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How Shading Constrains Surface Patches without Knowledge of Light Sources∗

Benjamin Kunsberg† and Steven W. Zucker†

Abstract. Shape-from-shading (SFS) is a classical inverse problem in computer and human vision. This shape
reconstruction problem is inherently ill-posed. We show that the isophotes on smooth surfaces with
Lambertian reflectance can be directly related to surface properties without consideration of the
light source. Using techniques from modern differential geometry, we derive relationships between
the curvature of the isophotes and the shape operator for the surface. Neurobiology motivates
the geometric approach, and our calculations allow us to characterize the matching local family of
surfaces that can result from any given shading patch. We illustrate the local ambiguity in several
examples.
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1. Introduction. Michelangelo was a master at producing drawings that provide a rich
impression of three-dimensionality through his use of shading. The problem of shape-from-
shading (SFS) is to invert this procedure: find the surface that best explains a given shaded
image. A dilemma arises when we try to explain this in computer vision terms, where research
has shown that SFS is ill-posed and underconstrained. The practice in computer vision is to
posit a model, for example a Lambertian surface with a known light source, to make the
inverse problem better posed. For example, under a light attenuation assumption [36], the
problem can even be made well-posed. Returning to perception, however, there is mounting
evidence against specifying the light source first, and there is no neurobiological evidence (to
our knowledge) that the early visual system is seeking to infer light sources before surfaces.

We seek a way out of this dilemma by asking: What can be known about the surface without
specifying the light source? As we will show, it is still possible to infer precise constraints on
the local surface curvatures when the light source is unknown. We believe this will be helpful
in developing a global reconstruction model without ever explicitly defining the light source;
for now, we work at just the local level. Below, we sketch a framework for this in a manner
that could inform models of how the human visual system solves SFS. To start, this implies
an abstraction of the image information into a shading flow, and it leads to a new geometrical
approach to the shape inference problem. These steps are expanded below, before deriving our
main result: For Lambertian image formation, information about surface curvatures can be
calculated from the shading independently of any assumption about where the light source(s)
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Figure 1. Classical methods attempt to go from pixel values of the image (A) to the surface (C). In this
work, we use the intermediate representation of the isophote structure (B). Tangent vectors to these isophotes
could be computed by biological V 1 models, and comparing the tangent fields allows us to use the mathematical
machinery of vector fields.

are located. Our calculations also reveal the ambiguity inherent in geometrical computations
when the light source is unknown.

1.1. Neurobiological motivation. Throughout the past few decades, there has been a
revolution in neurobiology showing that the visual cortex is organized around orientation. Due
to the orientation-tuning of cells of the V1 area of visual cortex [21], we focus on understanding
how these sets of orientations could correspond to three-dimensional (3D) surfaces. This
suggests what at first glance appears to be a small problem change: instead of seeking the
map from images to surfaces (and light sources), the image should first be lifted into an
orientation-based representation; see Figure 1. This lift can be accomplished by considering
the image isophotes [26, 27]; the lift is then the tangent map to these isophotes. This approach
has arisen earlier in computer vision, and is called the shading flow field [5]. A significant
body of evidence is accumulating that such orientation-based representations underlie the
perception of shape [16, 17], but to our knowledge no one has previously formulated the
surface inference problem from it.

Since the shading flow field could be computed in V1 (Figure 2), we have built our ap-
proach to Lambertian SFS directly on the information available in visual cortex. Our com-
putations could be implemented by a combination of feedforward and feedback projections,
supplemented with the long-range horizontal connections within each visual area. Here we
concentrate on developing the math. The calculations are derived in differential-geometric
terms, and a crisp curvature structure emerges from the equations; see Figure 3. As such,
the latter serves as the foundation of a model for understanding feedforward connections to
higher levels (surfaces) from lower levels (flows).

1.2. Local ambiguity. One of the major obstacles to solving SFS is the inherent ambiguity.
The equations we will derive will allow us to analyze the local ambiguity in a surface patch
when the light source is unknown. We will show that, in the generic second-order surface
case, there are four local surfaces that can match the intensity information up to second
order. Understanding this ambiguity should guide us in making the correct assumptions
when stitching these local patches together.

For many recent reconstruction methods, the ambiguity is reduced immediately using

D
ow

nl
oa

de
d 

12
/0

4/
15

 to
 1

30
.1

32
.1

73
.6

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



SFS WITHOUT LIGHT SOURCE 643

Deep layers

Superficial layers

Layer IV

Cylindrical portion of orientation hypercolumn
embedded within the cortical tissue
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Long range connections to compatible cells

abstracts V1 as R  x S
hypercolumns by retinotopic position

Rearrangement of orientation

Figure 2. V 1 mechanisms applied to the isophote curves result in a shading flow field. (left) Visual cortex
contains neurons selective for the local orientation of image patches. In a shading gradient these will respond
most strongly to the local isophote orientation, i.e., its tangent. A tangential penetration across V 1 yields a
column of cells, further described in the next panels. (middle) Abstracting the column of cells over a given
(retinotopic) position spans all orientations; different orientations at nearby positions regularize the tangent
map to the isophotes and reduce noise in local measurements. (right) Illustrating the lift of the isophotes into
a V 1 style representation [4]. The mathematical analysis in this paper extends this type of representation to
the surface inference problem. As such it could be implemented by similar cortical machinery in higher visual
areas.

