the interior angle between
a pair of lines with orientations 8 and y. The sign of this function is

determined by the direction in which the first line must rotate in order to
close the interior angle.

Turning back to Fig. 6 and recalling the geometrical
definition of cocircularity, we find that the tangents at (x;,
¥:) and (x;, y;) are cocircular if the interior angle between
the first tangent and the line joining the tangents is the
same as that between the latter line and the second tan-
gent. Formally, \><\' iff

I'(6,6,)="(6,0), (5.4)

for some 6, € (0; — o, 0; + &), 0 € (6 — €/2, 6, +

€/2), 6’ € (6r — €/2, 6y, + €/2). This condition is
clearly equivalent to

IT(6y, 8;) — T(6;, 60)] < e + 22 (5.5)

Condition (5.5) is a discrete cocircularity condition; it
is either true or false. A continuous version of this con-
dition can be implemented by measuring the closeness to
cocircularity, and we refer to this measure as a cocircu-
larity coefficient. Departure from exact cocircularity oc-
curs by rotation of one of the tangents, which suggests
that a function of the difference in orientation between a
tangent and the cocircular tangent in the same position
could be used as a measure of cocircularity. The cocir-
cularity coefficient then consists of a real number between
0 and 1, where 0 means not cocircular, 1 means cocircu-
lar, and values close to 1 are interpreted as nearly cocir-
cular.

Generally, the coefficient is 1 for a certain range of ori-
entations of tangents at the neighboring node, because of
built-in quantization noise tolerance in (5.5). Denote this
range by [0, 0. 1. We let the magnitude of the coef-
ficient fall off monotonically outside this range (see Fig.
9).

Thus the cocircularity coefficients c;j (N, \") are given
by

I, if|T(8y 8;) — T(8;, 6,)]

& (0N = <ot (5.6)

max (1 - nle)\’ - 0,,, > Cmin)’

otherwise
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Fig. 9. Cocircularity coefficient ¢;(\, N') as a function of orientation 6,
of neighboring tangent. The length of the interval [8,, Omax] is € + 2
[see condition (5.5)].

Ormaz m

where 0,, is the extreme of the range [0.,,, 0max] closest
to 6y, and 7 is the absolute value of the slope of the drop-
off region, assuming a linear decrease.

Because of the grid and tangent quantization, it is nec-
essary to consider tangents distributed in a neighborhood
around each image point. If only the 3 by 3 immediate
neighborhoods were considered, then the angular quanti-
zation of 6; would be much too severe. The cocircularity
coefficient so defined can be measured for all neighboring
tangents in a neighborhood of a given size, and the set of
these measures forms the neighborhood support set.

3) Maximum Curvature Constraint: In order to intro-
duce the maximum curvature constraint [recall Fig. 1(c)],
a measure of the radius of curvature implied by a pair of
tangents is required. Letting p;(A) denote the implied ra-
dius, we use

~ 2sin |T(0), 6y)]

as its measure. The maximum curvature constraint im-
plies that

cii(\, N') = 0 whenever p;(N) < pmin-

3 (N) (5.7)

(5.8)

Fig. 10(a) shows the set of neighbors cocircular to a tan-
gent with a vertical orientation for a neighborhood diam-
eter of 15 with the maximum curvature constraint applied.

B. Cocircularity Support

We are now in a position to estimate how well a partic-
ular (estimated) tangent is supported by other (estimated)
tangents in its neighborhood. Recall that the first mea-
surement stage consisted in convolutions against ‘‘line
detectors’” (Section III). Letting 8,, denote the orientation
of the operator at positioni = (x;, y;), A\ =1, -+, m,
the normalized convolutions { p;(\), i =1, -+ -, n, N
=1,+-+,m},0 < p;(N) < 1, provide an initial esti-
mate of the confidence in tangent \ at position i. Note,
for a long straight line of orientation 0, passing through
i, that p;(\*) will be maximal at that position, and that
pi(N) will drop off from p;(A*) according to the orien-
tation tuning curve for the operator.

