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A problem in visual labeling and artificial neural networks, equivalent to finding Nash equilibria for polymatrix n-person games, may 
be solved by the copositive-plus Lemke algorithm. Analysis suggests efficiency improves Howson's  recursive method by O(n -1 ) and 
is same order as Eaves' L2-formulation. Method extends to any dynamical system p '  = Rp + c, Ap <_ q, p >_ O. 
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1. Introduction 

In [13] Lemke and Howson showed how to find 
Nash equilibria [15] for bimatrix games by for- 
mulating the problem as an instance of what came 
to be known as the linear complementarity prob- 
lem (LCP). Lemke later described this more gen- 
eral problem in [12], and gave a complementary 
pivoting procedure using a negative artificial col- 
umn for solving certain special cases, in particular, 
where the defining matrix M was, as Cottle and 
Dantzig [1] later referred to it, copositive-plus. 

However, it was not apparent in [1] or [12] how 
to fit bimatrix games into the copositive-plus cate- 
gory, and the solution of bimatrix games depended 
on a special starting pivoting sequence which did 
not involve an artificial column. Eaves [2] showed 
that a slight reformulation of the bimatrix games 
problem fit into his more general class of L-class 
LCP's, for which he showed Lemke's method with 
artificial column terminated successfully. How- 
ever, Eaves' formulation of bimatrix games was 
not copositive°plus. 

Shortly afterward Howson [7] described an al- 
gorithm, suggested by a more general algorithm of 
Wilson [16], for polymatrix n-person games, that 

is, n-person games where payoffs to player i in 
pure strategies are of the form 

. . . . .  x . )  = X;). 
.1 

where r;j()~;, 2~;) is i ' s  payoff from j given re- 
spective strategies )~; and )~j ,  and where 
r;j(~,, ~j) = 0 for i = j .  This implies a payoff to i 
in mixed strategies of the form 

E e,(X,)r,j(x,,  x j )p j (x ; ) .  (1) 
)x,,j,)x; 

where p;()~;) is the probability player i uses 
strategy 2%, i =  1 . . . . .  m. (For simplicity and 
without loss of generality we shall assume each 
player has exactly m pure strategies, though in 
general there can be any finite number.) Note for 
two players we have the usual bimatrix game. 

Howson ' s  algori thm was recursive, and 
amounted to solving n -  1 LCP subproblems of 
sizes k(m + 1), for k = 2 . . . . .  n. 

Subsequently, Eaves [4] formulated a more gen- 
eral form of the polymatrix game problem within 
his L2-class of LCP's solvable by Lemke's al- 
gorithm. Eaves' method required solving just one 
LCP of size (m + 2)n + 1. 
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Similarly, the present paper shows how to re- 
duce the polymatrix game equilibria problem to a 
copositive-plus LCP of size (m + 1)n, solvable, 
like Eaves' formulation, with a single application 
of Lemke's algorithm. 

If we assume an LCP of K rows requires O ( K )  
pivots [14, p. 162], and each pivot O ( K  2) ope r -  
a t ions ,  then the comparison in arithmetic oper- 
ations of Howson's recursive method to the copo- 
sitive-plus and Lz-class methods is O(~=2m3k  3) 
or O(m3n 4) versus O(m3n3). 

Even for modest size n this difference would 
appear to be critical. For applications such as 
finding equilibria for dynamical systems of artifi- 
cial neural networks in early vision processes [17], 
where n may be several orders of magnitude, 
Howson's recursive algorithm would appear quite 
impractical. 

Comparing the present method to Eaves' [4], 
the most obvious difference would seem to be the 
sparsity of the LU decomposition of the basis 
columns. Since the LCP formulation we shall de- 
scribe requires adding a constant to a submatrix 
of the original matrix, the present method would 
have a distinct disadvantage if this were to ad- 
versely affect the sparsity of the LU terms. How- 
ever, it can be shown (Appendix) that it suffices to 
compute the LU terms of a matrix identical or 
very close to the original sparse matrix, in ad- 
dition to solving a trivial vector equation. Thus, 
pivoting efficiency would not seem to be a signifi- 
cant difference between the two methods. 

Finally we show copositive-plus LCP's also 
solve any linear dynamical system p '  = Rp, Ap < 
q, p > 0 in the following sense: either an equi- 
librium of the system is computed, it is demon- 
strated the constraint set is infeasible, or an in- 
finite ray representing an unbounded integral 
curves is computed. This implies a copositive-plus 
version of Eaves' L 2 computational results for 
generalized polymatrix games with joint con- 
straints and convex quadratic penalties [4], and for 
general quadratic programming [3]. 

