ARTICLE Communicated by Ramamohan Paturi

Efficient Simplex-Like Methods for Equilibria of
Nonsymmetric Analog Networks

Douglas A. Miller

Steven W. Zucker

Computer Vision and Robotics Laboratory, Research Centre for Intelligent Machines,
McGill University, 3480 University Street, R. 410, Montréal, Canada H3A 2A7

What is the complexity of computing equilibria for physically imple-
mentable analog networks (Hopfield 1984; Sejnowski 1981) with arbi-
trary connectivity? We show that if the amplifiers are piecewise-linear,
then such networks are instances of a game-theoretic model known as
polymatrix games. In contrast with the usual gradient descent meth-
ods for symmetric networks, equilibria for polymatrix games may be
computed by vertex pivoting algorithms similar to the simplex method
for linear programming. Like the simplex method, these algorithms
have characteristic low order polynomial behavior in virtually all prac-
tical cases, though not certain theoretical ones. While these algorithms
cannot be applied to models requiring evolution from an initial point,
they are applicable to “clamping” models whose input is expressed
purely as a bias. Thus we have an a priori indication that such models
are computationally tractable.

1 Introduction

A fundamental question is: Do biological or other physical systems solve
problems that are NP-hard for Turing machines? Hopfield (1984) and
Hopfield and Tank (1985) have provided evidence in the negative, sug-
gesting that to the extent real or artificial neural systems appear to solve
NP-hard problems (e.g., the traveling salesman problem), this is only
illusory. Hopfield has taken the position that biological computation
amounts to designing analog networks with appropriate asymptotically
stable equilibria. What is really being solved are not NP-hard problems,
but only much easier approximations, which amount to finding these
equilibria. Thus, Hopfield seems implicitly to accept the Strong Church’s
Thesis of Vergis et al. (1986), which implies (accepting P # NP) that no
analog computer (dynamical system) can solve NP-hard problems with
less than exponential resources. (See Pour-El and Richards 1981 for an
alternative though not contradictory view.)

A similar point of view has also been taken by Hummel and Zucker
(1983) and Zucker et al. (1989) with regard to the solving of problems in

Neural Computation 4, 167-190 (1992) (© 1992 Massachusetts Institute of Technology

168 Douglas A. Miller and Steven w. Zucker

vision. Here there are instances, such as in the interpretation of line draw-
ings (Kurousis and Papadimitriou 1988), where one might be tempted to
think the brain is solving NP-hard problems, whereas what seems much
more likely is that the brain finds only quick approximations.

However, even accepting this “stable state” view of biological compu-
tation, the question remains: How do we know that finding an asymp-
totically stable equilibrium of a dynamical system is computationally
an easy problem in the Turing sense (e.g., polynomial)? This question
seems especially important for nonsymmetric networks, where there is
no descent function guaranteeing convergence. However, even in the
symmetric case it is known to be NP-hard just to decide if a given point
is a local minimum for a constrained quadratic! (Murty 1988, p. 170;
Vergis et al. 1986).

In this paper we offer a partial answer to this question. We show that
computing an equilibrium (not necessarily stable) for a Hopfield network
with piecewise-linear amplifiers and arbitrary connectivity may be done
with a type of vertex pivoting algorithm, Lemke’s algorithm, which is very
similar in its complexity to the simplex method for linear programming.
The latter is strongly polynomial in practice although not necessarily so
in theory. (An analysis of this phenomenon based on probability the-
ory has become an outstanding mathematical question in recent decades,
which has been partly answered — e.g., Adler et al. 1984.) Pivoting
methods such as Lemke’s algorithm would appear to be the only known
algorithms for finding equilibria of nonsymmetric networks that are both
guaranteed to work and have, at least in a probabilistic sense, polynomial
complexity.

On the other hand Lemke’s algorithm has two characteristics that
sharply distinguish it from more traditional techniques of following in-
tegral curves through vector (usually gradient) fields. First, it has no
sensitivity to initial conditions. Second, there is no guarantee it will
produce a stable equilibrium. In many respects the algorithm could be
expected to behave like a procedure that quickly picked an equilibrium
at random.

These characteristics suggest a different approach to continuous dy-
namic models than has been taken so far in such applications as Hopfield
and Tank’s traveling salesman network and the vision relaxation network
of Zucker et al. In these applications there are at all times an extremely
large number of equilibria, and the evolution of the system is determined
by the initial state. The supposition is that this initial state will evolve to
a stable final state in its basin of attraction. There are, however, several
possible problems with this kind of computation. First there is no guar-
antee, at least for a nonsymmetric network, than an attractive basin need
exist (cf. Appendix A). Second, there is no guarantee that convergence, if
it does occur, will be rapid, especially in numerical implementations. A
well-known example of this kind of problem is zig-zagging behavior for
steepest descent methods (Luenberger 1973). Third, an initial position

Equilibria of Nonsymmetric Analog Networks L6y

may be unstable in an especially bad way, by lying near the boundaries
of a large number of different attractive basins, and thus requiring im-
practically large precision for a useful dynamic simulation. This appears
to have been the case in the Wilson and Pawley (1988) simulations of the
Hopfield and Tank traveling salesman network.

An alternative to this “initial position” view of computation is instead -
to express an input vector as a bias on some subset of the processing
units, and then use Lemke’s algorithm. If the bias is sufficiently large we
get the kind of “clamping” described by Hinton and Sejnowski (1986)
in the context of Boltzmann machines. The effect, for an appropriately
designed or trained network, would be to eliminate the great mass of
equilibria that exist in the unbiased state, leaving the system ideally with
just one equilibrium state. The fact that we could use Lemke’s algorithm
would a priori indicate that the model was computationally tractable.
Furthermore this kind of network computation would seem more con-
sistent with the capabilities of low precision processing elements such as
neurons, where it would appear difficult to specify accurately an initial
position, or a consistent evolutionary path.