But when the curve does not consist of long straight
lines, p;(N\) can follow a more complex distribution at
each point i. Therefore, the circularity measure must be
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(b) (c) @

(e) ® (@) (h)
Fig. 10. A diameter 15 neighborhood (a), partitioned into 7 curvature
classes for the vertical orientation (b)-(h). These 7 distinct curvature
classes thus represent the coarse quantization of curvature or, equiva-
lently, the discrete number of equivalence classes obtained by projecting
continuous osculating circles onto our discrete representation. The choice
of 7 classes was empirical and based on the observations that 1) it is fine
enough to support curve and discontinuity localization, but 2) coarse
enough to be reliably computable. (a) bears some resemblance to the
consistency operators for curve enhancement developed in [12].

evaluated over a local neighborhood around i and must
depend on the entire distribution of possible tangents at
each point. We take a linear weighted sum to indicate the
cocircularity support for a unit tangent \ at position i
n m
si(A) = j;l )\;1 ri(A N') pi(N')

where r;(A, N') = ¢;(A, '), the cocircularity coeffi-
cient. Clearly, those tangents lying along a curve should
have maximal support. More remains to be done before
this is guaranteed, however, because linear averaging
schemes such as this have the potential to smooth across
different but nearby (within the given neighborhood)
curves. A more sophisticated formulation as a closest-
point problem is under way [16].

C. Curvature Classes

Consider a small neighborhood of an image containing
many curves. Within this neighborhood, many tangent
pairs are mutually cocircular, with some cocircular pairs
belonging in fact to distinct curves. More specifically,
given three tangents A, B, and C in such a neighborhood
and given that A><B and 4 ><C, it does not follow nec-
essarily that B><C. In particular, the interpretation of 4
remains ambiguous when B>< C: does A4 belong to the
curve going through 4 and B, or to the one through 4 and
C? One way to decide the situation is to partition the
neighborhood support set about 4 into sufficiently narrow
curvature classes X,(A4),k =1, - - - , Kas in Fig. 10(b)-
(h).

Each curvature class consists of all the osculating cir-
cles whose radius is between the limits for that class or,
equivalently, whose curvature is within certain limits.
Thus, if A><B, 4>XC, and B, C belong to the same
curvature class X, (A) with respect to 4, it may be con-
cluded that B><C.

Two benefits accrue from the use of partitioning. First,
it imposes n-wise consistency of tangents within curva-
ture classes at a low cost in complexity. The tangent sup-
port function can be modified to take advantage of the

(
(a) (b)

Fig. 11. In (a), A>Band A4 and B are tangent to the same curve. In (b),
however, the spatial configuration of 4 and B is the same as in (a), but
they are tangent to distinct curves.

partition, by measuring support independently by curva-
ture class, and by selecting the highest as the final tangent
support. The support of tangent \ at node i is thus given
by
n m
siA) = max 2 2 KON N)pi(N) (5.9)
k=1Kj=1XN=1 ;

where the coefficient rf}()\, N") is the product of the co-
circularity coefficient c;(\, ') and a partitioning func-
tion

. k A
Lo if phin =< B3(N) = phao

(5.10)
0, otherwise;

Ki(\N) = {
for given curvature class limits p¥, and F1.

The second benefit is that a discrete estimate of curva-
ture x;(A\) is obtained by correspondence with the curva-
ture class that maximizes the support function. With this
estimate, it is be possible to introduce a further constraint
on the selection of neighboring tangents for local support.
This constraint is examined in the next section. First note,
however, that these discrete curvature estimates have been
obtained without the numerical problems inherent in stan-
dard, spline-fitting techniques. In technical terms, rela-
tions between tangents in a curvature class amount to con-
nections in fiber bundles; see [28].

D. Consistency of Curvatures

One kind of ambiguity persists even after partitioning
into curvature classes. Consider, for example, Fig. 11(a)
and (b).

In Fig. 11(a), tangents A4 and B are cocircular and they
are tangent to the same curve. In Fig. 11(b) however, tan-
gents A and B occur in the same spatial configuration as
in (a), yet they are tangent to distinct curves. Should the
tangents A and B mutually support each other in (b)? If
not, how can configurations (a) and (b) be told apart?

The solution to this problem requires comparison of lo-
cal curvature class estimates. The orientation of a tangent
and the local curvature class estimate together determine
a region about the position of the tangent where a curve
is most likely to exist. In Fig. 12, B <A, therefore B
belongs to at least one of the curvature classes of A. But
in Fig. 12(a), the local curvature class estimate at B does
not include 4 as a member. The curvatures are said to be
inconsistent and this condition precludes mutual support
of 4 and B. Fig. 12(b) depicts a situation where curva-
tures are consistent with the interpretation that a curve
passes through 4 and B. Note that in this case we have
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(a) (b)

Fig. 12. In(a), A< B but the estimated curvature at B is inconsistent with
the interpretation of a curve through A and B. In (b) however, mutual
support is possible because the curvatures are consistent. It is this con-
dition that involves a coarse estimate of change-in-curvature, and natu-
rally provides a mechanism for locating (orientation) discontinuities.

both A € X;(B) and B € X;(A) for some k and k' (not
necessarily equal).