Clearly, one result of the present work is to 
extend the already considerable importance at- 
tached in [1] and [12] to copositive-plus LCP's. 

Another result is to exhibit a strong connection 
between game theory and certain problems in 
artificial intelligence. Indeed our approach to 
polymatrix games was inspired by the equivalent 
relaxation labeling problem [8]. The latter was 

formulated in order to find easy continuous ap- 
proximate solutions for NP-hard discrete prob- 
lems in visual labeling such as the well-known 
blocks world problem [10]. This work was similar 
in many respects to Hop field and Tank's later 
efforts to find approximate solutions to the travel- 
ing salesman problem using artificial neural net- 
works [6]. More recently, artificial neural networks 
modeling early visual processes in the brain have 
been formulated as relaxation labeling problems 
[171. 

The solution method described in [8] for relaxa- 
tion labeling is of course applicable to polymatrix 
games. This method amounts to following an in- 
tegral curve of a constrained linear dynamical 
system defining the polymatrix game. In the case 
of symmetric payoffs (e.g. [17]) it reduces to a 
gradient projection algorithm, the function maxi- 
mized being the sum of all payoffs. However, for 
nonsymmetric payoffs such as zero sum games 
convergence may be poor or nonexistent. On the 
other hand this primal method describes the dy- 
namical behavior of a very broad class of artificial 
neural systems. How it can be complemented by 
dual methods such as those treated here would 
seem a fruitful question for future research. 

2. Relaxation labeling 

In their paper [8], Hummel and Zucker pose a 
mathematical programming problem of impor- 
tance to visual processing. We shall refer to this as 
the relaxation labeling problem and denote it (P). 
It may be stated: 

(P) Given a set of n objects, each object i having 
m possible labels indexed by X~, and each objec t /  
label pair i, ~i, J, Xj having a mutual support 
rij(h ~, X j ) ~  R, find a set of weighted labelings 
{ pi(Xi)}i.x, such that: 

Y'~pi(Xi) = 1 for all i, 
X, 

pi(Xi)>O for a l l i ,  Xi 
(2) 

and such that 

E r,j(X,, Xj)p (Xj)d,(X,) > o 
i,Xi,j,~./ 
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has no solution for di(Xi), 1 < i < n, 1 < X i < m, 
where 

Y ' ~ d , ( X i )  = 0 for all i ,  
X, 

if p ,(X,)  = O, then d,(X,)  > 0 for all i, X,. 

The motivation for this problem is more ap- 
parent in looking at an equivalent problem (~') [8, 
Theorem, 4.1, p. 273]: 

(P) Find a set of labels such that the weighted sum 
of supports of all labels at object i by all other 
labels, that is, the sum 

Ev,(x,) I2 r,j(X,, X,)pj(Xj) (3) 
X, j , h  I 

is maximized over all possible labels v,(X~) by 
setting v~(Xi)=pi(X,). 

Comparing (3) to (1), and changing the terms 
'label' to 'strategy', and 'object' to 'player' ,  (F') 
becomes precisely te problem of finding a mixed 
strategy equilibrium for a polymatrix n-person 
game. 

3. The copositive-plus LCP 

The LCP problem is that of finding real m-vec- 
tors z, w such that: 

- M z + w = q ,  w>O, z > 0 ,  ZTw=O, (4) 

where M is a given m × m matrix, and q is a 
given real m-vector. 

Lemke [12] described a complementary pivot- 
ing procedure for solving any LCP using a nega- 
tive artificial column to start. However, in general, 
cases where the pivoting process terminated in a 
nonpositive column constituted a failure. Only for 
certain specific classes of matrices M the proce- 
dure was shown to be failproof. (This was not so 
surprising in retrospect, since it was later shown 
that the general LCP problem is NP-complete.) 
The focus of the LCP problem therefore became 
in [1] and [12] to identify matrices M for which 
Lemke's algorithm terminated successfully. 

An important class of such matrices M (it 
included convex quadratic programs) was identi- 

fied by Lemke in [12], and referred to in [1] as 
copositive-plus. Such matrices are characterized by: 

uTMu>O for all u > 0 ,  (5a) 

if uTMu=Oand u > 0 ,  

then ( M +  MV)u = 0. (5b) 

Lemke [12] showed that for M copositive-plus, 
termination of his algorithm in a ray (nonpositive 
column) implies no solution to the LCP exists. 
Otherwise the algorithm must terminate in a solu- 
tion. 

4.  P o l y m a t r i x  g a m e s  a s  e o p o s i t i v e - p l u s  L C P ' s  

We now transform (P) into a dual problem (D) 
which is in copositive-plus LCP form. We use 
Farkas' lemma in a manner similar to Kuhn and 
Tucker (cf. [11], p. 486]), except that we replace 
the gradient of an objective function with the 
vector field of a linear dynamical system. 