This bias/clamp approach raises the question, how much bias is nec-
essary to constitute a clamp? Put another way, if c is a vector, § a nonneg-
ative scalar, and 6c the bias, what is the minimum value of ¢ necessary
for a subset of the processing units to be clamped into a given state?
Indeed we may then ask how this minimum value would change with
respect to changes in network connectivities resulting, say, from learning.
These questions are similar in many respects to those that are efficiently
handled in linear programming using parametric sensitivity analysis based
on the simplex algorithm (Dantzig 1963). Our preliminary results sug-
gest that Lemke’s algorithm could provide the basis for a related kind of
analysis for the networks considered here.

Of course, as a general procedure for computing equilibria, one may
alternate between Lemke’s algorithm and following integral curves,
whichever is more appropriate. This approach would be analogous to the
current situation in linear programming, where the simplex method pro-
vides an indispensable theoretical framework that may be supplemented
by interior point methods such as Karmarkar’s algorithm (Murty 1988).

We shall not concern ourselves directly with the earlier Hopfield
(1982) model where the network is symmetric and the processors are
binary valued. Hopfield computes equilibria for these networks with
simple discrete descent methods not generally applicable to the later
Hopfield (1984) model or to ours. Hopfield’s (1982) problem fits into a
very interesting class of polynomial-time local search (PLS) problems (John-
son et al. 1988) and in fact is known to be polynomially complete for
this class (Papadimitriou et al. 1990). If we change this discrete problem
by allowing the processors to assume a bounded range of real values,
then it becomes one of those which we consider. However this continu-
ous problem is easier since its solution set is always at least as large or

170 pouglas A. IVIIIET and DIeven vv. Zucker

larger (cf. final example Appendix A). Thus the PLS-hardness results of
Papadimitriou ef al. would therefore not appear to apply to the kinds of
continuous problems which we consider. We discuss the complexity of
Lemke’s algorithm further in Section 6.

2 Overview of Paper

This paper describes a correspondence between analog artificial neural
networks similar to those described by Hopfield (1984) and the branch of
mathematics known as game theory. An immediate result of this corre-
spondence is the existence of a complementary vertex pivoting algorithm,
known as Lembke’s algorithm, similar in many respects to the well-known
simplex algorithm for linear programming, which will compute an equi-
librium for any instance of such an artificial neural network, regardless
of interconnectivity, and in particular for cases where the interconnectiv-
ity is nonsymmetric. Such cases are in general avoided by Hopfield, yet
are clearly of great interest for applications such as early visual processes
(Zucker et al. 1989).

We will not be concerned with game theory as a whole, which orig-
inated with von Neumann and Morgenstern (1944), and for which the
literature is now immense, but rather with a special branch known as non-
cooperative n-person games, and indeed a special branch of these known
as polymatrix games.

To give an overview of this paper, in Section 3 we introduce the theory
of polymatrix n-person games and noncooperative equilibrium strategies.

In Section 4 we describe a class of analog networks similar to those
described in Hopfield (1984), the differences being (1) that our ampli-
fiers are linear over their specified operating range, rather than asymp-
totic sigmoid over the real line, (2) that we make specific assumptions of
lower and upper bounds on the voltages that our amplifier inputs can
attain, and (3) that the interconnectivity (“synapses”) of our amplifiers
need not be symmetric. The first two modifications allow us to view
these networks as polymatrix n-person games, each player representing
a neuron, and each player/neuron having the two game strategies “de-
polarize” and “hyperpolarize.” The third modification is a bonus, since
polymatrix games do not require symmetry.

In Section 5 we show that the bounded linear voltage amplifiers of the
previous section may be replaced with bounded piecewise linear voltage
amplifiers, staying within the same model, by simply adding more lin-
ear amplifiers, approximately one per linear segment per amplifier. We
argue that only a small number of linear segments may be necessary for
biologically plausible response curves.

In Section 6 we discuss the complexity of computing equilibria for
polymatrix games and hence for our analog networks. We state as a
proposition the main result of the paper, that Lemke’s algorithm will

L]

Equilibria of Nonsymmetric Analog Networks 171

compute an equilibrium for any bounded piecewise-linear Hopfield net-
work.

While purely analytic results on the probabilistic efficiency of Lemke’s
algorithm (Todd 1983) are only suggestive, Lemke’s algorithm is known
in practice to be of low order polynomial complexity, its computational
complexity being essentially that of the well-known simplex method for -
linear programming (Murty 1988). Thus the applicability of Lemke’s al-
gorithm to computing equilibria for nonsymmetric Hopfield networks
strongly suggests such computations are tractable, and in particular, not
NP-complete (Garey and Johnson 1979). This in turn reinforces our belief
that such models may be able to capture important properties of biolog-
ical computation. Indeed, as we have noted Miller and Zucker 1991),
polymatrix games with zero self-payoff terms are equivalent to relaxation
labeling (Hummel and Zucker 1983), which has already been applied to
modeling early visual systems (e.g., Zucker et al. 1989).

In Appendices A and B we compare two quite different methods for
computing equilibria, which we refer to as primal and dual. The primal
method (Appendix A) amounts to following the integral curves of the
dynamical system defining the network. The dual method (Appendix B)
is Lemke’s algorithm, which we describe here in detail.

3 Polymatrix Games

An n-person game (Nash 1951) is a set of n players, each with a set of m pure
strategies. Player i has a real-valued payoff function s;(A1, ..., Ay) of the
pure strategies \1,. .., A, chosen by the n players. For each player there is
an additional kind of strategy called mixed, which is a probability distri-
bution on the player’s m pure strategies. A player i’s payoff for a mixed
strategy is the expected value of i’s pure strategy payoff given all play-
ers choose according to their mixed strategies. Notice that as with pure
strategy payoffs, mixed strategy payoffs are only meaningful in terms of
all players’ simultaneous actions. A noncooperative or Nash equilibrium is a
collection of mixed strategies for each player such that no player can re-
ceive a larger expected payoff by changing his/her mixed strategy given
the other players stick to their mixed strategies. Nash showed using the
Brouwer fixed point theorem that such equilibria always exist. However
they need not be stable, as we shall discuss in Appendix A.