Image Properties Surface Properties

+   higher order terms

Figure 3. Our main result is that, without knowing the light source, we can still extract surface properties
from local image patches. If we assume the surface is locally quadratic, then we get an elegant relation between
the curvature of the isophotes (κ), the brightness gradient (∇I), and the curvatures of the surface (dN(�v)).
However, ambiguity in the possible surface remains; even for a simple situation, up to four surfaces can arise.
This example and the general situation are developed fully in section 4.
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Figure 4. This figure illustrates the “big picture” for our approach to SFS. Instead of inferring surfaces
directly from the image, we impose two fiber bundles between them. The first is the lift of the image into the
shading flow, and the second defines the fiber of possible surface patches that are consistent with a given patch
of shading flow. We do not assume a light source position, but instead will use assumptions on certain local
features to restrict the ambiguity. This amounts to finding a section through the bundle of possible local surfaces.
The light source position(s) are then an emergent property.

heuristics or various priors [18, 1]. However, we believe that some of these additional con-
straints are unnecessary and possibly conflicting. By investigating the precise ambiguity of
the local surfaces, we hope to arrive at the minimal assumptions that are needed to resolve
the SFS problem.

1.3. Overview of approach. We summarize our approach in Figure 4. Rather than at-
tempting to infer a surface directly from the image and (e.g.) global light source priors, we
think of the surface as a composite of local patches (charts) [14]. Each patch is described by
its (patch of) shading flow, each of which implies a space of (surface patch, light source) pairs.
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SFS WITHOUT LIGHT SOURCE 645

Much of the formal content of this paper is a way to calculate these pairs.
There are several advantages to this approach. First, it allows us to avoid making hard

constraints at the local level. Rather, we seek to allow the local fibers to refine themselves using
compatibility metrics. Certain patches near boundaries [38] or highlights are less ambiguous
than others and will constrain their nearby patches without explicit constraints. Thus our
approach is consistent with Marr’s principle of least commitment. Second, the light source
positions are essentially an emergent property rather than a prior assumption. Once the
surface has been solved for, the light sources are trivial to calculate via the brightness gradient.
By not having to estimate the light source, we hope to gain a robustness to the light conditions
and remove the error commonly gained from estimating them.

1.4. Comparisons to previous work. Horn’s original algorithm [7] solved a first-order
partial differential equation (P.D.E). It required a known reflectance map (or very strong
conditions on it) and known normals along some closed surface curve. Under constant albedo,
the known reflectance map is equivalent to a known light source direction. In contrast, our
local method requires none of this information a priori.

We emphasize that Horn’s method calculates characteristic curves independently. How-
ever, there is information to be exploited among nearby characteristic curves; thus, a method
that calculates local surface shape over a 2D image patch (such as ours) will need less initial in-
formation. This insight is key to the integral minimization approaches (e.g., [18, 37, 20, 23]).
These are often supplemented with a geometric regularization term or require a unit area
assumption [18]. We require no such assumption; instead, we will have to parametrize the
ambiguity resulting from unknown scene parameters. For more information on these various
approaches, see [41].

While integral approaches work over an area, they still directly analyze the image. How-
ever, using the shading flow as an intermediate representation provides a different basis for
regularization. Rather than focusing on accurate pixel measurement, we focus on accurately
estimating orientations to use as input. But in addition to the biological motivation for using
the shading flows, there is also very useful mathematical machinery that can be applied once
we consider the data as a vector field rather than just pixel values. Therefore, we will think
of SFS as a map from vector fields onto “shape space.”

There has been much work investigating the conditions when the SFS P.D.E. system is
unambiguous [10, 13, 34, 36, 2, 3]. In particular, Prados and Faugeras [36] consider the well-
posedness of the SFS problem. In a slightly modified SFS model [36], they show that a unique
surface exists and give a provably convergent method towards that unique solution. They
require two additional assumptions: a light attenuation factor and the light source at the
optical center. To our knowledge, their work represents the first time that a version of an
SFS model has been essentially solved. Analysis of their model has also been extended to
perspective projection, although ambiguity now returns [6].