Letting Ci'(\, \’) denote the predicate variable for
curvature consistency, i.e.,

1, if curvature class kK of A at i is
' N consistent with estimated
Cy (LWN) = curvature class k' of A\ at j;
0, otherwise;
(5.11)
we obtain a new coefficient
r,’-‘j"'()\, N) = ci(NN) Kf}()\, N) Cf}k'()\, A, (5.12)

which is a function of curvature as well as orientation and
position.

E. Lateral Maxima

In this section, we address the problem of inferring the
trace of a curve from the certainties associated with the
tangents in a tangent network during our procedure. The
objective is to extract a pixel-wide region about a curve,
i.e., to prevent thickening of the curve in the discrete
trace. The method is based on comparisons between cer-
tainties in a small neighborhood, with selection of the tan-
gents with highest certainty, i.e., the lateral maxima.

1) Techniques for Extracting Lateral Maxima: The
rationale for inference by lateral maximum selection is the
observation that the support function exhibits a character-
istic maximum at the precise location of a curve, and de-
creases gradually on either side of this location.

Lateral maxima selection is, in principle, a simple tech-
nique, but its implementation on a discrete grid requires
careful consideration. The most obvious problem is that,
on an orthogonal grid, only those tangents whose orien-
tation is parallel to a grid axis have lateral neighbors with
which to compare. For other orientations, interpolated
values for lateral neighbors must be used, rather than the
neighbor closest to the ideal position. A straightforward
linear interpolation based on a plane fitted to the three
nearest neighbors is quite sufficient. A tangent A at (x, y)
is therefore a lateral maximum if its certainty is maximal
among all tangents in the 3 by 3 neighborhood in position-
orientation space. Letting m; (N ) denote the predicate vari-
able for a lateral maximum for orientation A at node i, we
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have
(1, iff p(N) > p(N'), ¥\’
e{A=1,\N+1},and
pi(N) > p(N'), ¥\
m(N) = { e{N—1,\, N+ 1}, and

pi(N) > pi(N'), YN
e{A-1,N+1}

otherwise;

Lo,
(5.13)

where p;(N\') and p,(\') denote the certainties of the left
and right interpolated certainties for tangent A’.

As an alternative to interpolated certainties, one could
just as well perform a strict comparison against a set of
neighboring certainties determined by the orientation of
the certainty under test. Comparison sets can be defined
in such a way that the selection process is stable. More
formally,

1, iftp(A) > p(A), v\ e {A = 1\,

m(\) = N+ 1}, Ve Ny

0, otherwise; (5.14)

where the neighbor set N, is a predefined set depending
on the orientation A.

The lateral maximum property of neighboring tangents
can be used as an additional constraint in the support
function. Since only those tangents in the neighborhood
that are lateral maxima are compatibie with a curve inter-
pretation (observe that the initial convolutions drop off
with lateral displacement from the curve), the support
function should be correspondingly restricted. Thus, we
obtain a new expression for the support of a tangent

si(N) = max 2 23 r& (N N) pi () mi(N).
LKi=1N=1

k=
(5.15)

The net effect of this constraint is to further narrow the
region near curves where tangents receive support.

VI. INFERRING TANGENT FIELDS BY MAXIMIZING
i SUPPORT
Since the expression (5.15) for the support of a tangent
should be maximized at each position, a natural choice
for a global functional is the average local support

A(p) = 2 50 PV, (6.1)
Qualitatively, the p;(\) indicate which tangents and po-
sitions are chosen, and the s;(\) indicate how mutually
consistent they are through the quantized geometrical
constructs just developed. That is, the s;(\) codes the lo-
cal model for the curve in the neighborhood of position i
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and the tangent N. In particular, as the positional quanti-
zation Ai = 0, orientation quantization AX — 0, and the
curvature classes approach the actual curvature, s;(\) —
1 for all tangents along the (smooth) curve, and s;(\) —
0 elsewhere.

Relaxation labeling is a procedure for maximizing
expressions such as (6.1) [15], and in the following sec-
tion, we review the relaxation labeling procedure and tai-
lor it to this application.