A polymatrix game is an n-person game in which each payoff to each
player i in pure strategy is of the form

5i(AMy e e An) = D 1i(A, Ny)
j

-~:where for all i, rii(\;, 5\,-) = 0. (Here we use J\; to denote a strategy for i
that is possibly different than);.) We may interpret r;(\;, ;) as i’s payoff
from j given their respective pure strategies A; and). This implies a

172 Douglas A. Miller and Steven W. Zucker

payoff to i in mixed strategies of the form

> pild) (X Mpi(y) (3.1)

Xisy A

where p;();) is the probability player i chooses strategy .

The quadratic form of 3.1 suggests a somewhat more general defini-
tion of polymatrix games due to Eaves (1973), in which for each player i
we allow the m x m matrix corresponding to the r;; terms in 3.1, instead of
being zero, to be a symmetric negative semidefinite matrix } [rii()\i, ;\i)].
In effect we include a penalty function in i's payoff 3.1 that is a convex
quadratic function of #’s mixed strategy. Henceforth we shall use this
more general definition. Using a version of the Brouwer fixed point the-
orem (Kinderlehrer and Stampacchia 1980) one can show Nash equilibria
always exist for these more general games.

Implicit in our definition of polymatrix games is the possibility of
including a constant payoff term c;(\;) for each strategy A; of each player
i, regardless of the other players’ choices. [To see this, choose some other
player j, and add c;(\) to (A, Ay for each).] However, it will be
more convenient to make the ¢;(\;) explicit, since these will correspond
to Hopfield’s bias terms. Therefore our payoff 3.1 to i shall henceforth
be of the more general form

%Zpi()\i)rii(Ai,j\i)pi(Xi) + > i) s A)pi(y)

)\,‘,5\,’ Ai»Ajvj#i

+ D oa(pi(n) (3.2)
A

At this point it will be useful to add some notation. Observe we may
completely specify the elements of a polymatrix game with an mn x mn
payoff matrix R and an mn bias vector ¢ given by

[711(/\1,5\1)] coo (A, An)] [e1(Ad)]
: . : c= : (3.3)

R= : . :
[s AD) = [,)] [en(An)]

The matrix R corresponds to the object/label consistency matrix in relax-
ation labeling (Hummel and Zucker 1983). For each player i it will also
be convenient to refer to [c;(A;)] as ¢;, to i's vector of mixed strategies
[pi(A)] as pi, and to the vector of p;’s as p. It will also be useful to have
a direction vector d = p' — p?, for two strategy vectors p', p*. Similiarly
d; = p} — p?. If we let A be the n x mn matrix

-1...-1 --. 0...0

0... e =101

Equilibria of Nonsymmetric Analog Networks 173

and let g7 be the n-vector (—1,...,—1), then p is a vector of all players’
mixed strategies if and only if
Ap=gq, p>0 : (3.4)

Also in terms of this notation we may express the gradient of 3.2 as
n

[3] i+ @i @.5)
=1

j
Assume p satisfies 3.4 and is fixed except for player i, whose payoff
is given by 3.2. Since this function is concave, and the constraint set (a
simplex) is convex, a given mixed strategy for i will have a maximum
payoff if and only if s gradient 3.5 has a vanishing projection onto the
constraint set 3.4. Equivalently, p; is an optimal strategy for player i if
and only if there exists no directional vector d such that d; = 0 for j # i,
and

d,T (Z [r,']'()\,', 5\])] p;+ Ci) >0
j=1 !
Ad=0 (3.6)
for all X, p;(\) =0 implies d;(\;) >0
Now let all players be free to change their strategies. For p to be
a Nash equilibrium, 3.6 must be simultaneously nonsatisfiable for each
player i. It can be shown (e.g., Miller and Zucker 1991) that this set of

simultaneous conditions is equivalent to there being no d satisfying the
system

d"(Rp+¢)>0

Ad=0 3.7)
for all i, \;, p:i(\;) =0 implies d;(A;) >0
Ap=gq, p20

In view of 3.7 we now have an alternative characterization of the
Nash equilibria of the polymatrix game 3.3 in terms of the equilibria of
the dynamical system

pP=Rp+c (3.8)
Ap=9q, p20
In other words, these equilibria are precisely the points at which the

vector field of 3.8 vanishes. Notice if R is symmetric then p’ is the gradient
of

1
P Rp+cp (3.9)

The first term in 3.9 corresponds to the average local potential in relaxation
labeling (Hummel and Zucker 1983).

174 Douglas A. Miller and Steven . Zucker

4 Analog Networks as Polymatrix Games

We take as our point of departure the class of analog networks defined by
Hopfield (1984). These are dynamical systems defined by the equations

du;
C; “ = ZT,'jVj — u,-/R,- +I; “.1)
at i
wi = g (Vi)
fori = 1,...,n. Here u; and V; are interpreted as the input and out-

put voltages of an instantaneous amplifier described by a continuous
monotonic sigmoid function g;(#;). In addition we define |T;| as the con-
ductance between the output of amplifier j and the input of amplifier i,
we let C; be the input capacitance of i, we let I; be a fixed input bias
current for i, and we define R; by

1/Ri=1/pi+ > [Tyl 4.2)
i

where p; is the resistance across C;. If T is negative, then the input to
amplifier i comes from an inverting amplifier —g;(1;). Such a network is
illustrated in Figure 1.

Suppose now g; is a linear function on the real interval [0y, 8],
o; < 0 < @3, such that g;(e;) = 0, gi(f) = 1, and that «;, §; are also
upper and lower bounds on the voltage that the input capacitor to am-
plifier i can attain. Thus a further input current to a saturated capacitor
would produce no effect. (We shall show in the next section that this
model actually includes piecewise-linear voltage amplifiers as well.)