Observe, in view of (2), by the addition of a 
constant k to each term r~j(X i, ~j) in (3) we 
change the value of each sum (3) by exactly nk, 
regardless of the values of p and v. It follows that 
by choice of sufficiently small k we may without 
loss of generality assume 

rij(Xi, Xj)<O f o r a l l i ,  j , A , , X j .  

Note all r,i(Xi, A'i) terms are negative too, all 
having the same value k. In effect each m x m 
matrix [rii(X . X'i) ] contributes a constant k to i 's  
payoff. 

Note also that in view of the negativity of the 
rij(X ~, X j)  and (3), the equalities in (2) may be 
relaxed in the positive direction without affecting 
the equilibria. Thus (2) may be replaced by 

- }--~pi(Xi) < - 1  for all i, 
x, (6) 

p i (Xi)>_0 f o r a l l i ,  X i. 

Let pX be the real ran-vector (p1(1) . . . . .  
pl(m) . . . . .  p~(1) . . . . .  p . (m)) ,  let qX be the n-vec- 
tor ( - 1 . . . . .  - 1). and let A be the n x mn matrix 

- 1  . . . .  1 . . -  0 . - .  0 ]. 

] 
0 . . -  0 . . . .  1 . . . .  1 
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Then the system (6) may be expressed as 

A p < q ,  p>O. (7) 

If also we let R be the mn× mn matrix 

[r,,(Xl, . . .  [rl°(Xl, X°)] ], 

1 [r.l(X., X,)] --. [r..(X., X'.)] 
then ~ solves (P) if and only if ~ satisfies (7) and 
there is no d ~ R'~" where 

i r a  i .p=qi ,  then A i.d<O, (8) 

if fii(Xi) = 0 ,  then - d i ( X i )  <0. 

We use Farkas' lemma [5]. This states that 
given a real matrix B and corresponding vector b, 
exactly one of the following systems has a solu- 
tion: 

-- bT/~ < 0, B g < 0 ,  

or 

BTu=b, u>O. 

It follows from Farkas' lemma and (8) that fi is 
a solution to (P) if and only if fi satisfies (7) and 
the system 

• = . , ,  u 0, 

if p , ( h , )  > 0, then ui(~ki) : 0 (9) 

for all i, hi, 

i f A  i . p < q i ,  t h e n y i = 0  for a l l i ,  

has a solution for y, u. We shall refer to the 
problem defined by (7) and (9) as (D). Letting 
v = q - A p ,  we may rewrite (9) in the LCP form 
(4): 

(D) Find p, y, u, v such that: 

0 1['0  f01 
p, y, u, v>O, pTu+yTv=O. 

(10) 

It is trivial since - R  > 0 that - R  satisfies the 
copositive-plus condition (5), and also trivial that 
a zero matrix is copositive-plus, hence as Cottle 
and Dantzig [1] note, this implies the matrix 

is copositive-plus for any values of A. Since it is 
known [15] from the Brouwer fixed point theorem 
that (P) and hence (D) have a solution, we have 
proved 

Proposition. Lemke 's complementary pivoting 
method with artificial column applied to the coposi- 
tire-plus matrix M terminates in a solution to (P). 

Notice that (10) is in the same form as Howson's 
formulation [7, p. 314], except that R is negative. 

5. Extensions to dynamical systems 

In this section we show the copositive-plus 
Lemke algorithm will either: find an equilibrium, 
find a ray which is an unbounded integral curve, 
or demonstrate infeasibility, for any constrained 
dynamical system (11) below. This shows that 
Eaves' results on L2-class computability for exten- 
sions of polymatrix games [4], and general 
quadratic programs [3] may be replicated in terms 
of copositive-plus computability. In so doing we 
shall describe a strong geometric link between the 
two methods. 

Consider the constrained dynamical system 

p ' = R p + c ,  
A p < q ,  p>O. (11) 

We have shown how to compute an equilibrium 
for this system for special forms of R, A, q, c. 
(Here - c  replaces 0 in the upper right side of 
(10).) But to be able to render R negative by 
adding a negative constant without altering the 
equilibria of (11), it is only necessary that 

Ae = p, (12) 

where e is a vector of l 's  and 0 is fixed. So 
assuming (12) is at least implicitly in (11) we may 
add any other constraints we wish, and choose any 
values for R and c. For instance if for each i, 
[r,(X i, X')] is a negative semi-definite matrix, and 
the constraint set in (11) satisfies (2), an equi- 
librium of (11) will correspond to that of a more 
general polymatrix game. 