A. Overview of Relaxation Labeling

Relaxation labeling is an iterative procedure applied
over a network of nodes. Associated with each node is a
set of labels, and associated with each label is a measure
of confidence, or certainty. Let there be n nodes and, for
the sake of simplicity, a unique set of m labels at each
node. Further, let p;(\) denote the confidence of label A
at node i. The values of the p;(\) are restricted to the
interval [0, 1], and are subject to the added constraint
that at each node |

)\Z] pi\)=1 fori=1,---,n (6.2)
In vector notation, this constraint can be written as 7, - 1
= 1 where 1 is the m dimensional vector of 1’s (1, 1,
- -+, 1). The degree of compatibility between a label and
its neighborhood can be measured by what is known as
the label’s support, which is a function of other label cer-
tainties in the neighborhood and their compatibility (pair-
wise) with the label being supported. The constraints be-
tween labels are represented by a matrix of compatibili-
ties, r;;(A, N'), which serve to embody the problem-de-
pendent knowledge. In this notation, ri{A, N") denotes
the compatibility between label N’ associated with node j
and label N associated with node i.

Relaxation labeling is the process of achieving consis-
tency. Hummel and Zucker [15] defined consistency in
variational terms; they also proved that, for symmetric
compatibilities, consistent states of the relaxation net-
work maximized functionals of the form A(p) in (6.1).
Such maxima are achieved iteratively: beginning with an
initial labeling { p?(\)}, the iteration

piTI N = (PN sE(N)) (6.3)

continues until convergence. Hummel and Zucker [15]
develop a general scheme for the iteration (6.3) utilizing
the Mohammed [19] projection operator. However, the
efficiency of this scheme can be improved substantially
for this application; see [22] and Appendix A.

B. The Relaxation Graph

The original approach [32] to representing curves in a
relaxation graph used m orientations of tangents to a curve
at each node, plus the no-line label, with certainties sub-
ject to condition

m+1
)\gl pi(N) =1,

fori=1,"--,n (64)

According to this convention, a labeling is consistent and
certain only if at most one orientation is chosen by the
relaxation process. However, curve intersections and cor-
ners require that multiple orientations be chosen at certain
nodes.

Our solution is to have not one but many superimposed
relaxation graphs, one for eachlabel A = 1, + + - , m. We
shall refer to this collection as a network of relaxation
graphs. Each node of graph A requires 2 labels: A and no-
line. Network interactions are permitted between the re-
laxation graphs through the compatibility matrix.

Note that the certainty vector at each node of each graph
consists of two components with unit sum. Clearly, noth-
ing is gained by representing both components of the vec-
tor explicitly, one of the components being simply the
complement of the other. Similar savings can be achieved
in the compatibility matrix by eliminating the no-line la-
bel completely.

The advantages of this network of relaxation graphs are
twofold. First, multiple labels at a position (as arise when
curves cross or bifurcate) need not compete with one an-
other. Rather, they are supported by the context provided
by their own relaxation graph. Second, since each label
only competes against a null label, only positive infor-
mation needs to be represented explicitly. This is analo-
gous to the biological situation in which firing rate varies
with confidence, and can formally be obtained as follows.

Consider the contribution of node j to the support of the
two labels (0 and 1) at node i. Letting r, = ri(1,1), rp
=r;(1,0), etc., and p; = p;(1), we obtain, from (A.2.a),

s:(1) = ro(l = p;) + rup; (6.5)

5:(0) = roo(1 — pj) + rop;- (6.6)

Assuming that rog = ryy, 1o, = rjg = —r,, the above are
reduced to

si(1)=2-ry(p; - 1) (6.7)

5(0) = —s;(1) (6.8)

where both expressions are void of terms related to label
0. Hence, for this special case (and many similar ones
where all compatibilities are functions of a single one), it
is possible to reduce the complexity of the relaxation graph
and the compatibility matrix.> The assumptions about the
compatibilities are not unreasonable when label O is in-
terpreted as no-line. This result shows that if certain la-
bels are left out and only the compatibilities between the
remaining labels are specified, the system is equivalent to
another one where all the labels and compatibilities are
specified. Thus, truncation of the graph and compatibility
matrix does not violate relaxation labeling theory. The
result is extensible to systems of more than two labels.

*A compatibility matrix is the matrix of compatibility coefficients for
each pair of labels.
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C. Complete Relaxation Model

To summarize, a sketch of the complete relaxation
model as it will be used in the trace inference process is
as follows.

Network: m graphs of n nodes, one for each orienta-
tion. The labels represent tangents with orientations quan-
tized to multiples of e. The ‘‘no-line’’ label is not explic-
itly represented. The m labels at node i have independent
certainties p;(\) € [0, 1].

Support Function: The support s;(\) of label X at node
i is a normalized function of the sum of the products of
neighboring label certainties by appropriately chosen
compatibility coefficients, as in (5.15).