Letting & = (3 — a;) be a unitless scalar these assumptions give us a
new version of 4.1:

Ci@—i = ZT,']‘V]' - ui/R,' +I;
at 7
u; = 6Vi+ g 4.3)
o < u<pG '

Rewriting this in terms of the output voltages V; and dividing through
by §,C; we obtain

dv;
T = DTG VIRC+ (CaifRi+ DG,
j#i
0<V; <1 4.9

Notice the amplifier gain 1/; is inversely related to the influence of the
capacitance term —V;/R;C;.

h’qulllbrla ot Nonsymmetric Analog INeTwOrks 1o

|
|
g
|

VAmpliﬁer ég Inverting Amplifier @ Resistor

Figure 1: A two-node analog network. Each node or “neuron” i includes a
noninverting and inverting voltage amplifier and a capacitor C; with a parallel
“membrane” resistor. Each other node j may connect (“synapse”) onto i via
a resistance 1/|T;;| from j's noninverting or inverting amplifier, respectively,
depending on whether Tj; is positive or negative. Node i may also have a
constant input current J;. In this example T7, and T; are negative, so that the
two nodes are mutually suppressing. (Adapted from Hopfield and Tank 1985.)

If the T; are symmetric, Hopfield (1984, p. 3090) gives a function for
the dynamical system (4.1) of the form

Vi
12TV + S 1/Ri/0 ¢ (V)dv — IV
i i i
which strictly decreases with the time evolution of the system unless an
equilibrium is reached, thus showing the system cannot cycle.

Defining ¢! as in 4.3 and dividing through by 4,C; gives us

—1/2 Z Z TIJV,V]/§,C, + 1/2 z VIZ/RlCl - Z(—ai/Ri +L)V,/6,C1(45)

i j# i i

which is actually a potential function for 4.4, that is, its negative gradient
projected onto the constraint set of 4.4 is the vector field of 4.4.

In fact, 4.5 is really just an instance of 3.9, for at this point it is trivial

to show 4 equivalent to a dynamical system of the form 3.8, that is,

176 Douglas A. Miller and bteven . Zucker

to a polymatrix game. The idea is, first, to associate amplifiers with

players, and then, for each i, to let player i have exactly two strategies d

(“depolarize”) and h (“hyperpolarize”), and to associate p;(d) with V.
To do this, let

T,‘j(d, d) = 2T,-,-/(5,C,'

ri,-(d, d) = —2/R1~C,- (46)
C,‘(d) = 2[(—04,-/R,<) + I,']/(S,'Ci
and all other entries of R and c be zero. Using the first line of 3.8 we find
] 47
[plh) @
[2 (Si(Ty/6C)pi(d) = (1/RCIpd) + [(~ei/Ri) + 1/6.C;) J
0

We may then compute the magnitude m;(d)’ of the projection of 4.7 onto
the subspace p;(d) + pi(h) = 1 in the p;(d) direction by taking the dot
product of 4.7 with (1/v2,-1/v/2), obtaining

m(d) = V2 {Z(Tij/5ici)l’j(d) ~ (1/RiCi)pi(d) + [(—0u/Ri) + I,-]/&,-ci}

j#i
Using the simple geometrical relation (d/dt)pi(d) = m;(h)'/ V2, we see that
each (d/dt)p;(d) satisfies precisely the same equation as dV;/dt in 4. Thus
we have an instance of a polymatrix game of the form 3.8 which is equiv-
alent to 4.

5 Extension to Piecewise-Linear Amplifiers

—

In this section we show that the bounded linear amplifiers described pre-
viously can, within the same model, be used to construct, to an arbitrary
degree of accuracy, any piecewise-linear amplifier with bounded input.

To consider the simplest case, suppose we want a voltage amplifier g;
(Fig. 2) whose input #; is bounded between o and f;, and which linearly
maps the interval [&, 3] onto [0,1], where o; < @ < § < §. We can
construct §; with two bounded linear amplifiers

gt o, B — [0,1] 5.1)
gr: lgi(@)/2,(6:)/2] — [0,1]

using the circuit in Figure 3. With respect to Figure 3, let p; and C; have
the desired values for the input to amplifier g;, and let T;; = p; = 1.
Observe p; and C; act as a low-pass frequency filter for amplifier i. It
follows that if we choose C; sufficiently small with respect to C;, we may
neglect its impedance, treating the output of i as going instantaneously

Equilibria of Nonsymmetric Analog Networks 1//

0.9 H

0.8 +

0.5 -

0.4

OUTPUT VOLTAGE

0.3 4

0.2 4

B;

R
o
kY

INPUT VOLTAGE
[a] PIECEWISE LINEAR

Figure 2: Piecewise-linear amplifier §; with one nonzero slope.

through a pure voltage divider. In that case

Vi(t)Ti; — u(H)(1/pi + Tis) = 0 (5.2)
and hence

ui(t) = Vi(t)/2 (5.3)

It follows from 5.1 and 5.3 that in response to any input voltage to am-
plifier g;, g7 and hence g; will have (as C; goes to zero) the output given
in Figure 2.

This procedure may be extended to more complicated piecewise-linear
amplifiers §; such as in Figure 4, where we have two distinct nonzero
slopes. Here the lower and upper bounds are «; and 3, the first nonlin-
earity occurs at a;q), the second at S (which we also label), and
the third at fip). To create §;, we may use the circuit in Figure 5. As
before, p; and C; have the desired values associated with the input to 3
Other values are

piy = piey=pi=1
Ty, = Tipi=1

178 Douglas A. Miller and Steven W. Zucker

P o input voltage

output voltage

Figure 3: Circuit giving piecewise-linear response of Figure 2. Note amplifiers
8 and g; are same type as in Figure 1.

and
Tf,i(z) =2(1—p)

where 1 = 3i(8i1)) = gi(aizy) will be used as a weighting factor between
the two nonzero slopes. Further let

8i: [ai,ﬂi] - [011] _

8i * [gilai(1)]/2,8:[5(1)]/2) — [0,1] (5.5)
" 8iw : (8il@i(2)1/2,8i(5:(2)]/2] — [0,1]

g :[0,2/3] — [0.1]

If all other capacitors are small relative to C;, then as before we have in
the limit

uin(t) = Vi) /2, wpy(t) = Vi(t)/2 (5.6)
and in addition

ViayO) Tz + Vi) ()T i) — wi(8)(1/ 03+ Tr 1) + Triy) =0

Equilibria of Nonsymmetric Analog Networks Ly

0.9

0.8

0.6 A

0.5 ~

0.4

OUTPUT VOLTAGE

0.3 H

0 #8-EffuF T 7 + - {
o o1y Biq) Bi

INPUT VOLTAGE
o PIECEWISE LINEAR

Figure 4: A piecewise-linear amplifier §; with two nonzero slopes.

hence
us(t) = [Viqy(t) + Vi) (£)]/3 ' 5.7

It follows from 5.4-5.7 that §; will have the desired form. Notice that
5.5 uniquely determines the abscissa values of the nonlinear points of
Figure 4, and that 5.4 uniquely determines the ordinate value for the
transition from the first nonzero slope to the second.