Alternatively, if R is symmetric, then an equi- 
librium of (11) will be a Kuhn-Tucker  point for a 
general quadratic program. 

If the constraint set in (11) has no nonzero 
homogeneous solution (no infinite rays), then by 
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adding slack variables, making the appropriate 
positive diagonal transformation D on the result- 
ing affine space, and writing equalities as two 
inequalities, we may always transform (11) into a 
problem in which (12) is satisfied. 

Suppose now we make no assumption on (11). 
To eliminate any infinite rays we can add an 
artificial constraint eVp < 6, where 8 is big. As 
with the lexicographic rule, we pivot as though 6 
did have a value, except in this case 8 is arbitrarily 
large relative to any other values. 

Putting this new problem in the form (10), 
observe (cf. [14, p. 170]) that it is equivalent to 
Eaves' pivoting rule for his L 2 formulation [2]. 
That  is, if we stopped here and applied Lemke's  
algorithm, we would be using Eaves' method. Thus, 
the 8-constraint enters strongly into both meth- 
ods. 

We can now transform the &version of (11) 
into copositive-plus form. Since this problem is 
bounded, by fixed point arguments [9] it is either 
infeasible or has an equilibrium z, and this will be 
determined by Lemke's algorithm. It if is infeasi- 
ble, to is (11). Otherwise, if the dual multiplier for 
nonnegativity constraint of the slack variable of 
the 6-constraint is zero, then D - ~ z  (minus the 
slack variables) is an equilibrium of (11). Other- 
wise there is an integral curve of (11) which fol- 
lows an infinite ray for arbitrarily large values of 
8. If R is symmetric, then (11) defines an un- 
bounded quadratic program. 

Appendix: Maintaining L U sparsity 

Given an L U  decomposition of a nonsingular 
matrix, we seek an efficient solution for 

[ L U + K l x = b ,  (13) 

where 

K = [ K  . . .  o . . .  01 ,  

x is a nonzero column vector, and L U +  K is 
nonsingular. 

Notice K x  is in the space spanned by K, so we 
may rewrite (13) as 

L U x  = OK = b, (14) 

where 0 is a scalar. Solving (14) for x and sub- 
stituting in (13) we obtain 

K U  1L lb = P ( x  + K U - 1 L - ' K ) .  (15) 

Since K is nonzero, the left side of (15) may be 
nonzero for some b, hence x + K U  1L-1K must be 
nonzero and we can trivially solve (15) for p. 

It remains how to insure nonsingularity. This is 
no problem to start, since at that point K =  0. 
Furthermore, if at some iteration we have a non- 
singular basis A s such that A s + K, is also nonsin- 
gular, and if A r + K r is the next basis chosen, then 
the standard pivoting rules insure A t + K r is non- 
singular. The problem, then, is how to proceed if 
A r is singular, that is, if the element of A t corre- 
sponding to the pivot element of A r + Kr  is zero. 

One way is to perturb a single rij(Xi, X j)  in the 
column q5 of A r being pivoting into in order that 
the pivot row of A~7 aep becomes nonzero. That this 
is always possible follows from the fact that, by 
the nonsingularity of A, and A t + Kr, A]- l(dp -'}- K) 
must be nonzero in the pivot row. 

Of course eventually we might build up a large 
number of these perturbations, but by periodically 
removing those no longer needed, this number can 
never exceed the number  of rows in the problem. 

Addendum proof: Adding an implicit constraint 

We wish to show that any bounded equilibrium 
problem (11) is equivalent to a problem in the 
same form which includes the constraint (12). 

First add slack variables to put the problem in 
the form 

A/3 : q, / 3 > 0 .  

We seek a diagonal matrix D such that De lies 
orthogonal to the constraint set A/~ = O. Consider 
the inequalities 

ATy > e. (16) 

If (16) has no solution for y, then by duality 
theory the constraint set in (11) has a nonzero 
homogeneous solution, which we are assuming is 
not the case. If ~ solves (16), define D by De = 

~ ,  and consider the dynamical system 

z '  = R D - l z  + ~, (17) 
A D  l z = q ,  z > O .  

Clearly 5, is an equilibrium of (17) if and only if 
D 15, is an equilibrium of (11). Furthermore by 
construction of D there exists a P such that 

if AD-1z  = q, then p = eTDD lz = eTz. 
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F i n a l l y  we m a y  p u t  (17) in  the fo rm (11) by  
wr i t ing  each equa l i ty  c o n s t r a i n t  as two inequa l i -  

ties. This  comple t e s  the  t r a n s f o r m a t i o n .  
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