Update Formula: Each p;(\) is updated as though in a
two-label graph, with the other label interpreted as ‘‘no-
line”’ and having complementary support, i.e., —s;(\).
p:(N) is updated in such a way as to converge asymptot-
ically to 1 when excited, and to O when inhibited.

D. Normalization Details

Two details remain, but they are central to successful
implementations. First, the support functions must be
normalized to account for arc-length effects, and second,
they have to be mapped into a common interval so that
values are comparable across positions. We discuss each
of these normalizations in turn.

1) Extent of Neighborhood Support: The unit tangent
support function has so far been described in terms of co-
circularity coefficients, but nothing has been said about
the shape or extent of the neighborhood over which tan-
gents interact. We could assume a circular neighborhood
shape, determined by the neighborhood diameter and the
maximum curvature constraint. However, this circular
shape is not ideal because arcs of different curvature have
distinct intraneighborhood lengths, implying a bias of the
support function towards longer arcs.

In order to make the support of a tangent to a curve
independent of the particular curvature, the extent of the
neighborhood is adjusted so that arcs of circles with all
curvatures have the same intraneighborhood length.

Letting R denote the maximum arc length distance of
interaction between unit tangents, the curve describing the
boundary of the equilength region is given by

p =R

sinc<§—|9|>l for -t <0< (69)

in polar coordinate form. Fig. 13 depicts such a neigh-
borhood, with the minimum radius of curvature r;, =
1/ kpmax constraint applied. The neighborhood is thus com-
posed of all unit tangents whose arc length distance
ﬁij(k) < R. The estimated arc length distance can be
obtained from the estimated radius of curvature 5;(\)
with

By(N\) = 25;(N)|T(6y, ;). (6.10)

Letting E;; denote the neighborhood extent predicate, we
have
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min

Fig. 13. An equilength neighborhood for the vertical orientation with 7
curvature classes. All arcs of circle vertically tangent to the center of the
neighborhood have the same length.

1, ifDy(\) <R
v 0, otherwise.

2) Intrapixel Length Correction: Next, we consider the
intrapixel length correction to the compatibility coeffi-
cients. This is necessary in order to ensure that the pro-
cess is isotropic. A straight line of a given length inter-
sects a different number of pixels of a digital grid
depending on its orientation. For example, diagonal lines
intersect fewer pixels than lines of the same length at any
other orientation, while the lines parallel to a grid axis
intersect the most. Unless a compensation is introduced,
the process will therefore ‘‘prefer’’ orthogonal orienta-
tions to diagonal ones. A simple normalization coefficient
is given by

(6.11)

V2

e (6.12)
2 cos wy:

I(N) =
where w,. is the angular difference between 6. and the
nearest grid axis.

With this compensation, we obtain the final expression
for the compatibility coefficients by multiplying the
expression of (5.12) by I(\"), giving

rEON N = (N N) EGKE(N N) CF (M N) LX)
(6.13)

where ¢; (A, N') is the cocircularity coefficient, Kf;()\,
N') is the curvature class partitioning function, and
Cz-k/()\, A'") is the curvature consistency predicate.

3) Normalization of the Support Function: The sup-
port function obtained previously is

m

si(N\) = max 2 2 rﬁj"'()\, N pi(N) mi(N')
k=1kj=1 N=1

(6.14)

but its range must be normalized before use.

For a given neighborhood radius, one can compute the
integral of the local compatibilities given that a single
curve (assume a straight line) traverses the entire neigh-
borhood in the proper orientation. Denote this integral by
This sum determines the maximum support that a

smax‘
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label can obtain from its neighborhood, and the sum var-
les according to the radius of the neighborhood. This is
the maximum support that can be achieved.

The minimum acceptable support for a label depends
both on geometry and noise. First, the process should be
stable near the end of a curve; that is, the curve should
neither grow nor shrink during relaxation. Second, a
threshold can be established according to the response of
the initial operator convolutions in the presence of pure
noise. Now, consider the pixel at the end of a low contrast
line. The operator response, which is sensitive to con-
trast, will be rather low at that point, while the integral
of the compatibilities would be approximately s,,, /2 (the
curve traverses only half the neighborhood), times the av-
erage certainty of the labels on the curve. Assuming a
minimum contrast criterion p,,;, we fix the minimum ac-
ceptable support of a label as

.
Smin = ’L"‘z . (6.15)

With this choice of s,,,, relative stability at end-lines
is insured for a wide range of initial contrasts. If, on the
other hand, the initial contrast of a curve is below the
minimum, then that curve will gradually shorten until it
disappears.