The reader may verify that in general this procedure can be extended
to n nonzero slopes using # + 2 bounded linear amplifiers.

Although there is a complexity cost in this procedure (see the next
section and Appendix B), the low precision of individual neurons as
processing units implies that piecewise-linear approximations with just
a few linear segments are often likely to suffice, in which case the ex-
tra computational cost would be minimal. For instance in Figure 6 we
compare a piecewise-linear response curve with a smooth asymptotic
sigmoid g(u) = v/[1 + exp(—u/A)]. If we assume (cf. Hopfield 1984) that
the smooth sigmoid represents the mean firing rate of a spiking neuron
for a 50 msec interval, that the neuron’s upper firing rate is 200/sec, and
that the number of firings in a time interval has a Poisson distribution,

180 Douglas A. Miller and dteven vv. Zucker

P o input voltage

= Ci(n = G
-_- i(1)
T7,i(1)
P
- CJ

output voltage

Figure 5: Circuit giving piecewise-linear response of Figure 4. In general n
nonzero slopes require # + 2 bounded linear amplifiers.

then the upper and lower curves give the corresponding values of the
asymptotic sigmoid mean plus and minus a standard deviation. It seems
hard to imagine, within the kind of time periods in which neural systems
compute (e.g., a few hundred msec), that one could distinguish between
the dynamical behavior of a system composed of one or the other kind
of low-precision amplifier.

6 Complexity of Computing Equilibria

In the previous sections we have reduced the problem of finding an
equilibrium for a general analog network with bounded piecewise-linear
amplifiers to that of finding an equilibrium of a polymatrix game. We
therefore now address the question of how we can find such an equilib-
rium, and do so in a computationally efficient manner.

Certainly the question is far from trivial since, as is shown in Ap-
pendix A, a primal approach such as a generalized gradient descent tech-
nique that simply follows integral curves, while potentially useful, can
fail badly even in very simple nonsymmetric cases.

Equilibria of Nonsymmetric Analog Networks 101

[&]
)
[%2]
=
o
'e}
~
2}
&)
Z
&
L
INPUT VOLTAGE
o PIECEWISE + SIGMOID o — sSD a +SD

Figure 6: A biological frame of reference for comparing a smooth and a
piecewise-linear response curve. We assume (cf. Hopfield 1984) that the sig-
moid represents the mean firing rate of a spiking neuron for a 50 msec interval,
that the upper firing rate is 200/sec, and that the number of firings in a time
interval has a Poisson distribution. The upper and lower curves give the cor-
responding values of the asymptotic sigmoid mean plus and minus a standard
deviation. Thus the piecewise linear curve js well within the likely statistical
behavior of a neuron with the given asymptotic sigmoid mean firing rate.

In this section we describe an alternate view of this problem, a dual ap-
proach, to borrow from mathematical programming terminology, which
will provide us with an algorithm for computing an equilibrium for any
problem instance, in a time complexity which, while not deterministically
polynomial, appears to be polynomial at least in a very strong probabilis-
tic sense.

Let us first redefine R and ¢ by adding a sufficiently small negative
constant k to each term so that

R <0, c<0 (6.1)

Notice this does not alter the Nash equilibria, since each player receives
an identical penalty (n + 1)k regardless of strategy. On the other hand,

182 - Douglas A. Miller and Steven W. Zucker

6.1 implies each player’s payoff gradient 3.5 is negative. This permits us
to relax 3.4 and replace it with

Ap<gq, p20 6.2)

(To see this, observe that for some i, letting A;. be the ith row of A, if
Aip' < g;, then for some ¢ > 0, p? = (1 — €)p} is a feasible preferred
strategy for i given the other players’ strategies remain unchanged. Thus
all equilibria must still satisfy 3.4.)

We now describe our principal analytic tool, a variant of the well-
known theorem of Kuhn and Tucker (1951). The idea is to replace the
requirement of the nonexistence of d in 3.7 with the requirement of the
existence of a pair of vectors of dual variables or Kuhn—Tucker multipliers
y, u. The n multipliers y correspond to the n constraints Ap < g, and the
mn multipliers u correspond to the mn constraints p > 0.

Now it can be shown (e.g., Miller and Zucker 1991) that finding p
and v satisfying our original equilibrium conditions 3.7 is equivalent to
finding p,y,u, v that satisfy the system

p.y,u,v>0 (6.3)

where v is an n-vector, I,, and I, are identity matrices of size mn and 7,
and R, p, ¢, g are as in Section 3.

We refer to v as a vector of slack variables for the constraints 6.2. This
is because 6.3 implies

Ap+v=g, p,v>0 (6.4)

which is of course equivalent to 6.2. Similarly p may be viewed as a
set of slack variables for the #n constraints p > 0. The third line of 6.3
may then be interpreted as stating that if a slack variable is positive, its
Kuhn-Tucker multiplier is zero.

The first two lines of 6.3 represent a set of linear equalities and lin-
ear inequalities of the kind found in the well-known linear programming
problem (e.g., Dantzig 1963). Although solving such problems is far
from trivial, they are known to be of polynomial computational complex-
ity in terms of the problem specification size, as opposed NP-complete
problems, which are for all practical purposes of exponential complexity
(Garey and Johnson 1979).