A global ambiguity that can result from shading, the bas-relief ambiguity, has been studied
by Belhumeur and colleagues [2, 3]. However, the ambiguity depends on a pointwise-defined
albedo. In this paper, we will consider a constant albedo on a shading patch, so the ambiguity
is reduced to only a concave/convex one. But rather than considering global ambiguity, we
study the ambiguity of a shaded image patch in defining a local Taylor surface approximation.
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646 BENJAMIN KUNSBERG AND STEVEN W. ZUCKER

Figure 5. This figure represents the workflow going from image to shading flow to a set of local surfaces.
Each surface along the fiber needs a particular light source position to correspond to the given shading flow. In
section 4, we solve this particular problem for all second-order surfaces.

This is close in spirit to the line of investigation developed by Koenderink and colleagues
[25, 27].

Pentland has also focused on estimates of local SFS [35]. He classified surfaces into general
categories (plane, cylinder, saddle, etc.) based on the signs of the second derivatives of the
intensity at a point. However, this is a broad classification; there is clearly more information
to be used than just the sign. He also considered a simplified “uncalibrated” SFS problem
of solving for shape with unknown light source [35]; to make this well-posed, he required a
local spherical assumption. In this paper, we also use information contained in the second
derivatives of intensity, although we prove the exact correspondence to the surface curvatures
rather than make the spherical assumption.

1.5. The shading flow. A smooth surface patch under diffuse Lambertian lighting and
orthogonal projection yields smooth image curves of constant brightness. The shading flow
derives from these level curves (isophotes) of image intensity I(x, y). To construct the shading
flow field V (x, y), we simply consider the isophote tangents at each pixel. Of course, these
tangents are perpendicular to the image intensity gradient at each point. Our goal is to use
this 2D vector field to restrict the family of (surface, light source direction) pairs that could
have resulted in the image (Figure 5). In addition, we will use the complementary vector
field of brightness gradients. Note that the vector field of brightness gradients (along with
some pixel boundary values) can be used to recreate the pixel values of the image via gradient
reconstruction.

Due to space limitations, we cannot analyze the shading flow here. For computational
work on regularizing and calculating the shading flow, see [5]. We simply remark that (i) it
regularizes certain errors due to noise in images, and (ii) it is invariant under some transfor-
mations of the albedo and surface [28].

1.6. Problem statement. Consider a small image patch defined by Lambertian reflectance
with an unknown parallel light source �L and unknown albedo ρ. (The analysis is the same if
�L is a linear combination of light sources.) We get the following relation between the apparent
brightness of our surface and the scene parameters:

I(x, y) = ρ�L · N(x, y).
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SFS WITHOUT LIGHT SOURCE 647

Figure 6. The shading flow field abstracts the image isophotes into a vector field. This has a biological basis
(shading flow could be represented in V 1 and V 2 [21]; surfaces in V 4 and IT [40]). We base the surface inference
problem on the flow field, and not on the raw image. Here we illustrate that two surfaces (in this instance, a
sphere and a saddle) can correspond to the same shading flow, provided the light source changes appropriately.
For the sphere, we need a light source at (1, 0, 1); for the saddle, we need a light source at (1, 1, 1). Note that
there are two other local surfaces that can also correspond to this flow; apply the concave/convex ambiguity
[15, 35] to each surface. It can be proved that, for the problem considered in this paper, this four-fold ambiguity
is maximal.

An image patch corresponds to a local surface patch, which by Taylor’s theorem we will
represent through the map X(x, y) = (x, y, f(x, y)) with f(x, y) = c0 + c1x + c2y + c3x2 +
c4xy + c5y2 + c6x3 + c7x2y + c8xy2 + c9y3.

Our goal is to understand the derivatives of intensity in terms of the coefficients {ci}. It
is essential that the order of the Taylor polynomial must be 3, since we shall consider second
derivatives of image intensity and intensity is already dependent (via Lambertian lighting) on
the first-order derivatives of the surface. Other analyses of SFS consider only second-order
Taylor approximations [35, 14].

This leads to the following formulation.
Problem statement. Assume that a smooth Lambertian surface (representable as a

graph of a function) with locally constant albedo and Gaussian curvature K �= 0 is lit from any
finite number of unknown directions. Assume that the image is captured through orthogonal
projection. Given the shading flow and brightness gradient vector fields, recover the constraints
on the surface from the local isophote structure.