The label support is normalized by mapping the interval
[Smin» Smax ] linearly into the interval [0, 1]. The required
normatized support, S;(\), is therefore

Si()\) ~ Smin
Smax

It can readily be seen that this expression is equal to 1
when the raw support s;(\) equals the maximum support
Smax While the numerator vanishes if the raw support equals
the minimum acceptable support, s,;,. Of course, any-
thing less for the raw support leads to a negative normal-
ized support. The normalization of the support occurs be-
fore the projection of the support vector at a node onto
the positive quadrant; see Appendix A.

This completes the discussion of the technical issues
related to the implementation of a discrete trace inference
process within a relaxation labeling computational frame-
work. We turn our attention now to the results of the trace
inference process over various kinds of images.

Si(N) = (6.16)

~ Smin

VII.

In discussing the experiments performed with the trace
inference process described in the preceding sections, we
will go from simple to complex. Thus, in the first part of
this section, we discuss experiments based on artificial
images designed to evaluate specific features of the pro-
cess, such as sensitivity to curvature, and robustness in
the presence of noise. At the same time, the trace infer-
ence process is compared to other procedures to extract
curves from images, in the presence of large amounts of
noise. Further experiments based on real images, such as
biomedical imagery, satellite imagery, and fingerprints,
are discussed in the second part of this section.
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+ nearly straight
- low curvature
+ medium curvature
w high curvature

Fig. 14. Trace inference process on concentric circles after 2 iterations.
The resulting tangent field (short segments) and curvature field (arrows
pointing to center of curvature) are superimposed on the image (filled
pixels). The assigned tangent and curvature fields are perfect everywhere
except at a few locations were quantization affects the local structure of
the curve more severely. These errors would disappear using a larger
neighborhood size.

Implementations were done on a DEC VAX 11/780
running VMS. Although the run times for the experiments
were very long (up to 12 hours), the algorithm is totally
parallel and can readily be implemented in parallel hard-
ware.

A. Artificial Images

1) Sensitivity to Curvature: The first experiment is de-
signed to evaluate sensitivity to curvature. Referring to
Fig. 14, the image is composed of 4 concentric circles
whose radii were chosen to match individual curvature
classes. The following parameters are used for the initial
operators (see (4.1) for the parameterized form of the op-
erator):

o, =114 6,=18 0;=228 g, =3.6

B =12066 C=0.5. (7.1)

A neighborhood diameter of 15 pixels is used, with 7 cur-
vature classes determined by the following radius limits
(in pixels):

radius limits: 2.7, 4.2, 7.2, 21.0 (7.2)

The result displayed in Fig. 14 is after 2 iterations, with
step size 1, and using a supporting threshold Smin = 0.5.
In these displays, tangents are indicated by short line seg-
ments, and curvatures by vectors pointing toward the cen-
ter of the osculating circle. The magnitude of the curva-
ture vector is proportional to the radius of curvature.

2) Sensitivity to Noise: The next experiment is designed
to evaluate the effect of noise on the trace inference pro-
cess. The image consists of a single hand-drawn curve on
a uniform background, featuring a sharp orientation dis-
continuity and varying curvature. The experiment is per-
formed independently for two neighborhood sizes, 15 and
25 pixels, respectively, and for each size there are 5 noise
levels: S/N = =, 1.8, 0.9, 0.6, and 0.45. The noise added
to the image has uniform distribution U (0, A), where 4
is the peak-to-peak amplitude of the noise. Given that the
curve has constant intensity I, over a background of con-
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Neighborhood size 15

Neighborhood size 25

Fig. 15. Trace inference on an image consisting of a single curve, using
two neighborhood sizes, and with the addition of various amounts of
noise, to obtain S/N ratios of o, 1.8, 0.9, 0.6, and 0.45. After two
iterations, only those tangents with certainties above 0.5 are displayed.
The smaller neighborhood size results in fairly stable inference down to
§/N = 0.9, while the larger neighborhood size remains quite stable for
S/N down to 0.45 where the curve is nearly imperceptible at close range.

stant intensity I, the S/N ratio is obtained by

IIC - 1b|

S/N =
/ A

(7.3)
Both experiments use 7 curvature classes, and the ra-
dius limits for each size are as follows:

size 15 radius limits: 2.7, 4.2, 7.2, 21.0

size 25 radius limits: 4.5, 7.0, 12.0, 35.0. (7.4)

The initial convolutions are with operators whose size is
adjusted to the respective neighborhood sizes. For the
smaller neighborhood size, the parameters are those in
(7.1), and for the larger one, the parameters are as fol-
lows:

0=19 06,=30 03=38 0,=6.0
B =1.266 C =0.5. (7.5)

The results displayed in Fig. 15 are after 2 iterations,
using a supporting threshold s, = 0.5. The performance
of the trace inference process in the presence of noise is
very satisfactory, especially for the larger neighborhood
size.