The situation changes dramatically, however, when we consider the
third line of 6.3. The problem then becomes an instance of the linear com-
plementarity problem, which in general is NP-complete (Garey and Johnson

Equilibria of Nonsymmetric Analog Networks 155

1979). Furthermore, although the theory of NP-completeness applies to
digital computation (specifically, Turing machines) the intuitively attrac-
tive thesis has been proposed that any analog machine (such as Hopfield
and Tank 1985) for solving NP-complete problems would necessarily con-
sume exorbitantly large physical resources (Vergis ef al. 1986). (Note Hop-
field and Tank do not actually claim to solve the NP-complete traveling
salesman problem with an analog device, but merely to find approxi-
mate solutions.) Thus it seems very difficult to accept the idea that any
biologically plausible system could be based on solving an NP-complete
problem. In particular, if finding an equilibrium for the kinds of poly-
matrix games we are interested in is an NP-complete problem, it is hard
to imagine such a model could be biologically useful. (See also Kirousis
and Papadimitriou 1988 and Tsotsos 1988.)

There is a possible way out of this impasse, in that 6.3 has a special
structure, and linear complementarity problems with special structure
may still be solvable in polynomial time.

For instance if R is negative semidefinite, then 6.3 may be solved in
polynomial time by an algorithm similar to the ellipsoid algorithm for
linear programming (Adler et al. 1980). This class of Rs has two important
subclasses. The first consists of those R that are also symmetric, in which
case solving 6.3 amounts to solving a convex quadratic program. The
second subclass consists of those R for which the diagonal submatrices
[r,-,-(/\i, 5\,-)] are zero for each i, and for which R = —RT". Such an R is
trivially negative semidefinite, and defines a zero sum polymatrix game.
It follows that equilibria for such games may be computed in polynomial
time.

To the authors’ knowledge, the complexity of computing general poly-
matrix game equilibria, that is, linear complementarity problems of the
form 6.3, is an open question. There are, however, results that at least
make it appear unlikely this problem is NP-complete. In particular, 6.3
may be solved by an algorithm belonging to a family of vertex pivot-
ing algorithms (the most well-known member being the simplex method
for linear programming) that tend to be extremely fast in practice but
that can, in certain artificial cases, require exponential time (Murty 1988,
p- 162; Cottle 1980).

This algorithm, known as Lemke’s algorithm, is described in detail in
Appendix B. It was not originally used for polymatrix games, and the
fact that it could be was first recognized by Eaves (1973), although in a
different form than 6.3 (see also Appendix B for a discussion of Eaves’
method).

Independently of Eaves’ result, we showed Lemke’s algorithm could
also be applied in a form known as copositive-plus, of which 6.3 together
with the assumption 6.1 is an example (Miller and Zucker 1991).

Given that we may use Lemke’s algorithm for polymatrix game equi-
libria, if we extrapolate from linear programming, for which true polyno-
mial algorithms were found after decades of experience with the simplex

184 Douglas A. Miller and Steven W. Zucker

method, the latter invariably polynomial in practice, then it seems rea-
sonable to hope that true polynomial algorithms exist for polynomial
game equilibria as well.

Moreover, from the point of view of the present paper, what is sig-
nificant is that in practice 6.3 is solvable in polynomial time, just as with
NP-complete problems it is only known that in practice they are not solv-
able in polynomial time. [To know the latter with certainty would mean
solving the famous “P = NP?” problem (Garey and Johnson 1979).]

Indeed the above probabilistic view of the efficiency of Lemke’s algo-
rithm has been given a rigorous form. Todd (1983) has shown, under an
extremely broad class of joint probability distributions on the numerical
components of the linear complementarity problem, that the expected
number of pivots (see Appendix B) of a particular form of Lemke’s al-
gorithm is bounded above by N(N +1)/2, where N is the number of lin-
ear equations, and hence the total expected computation is polynomial.
While problems of the form 6.3 can only be regarded as a subpopula-
tion of a population of problems for which this result holds, still Todd’s
analysis is highly encouraging.

We conclude this section with two propositions. First, since we have
reduced our modified Hopfield network (4.3) to a two-strategy polyma-
trix game (3.8) we may state

Proposition 1. The complexity of computing an equilibrium for an analog net-
work with piecewise-linear amplifiers is bounded by the complexity of computing
an equilibrium for a polymatrix game.

Finally, since Lemke’s algorithm solves the linear complementarity
problem 6.3, which is equivalent to finding an equilibrium for 3.8, we
conclude

Proposition 2. Lemke’s algorithm computes an equilibrium for an analog net-
work with piecewise-linear amplifiers, for arbitrary interconnections, amplifier
gains, and input biases.

7 Appendix A: Computing Equilibria with Integral Curves

In this appendix we shall discuss a primal algorithm for computing poly-
matrix game equilibria, that is, an algorithm which attempts to solve 3.8
directly.

The primal method we shall be concerned with is in a sense the most
obvious method, and the only one plausible biologically. It amounts to
following the integral curves of the dynamical system 3.8 defining the
network (cf. the relaxation labeling algorithm of Hummel and Zucker 1983).
Although Hopfield and Tank (1985) have built physical devices to imitate

Equilibria of Nonsymmetric Analog Networks 185

such systems, this algorithm can of course be attempted numerically, for
instance by a piecewise smooth version of Euler’s method, each “piece”
corresponding to a new face of the polytope constraint set. If R is sym-
metric this is similar to the projected gradient method of mathematical
programming (Luenberger 1973, p. 247).

Specifically, given a point p*, the algorithm may be described as fol-
lows: Iteratively compute p**! by letting d* + p* be the projection of
Rp* + ¢ onto the constraint set Ap = g, and letting d* + p* be the projection
of Rp* + ¢ onto Ap = g together with all constraints p; = 0 for which both
p¥ = 0 and d* < 0. Then let p**! = p* + o*d* for some scalar o* > 0. If
d* = 0, the algorithm terminates and p* is an equilibrium. There are many
critical issues in implementing this method, such as the choice of o, the
manner of computing the projection (trivial in the two-state case), and
the choice of a stopping rule, since in general d* = 0 will be a numerical
impossibility, unless, as is common in optimization procedures, we use
the proximity of the p* to a particular vertex to correctly guess that that
vertex is an equilibrium.