To emphasize these results, a comparison between var-
ious other methods for selecting curves is displayed in
Fig. 16. These are based on the same curve as in Fig. 15,
at /N = 0.45, the noisiest case.
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Fig. 16. A comparison of different methods for detecting curves: (a) in-
tensities thresholded to include most of the curve points, resulting in
many noncurve points being selected; (b) thresholded lateral maxima,
equivalent to the Oth iteration of the trace inference process; again, only
a low threshold allows all curve points to be selected, at the cost of
including some noncurve points; (c) previous Parent and Zucker method,
based on comparison of expected versus observed operator responses;
this method is not curvature-based, and depends only on the immediate
3 by 3 neighborhood for support, hence, the noise sensitivity; (d) trace
inference process, same as previous figure for neighborhood size 25 and
S/N = 0.45. It clearly illustrates the advantage of using curvature in-
formation.

In Fig. 16(a), an optimal intensity threshold is chosen,
interactively, so that most of the curve points are selected,
but this results in too many noncurve points being se-
lected at the same time. Significant additional processing
would be required to remove these noise points.

In Fig. 16(b), a threshold is applied to the lateral max-
ima based on an initial operator size of 25, as for the large
neighborhood of Fig. 15. This result is in fact the Oth
iteration of the trace inference process, and hence resem-
bles a process of selecting the maximal response at each
position. Again, to obtain all curve points, a low thresh-
old must be chosen, resulting in too many noncurve
points, and significant post-processing would be required.

In Fig. 16(c), the result displayed comes frorm an earlier
attempt to formulate an inference process [34] in which
consistency is achieved through comparison of expected
versus observed operator responses. This method is cor-
ner-sensitive, and slightly curvature-sensitive, and thus
represents an improvement over an earlier method using
only tangent information [32], the result of which is not
displayed here. The effective neighborhood diameter for
this experiment is 3. Thus, this procedure has only slight
curvature sensitivity, and does not have a built-in noise
removal capability for short low-contrast segments as in
the trace inference process. It is no surprise then, that this
method also degrades rapidly in the presence of noise.

Finally, in Fig. 16(d), the result for the largest neigh-
borhood at § /N = 0.45 from Fig. 15 is reproduced. Com-
parison to the rest of the figures clearly indicates the im-
portance of curvature information.

B. Natural Images

The preceding experiments on artificial images showed
that the curvature information helped the trace inference
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(a) (b)

Fig. 17. (a) An angiogram, or radiograph of blood vessels in the brain,
and (b) the result of 2 iterations of the trace inference process over the
image of an angiogram.

(a) (b)

Fig. 18. A satellite image of a forest with logging roads, and (b) the result
of 2 iterations of the trace inference process, using a neighborhood size
of 25, a step size of 1.0, and displayed at a confidence threshold of 0.6.
The curvature vectors are omitted for the sake of clarity.

process to find curves in controlled situations. The main
interest of the procedure, however, lies in its application
to finding curves in real images, such as satellite images,
biomedical images, and fingerprints. In this section, three
experiments based on such images will be described.

1) Angiogram: The first experiment takes a biomedi-
cal image as its input, an angiogram, or a radiograph of
blood vessels in the brain. It is a good example of an im-
age with many curves, all of which have varying curva-
ture, with many curve crossings at various angles.

The image is first convolved with operator parameters
as given in (7.1). The neighborhood size is 15, the num-
ber of iterations is 2, with a step size of 1.

All tangents with a certainty of at least 0.5 are dis-
played in Fig. 17, however, the curvature vectors are
omitted for the sake of clarity.

2) Satellite Image—Logging Roads in Forest: The sec-
ond natural image experiment is based on a satellite image
of forest terrain in which logging roads are visible as light,
elongated streaks, on a slightly darker background. The
experiment is performed using a size 25 neighborhood,
with parameters for the initial convolution as in (7.5), and
radius limits as defined in (7.4) for size 25. The inference
process is run for two iterations, with a step size of 1.0.

The result displayed in Fig. 18 is thresholded at a con-
fidence level of 0.6.

3) Fingerprint: The final experiment involves a fin-
gerprint image. For computational efficiency, a smaller

Fig. 19. The result of 2 iterations of the trace inference process over the
image of a fingerprint.

neighborhood size, 11 pixels in diameter, was chosen.
However, the initial convolutions were performed with
the same operator as for the angiogram experiment, i.e.,
with parameters as in (7.1).

Again, 2 iterations of the process were used. The dis-
play threshold for the tangents is set to 0.3, a low value
because the image itself had low contrast. Observe how
the tangent field follows the contours exactly, and how
end points and bifurcations are handled implicitly. Sta-
bility over neighborhood size is also illustrated, since al-
most no ‘‘clumping’’ of tangents arises (Fig. 19).

VIII. SUMMARY AND CONCLUSIONS

Information about the exact structure of curves is lost
when they are projected into quantized images. Hence,
curve detection is an inferential process, utilizing both
image information and other constraints. We formulate
the curve inference process as two distinct stages, in which
local information is first recovered so that it can guide the
global stage. In this paper we concentrated on the recov-
ery of local information, and demonstrated that it could
be accomplished both in theory and in practice.

Images contain information not directly about curves,
but rather about their traces, or the set of quantized image
positions through which the curve passes. But these traces
are not uniquely specified; they must be separated from
other image structure. Therefore, the first stage of curve
inference must include trace inference, and the develop-
ment of an approach to this occupied most of this paper.

Inherent in trace inference is a chicken-and-egg prob-
lem. If the functional form of the curve were known, then
the trace could simply be calculated. But since it is not,
most of our effort went into developing an estimation pro-
cedure sufficiently powerful to provide a model for the
curve in the neighborhood of each possible trace point.
The model for curves included the tangent and curvature
at each point, and it is this model that guided trace infer-
ences. The result was what we called a tangent field, or a
representation of the trace, tangent, and curvatures suit-
ably quantized.

Since it is the high-frequency microstructure of curves
that is lost through quantization, it is natural to employ
smoothness constraints while estimating them. We de-
rived such an estimation procedure by examining how dis-
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cretization and quantization effect their differential-geo-
metric definitions. The result was a functional with terms
through curvature variation which could be maximized to
guide trace inference. It appears that functionals through
curvature variation are necessary to properly separate the
influences of nearby curves, yet are sufficient to place dis-
continuities.

The computation of curvature is notoriously sensitive
to noise. To avoid these problems, we introduced an al-
ternate method for coarsely estimating it, based on aver-
age values of tangent estimates within spatial neighbor-
hoods called curvature classes.

Computing the tangent field was the overall goal of the
first stage of curve inference, and we demonstrated that
curvature and curvature consistency (or limits on curva-
ture variation) can be utilized advantageously. Several ex-
amples illustrated that the trace could be recovered relia-
bly, and that the information in the tangent field certainly
provides a rich, stable foundation for global curve infer-
ence.

APPENDIX A
RapIAL ProJECTION UPDATE RULE FOR RELAXATION
LABELING

Consistency is the state of a relaxation network where
the certainties of all labels are in agreement with their
support, that is, labels with high certainties have large
support while those with low certainties obtain little sup-
port. This notion can be stated as follows.

Definition: A labeling is consistent if and only if the
labeling assignment vector matches the normalized sup-
port vector at every node, that is,

-

. 5; .
P =— fori=1,---, n.
S,"l

(A.1)

In [23], an efficient update rule is described that
achieves consistency as defined above. This method uti-
lizes radial projection instead of normal projection to
avoid the complexities incurred at the boundaries of the
labeling space. This Appendix summarizes the [23] paper
to some extent; for further details and the relationship to
classical relaxation, please consult it.

Three steps are required to obtain updated labeling as-
signments using the radial projection method. Given the
initial measures of confidence, p?(\), and the compati-
bility coefficients, r; (A, N"), the first step is accumulating
the support evidence for each label

sf(N) = 2 xZ (M N) PN, (A2.2)
j=1AN=1

The second step is a projection, if required, of the support

vector at a node onto the boundary of the positive quad-

rant, to avoid labeling outside the valid assignment space

5¥ = min s¥(\) (A.2.b)
A=1l.m
s\ - 55 ifst <o
sFON) = k( ) (A.2.¢)
si(N) otherwise.

Finally, the third step is the radial projection method as
such. It consists, for each node i, of the scaled vector sum

Sk o 2wk
Skt _ _Pi S
‘ 1+ 5.0
This rule amounts to taking, from the current assign-
ment, a step in the direction of the nearest consistent as-

signment. The magnitude of this step is governed by the
quantity

(A.2.d)

k _ 5t k1
U RN
where it is known that 0 < af-‘ < 1. The rate of conver-
gence «f can be modified by scaling the support vector
§ ¥ uniformly throughout the network by any positive con-
stant, called the szep size.

(A.2.€)
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