As Luenberger (1973, p. 251) notes, a major source of potential dif-
ficulty with the primal algorithm is the discontinuous behavior of the
vector field on the polytope boundary, although he also states this is not
a problem in practice for the projected gradient method. However, from
a theoretical standpoint the absence of a global Lipschitz condition

7 (") = (Pl < Mlp* =]l

where 7(p) is the projected vector field at p and A > 0 a constant, makes it
difficult to say much about the complexity of the primal method, except
for a given smooth segment belonging to the interior of a given polytope
face. For such a segment ¢(t), to <t < #; (where the Lipschitz condition
does hold) we can show (cf. Vergis et al. 1986, p. 108) that an approxi-
mation to the actual curve can be computed to any accuracy € > 0 with
a number of steps which is polynomial in 1/e. However, at least with
Euler’s method, the number of steps required for a given accuracy e may
be exponential in (#; — to).

If R is not symmetric there is perhaps a deeper problem than disconti-
nuity and numerical approximation, namely the question of convergence
of the integral curve itself. Consider for example the zero sum game

given by

) c=[0] (7.1)

186 Douglas A. Miller and Steven W. Zucker

We can compute the magnitude of the projection of the vector

1), (p1(h)'] = [p2(d), 1 — pa2(d)] (7.2)

onto the subspace pi(d) + pi(h) = 1 by taking the dot product of 7.2
with (1/v/2,-1/v/2), giving v2p,(d) — 1/v/2. Dividing by v2 gives the
projected derivative of p;(d) as a function of p,(d), namely

2 pid) = pald) 172

Similarly we have

d
Spa(d) = —pi(d) +1/2
Substituting, we get the second order linear equation

d2
ﬁpz(d) +p2(d) = 1/2

whose solutions are of the form
a sin(t) + Bcos(t) +1/2

Similarly for solutions of p;(d). Thus 7.1 has just one convergent solu-
tion, namely the constant curve corresponding to the unique equilibrium
p1(d) = p2(d) = 1/2. All other curves not touching the polytope boundary
will follow a closed elliptical contour and never converge.

Thus the primal algorithm need not find an equilibrium for 3.8 in its
general form. As with the discontinuity and numerical questions, how-
ever, we interpret this as implying that one should choose biologically
plausible instances of 3.8, rather than reject the primal method.

We conclude this section by noting that if we change the —1s to 1s in
7.1, we have the solution

a exp(t) + 8 exp(—#) +1/2 (7.3)

which gives rise to an unstable saddle equilibrium at p;(d) = p2(d) =
1/2. Thus from a purely analytic viewpoint we also have the possibility
(o = 0) of the solution curve reaching an unstable equilibrium. How-
ever, in practice the first term in 7.3 eventually will dominate, and the
system will reach one of the two stable equilibria [p1(d),p2(d)] = (1,1) or

[p1(d), p2(d)] = (0,0).

8 Appendix B: Lemke’s Algorithm

We now describe a dual algorithm for 3.8, that is, an algorithm that
directly solves the equivalent dual problem 6.3. This procedure, known
as Lemke’s algorithm, is one of a family of vertex pivoting algorithms

Equilibria of Nonsymmetric Analog Networks 187

that has been developed for the linear complementarity problem, of which
6.3 is an example. (See Murty 1988 for a comprehensive survey. Also
Cottle and Dantzig 1968.)

The central algebraic operation of all these algorithms is a pivot or
basis change. The operation acts on a system linear equations

Ax="b 8.1) |

where A is an M x N matrix (M < N), and presupposes an M x M iden-
tity matrix Iy distributed among the columns of A (the basis columns). A
pivot is then a choice of a nonbasic column r and a basic column s, and
a corresponding multiplication of A, b by an M x M matrix B such that
BA contains an identity matrix in column r and the m —1 columns of the
former basis excluding s. The significance of a basis is that a solution to
Ax = b is trivial since if Iy is, say, the first M columns of A, then we need
]ustletx,—bforz—l . M,and x; =0fori=M+1,...,N.

A key feature of plvotmg is that once a column is chosen to enter the
basis, the requirement that b and Bb be nonnegative will (under certain
mild nondegeneracy conditions) uniquely determine which column will
leave.

With Lemke’s algorithm we associate 8.1 with the first line of 6.3 and
then add to A a temporary “artificial column” z of negative numbers
(say —1s) corresponding to a new variable zp. A special initial pivot
brings zo into the basis and causes the right-hand side of 8.1 to become
nonnegative. All subsequent pivots will maintain this nonnegativity, thus
satisfying the second line of 6.3 and also determining which column can
leave the basis. Satisfying the third line of 6.3 (the “complementarity”
condition) will determine which column can enter, and thus a unique
pivoting sequence is specified. The algorithm terminates in a solution
when the first line of 6.3 is satisfied as well, which coincides with z,
leaving the basis.

In general Lemke’s algorithm may not terminate in a solution. This
occurs when the new pivoting column is nonpositive (geometrically an
infinite ray), thus making it impossible to pivot into that column and
preserve the nonnegativity constraints. A critical issue in Lemke’s algo-
rithm is therefore specifying sufficient conditions on the structure of the
linear complementarity problem being solved to ensure that

1. either a termination in a solution occurs, or
2. termination in a ray implies there exists no solution.

[In the case of polymatrix game equilibria a solution always exists, so the
above conditions (1) and (2) imply that a solution is computed.] In Miller
and Zucker (1991) we have observed that polymatrix games may be put
in such a form, a special case of a class defined by Lemke (1965) and
later known as copositive-plus (Cottle and Dantzig 1968). With respect to
6.3, the essential condition for this result is that we may assume R < 0.

188 Douglas A. Miller and Steven W. Zucker

A result by Eaves (1973) shows that polymatrix games fit into another
class of linear complementarity problem of the same general form as 6.3,
for which Lemke’s algorithm is also guaranteed to terminate successfully.
In this case there is no requirement that R < 0. However it is necessary
that Ap < g include the special constraint

e'p<k

where e is a vector of 1s, and « is a variable that is treated during each
pivoting operation as though it were arbitrarily large in relation to the
absolute values of any numbers used to specify the problem.

As with the simplex method for linear programming, Lemke’s algo-
rithm may take an exponential number of pivots to solve certain linear
complementarity problems (e.g., Cottle 1980). However, as far as we
are aware, all cases where exponential behavior has been demonstrated
were specifically created for that purpose. When applied to real world
or simulated random problems, the typical number of pivots needed for
Lemke’s algorithm to terminate is O(M) (Murty 1988, p. 162), or in the
present case O(mn). Since each pivot may be accomplished in O(M?)
arithmetic operations, this implies an empirical bound of O(m*n?®) arith-
metic operations. If, as in the present case, m is fixed, then we get O(nd).

Acknowledgments

The authors thank Frank Ferrie and David Jones for valuable criticism
and suggestions. This research was supported by grants from NSERC
and AFOSR. S. W. Z. is a Fellow, Canadian Institute for Advanced Re-

search.

References

Adler, I, McClean, R. P, and Provan, J. S. 1980. An application of the Khachiyan-
Shor algorithm to a class of linear complementarity problems. Cowles Foun-
dation Discussion Paper 549, Yale University, New Haven, Connecticut.

Adler, I, Megiddo, N., and Todd, M. J. 1984. New results on the average
behavior of simplex algorithms. Bull. Am. Math. Soc. (N.S.) 11, 378-382.

Cottle, R. W. 1980. Observations on a class of nasty linear complementarity
problems. Discrete Appl. Math. 2, 89-111.

Cottle, R. W., and Dantzig, G. B. 1968. Complementary pivot theory of mathe-
matical programming. In Mathematics of the Decision Sciences, G. B. Dantzig
and A. F. Veinott, Jr,, eds., Part I, pp. 115-136. AMS.

Dantzig, G. B. 1963. Linear Programming and Extensions. Princeton University
Press, Princeton, NJ.

Eaves, B. C. 1973. Polymatrix games with joint constraints. SIAM J. Appl. Math.
24, 418423,

Equilibria of Nonsymmetric Analog Networks 189

Garey, M. R, and Johnson, D. S. 1979. Computers and Intractability. W. H. Free-
man, San Francisco.

Hinton, G. E., and Sejnowski, T. J. 1986. Learning and relearning in Boltzmann
machines. In Parallel Distributed Processing, D. E. Rumelhart and J. L. Mc-
Clelland, eds., Vol. I, pp. 282-317. MIT Press, Cambridge, MA.

Hopfield, J. J. 1982. Neural networks and physical systems with emergent -
collective computational abilities. Proc. Natl. Acad. Sci. U.5.A. 79, 2554-2558.

Hopfield, J. J. 1984. Neurons with graded response have collective computa-
tional properties like those of two-state neurons. Proc. Natl. Acad. Sci. ULS.A.
81, 3088-3092.

Hopfield, J. J., and Tank, D. W. 1985. ‘Neural’ computation of decisions in
optimization problems. Biol. Cybernet. 52, 1-12.

Hummel, R. A., and Zucker, S. W. 1983. On the foundations of relaxation
labeling processes. IEEE PAMI 5, 267-287.

Johnson, D. S., Papadimitriou, C. H., and Yannakakis, M. 1988. How easy is
local search? J. Comput. Syst. Sci. 26, 79-100.

Kinderlehrer, D., and Stampacchia, G. 1980. An Introduction to Variational Inequal-
ities and Their Applications. Academic Press, New York.

Kirousis, L. M., and Papadimitriou, C. H. 1988. The complexity of recognizing
polyhedral scenes. J. Comput. Syst. Sci. 37, 14-38.

Kuhn, H. W,, and Tucker, A. W. 1951. Nonlinear programmihg. In Second
Berkeley Symposium on Mathematical Statistics and Probability,]. Neyman, ed.,
pp- 481-492. University of California Press, Berkeley, CA.

Lemke, C. E. 1965. Bimatrix equilibrium points and mathematical program-
ming. Management Sci. 11, 681-689.

Luenberger, D. G. 1973. Introduction to Linear and Nonlinear Programming. Addi-
son-Wesley, Reading, MA.

Miller, D. A., and Zucker, S. W. 1991. Copositive-plus Lemke algorithm solves
polymatrix games. Operations Res. Lett. 10, 285-290.

Murty, K. G. 1988. Linear Complementarity, Linear and Nonlinear Programming.
Heldermann Verlag, Berlin.

Nash, J. F. 1951. Noncooperative games. Ann. Math. 54, 286-295.

Papadimitriou, C. H., Schéffer, A. A., and Yannakakis, M. 1990. On the com-
plexity of local search. Proceedings of the 22nd Annual ACM Symposium on the
Theory of Computing, Baltimore, Maryland, May, 438-445.

Pour-El, M. B., and Richards, 1. 1981. The wave equation with computable
initial data such that its unique solution is not computable. Adv. Math. 39,

" 215-239.

Sejnowski, T.J. 1981. Skeleton filters in the brain. In Parallel Models of Associative
Memory, G. E. Hinton and J. A. Anderson, eds., pp. 189-212. Lawrence
Erlbaum, Hillsdale, NJ.

Todd, M. J. 1983. Polynomial expected behavior of a pivoting algorithm for linear
complementarity and linear programming problems. Tech. Rep. 595, School of
Operations Research and Industrial Engineering, Cornell University, Ithaca,
New York.

Tsotsos, J. 1988. A ‘complexity-level’ analysis of intermediate vision. Int.].
Comput. Vision 1, 303-320.

190 Douglas A. Miller and Steven yv. Lucker

Vergis, A., Steiglitz, K., and Dickinson, B. 1986. The complexity of analog
computation. Math. Comput. Simulation 28, 91-113.

von Neumann, J., and Morgenstern, O. 1944. Theory of Games and Economic
Behavior. Princeton University Press, Princeton, NJ.

Wilson, G. V., and Pawley, G. S. 1988. On the stability of the travelling salesman
problem algorithm of Hopfield and Tank. Biol. Cybernet. 58, 63-70.

Zucker, S. W., Dobbins, A., and Iverson, L. 1989. Two stages of curve detection
suggest two styles of visual computation. Neural Comp. 1, 68-81.

Received 23 October 1990; accepted 10 May 1991.

R