Recovering shape from the shading flow will always be ill-posed; see the ambiguity in
Figure 6. However, at certain points on the surface, the ambiguities collapse in dimension.
For example, along the boundary of a smooth object, the view vector lies in the tangent plane
[25]. Along a suggestive contour [9], the dot product of the normal vector and the view vector
is at a local minimum in the direction of the viewer. At a highlight under Lambertian shading,
the dot product of the light source direction and normal vector are at a local maximum. All
these types of points are identifiable in the image and provide additional geometric information
that may reduce ambiguity locally. This leads to a plan for reconstruction: First, parametrize
the shading ambiguity in the general shading case. Then, locate the points where the shading
ambiguity vanishes (or reduces greatly) and solve for the local surface shape at those points.
Finally, calculate the more complex regions via a compatibility technique [5] or interpolation.
In this paper, we focus on just the first step. Papers corresponding to the latter stages will
be forthcoming.D
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P1

P0

P2

P0
P2

P1

Figure 7. Geometric setting for the SFS flow problem. A surface (bottom) projects orthographically onto
the image (top). Isophotes on the surface project to curves in the image. The shading flow is the tangent map
to these image contours. When pulled back onto the surface, a tangent vector from the shading flow corresponds
to a vector in the tangent plane to the surface. The natural operation on images is to “walk along” the shading
flow, either along or across isophotes. We calculate the analogous operations on the surface to understand the
conditions on surface curvature that result from changes in the shading flow.

2. Analysis.

2.1. Outline. Our goal is to translate the problem into the local tangent plane and then
use the machinery of covariant derivatives and parallel transport to represent image derivatives
(see Figure 7) as functions of the surface vector flows. A similar use of this machinery was
applied for shape from texture in [19].

1. We write the brightness gradient and isophote as tangent plane conditions between
the projected light source and shape operator.

2. We take the covariant derivative of the projected light source and show that it is
independent of the direction of the light source.

3. We take the covariant derivative of the isophote condition and separate it into the
differentiation of the projected light source and the differentiation of the shape operator
dN .

4. We take the covariant derivative of the shape operator applied to the isophote vector.
This requires several steps:
(a) expansion of the dN operator in terms of the Hessian H,
(b) covariant differentiation of H,
(c) parallel transport of H,
(d) covariant differentiation of dN from covariant differentiation of H.

5. Substitution and algebra.
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Table 1
Notation table.

p A chosen point (x0, y0)
Ip(x, y) An image patch centered at p
∇I(x, y) The brightness gradient
Sp(x, y) The corresponding (unknown) surface patch
f(x, y) The Taylor approximation at p of S
{ci} The coefficients of the Taylor approximation f(x, y)
Tp(S) The tangent plane of S at p
�L The light source direction
�lt(p) The projection of the L onto the tangent plane
�ei Unit length standard basis vector in the direction of coordinate axis i
N(x, y) The unit normal vector field of S
V (x, y) The vector field of isophote directions at each point (x, y)
v̂ ∈ Tp(S) The image unit length tangent vector in the direction of the isophote at p
û ∈ Tp(S) The image unit length tangent vector in the direction of the brightness gradient at p
�w ∈ Tp(S) The tangent vector in direction �w of unit length in the image, expressed in the surface tangent basis
�v[F ] The directional derivative of a scalar valued function F
Dv̂V The directional derivative (in the image) of the vector field V in the direction �u
∇�uV The covariant derivative (on the surface) of the vector field V in the direction �u
G The first fundamental form (also called the metric tensor)
II The second fundamental form
H The Hessian
dN The differential of the Gauss map (also called the shape operator)

�a ·�b The dot product of �a and �b in either R2 or R
3

〈�a,�b〉G The dot product of tangent vectors �a and �b on the tangent plane Tp(S) induced by the metric G

Figure 8. A diagram explaining our defined surface properties.

2.2. Notation. For reference, we define our complete notation in Table 1. Notation will
be introduced throughout the analysis. For geometric intuition of important variables, see
Figure 8.
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650 BENJAMIN KUNSBERG AND STEVEN W. ZUCKER

We start with an open neighborhood of our image plane U ∈ R
2 and a map X : U → S ⊂

R
3. We define a shading flow field V (x, y) on U . We normalize V (x, y) to be of unit length

in the image, although the corresponding surface tangent vectors have unknown length. We
denote the elements of V (x, y) with hat superscripts to avoid confusion: v̂ = V (x0, y0) for some
(x0, y0). The corresponding vectors on the surface tangent plane are defined by the image of
v̂ under the map composition of the differential dS : R2 → R

3 and the tangent plane basis
change T : R3 → Tp(S). We will use the vector superscript to denote these surface tangent
vectors, e.g., �v. Due to our Monge patch parametrization, if we choose {dN(�e1), dN(�e2)} (as
we do throughout the paper) as the basis for our Tp(S), we will have the same coordinate
representation for �v and v̂.

That is,

�v = T ◦ dX(v̂) = �v̂ = v̂.

For simplicity, we will abuse the notation slightly by interchanging v̂ and �v when appropriate.
We try to use v̂ when we want to think about the object as image vectors and �v as movements
on a tangent plane.

2.3. Brightness gradient. We derive the equations for the brightness gradient as a func-
tion of the light source and the second fundamental form. Similar derivations (with different
notation) appear in [26].

Recall that the differential of the image, dI, is defined as a linear 1-form having as input
unit length image vectors ŵ and having as output a real number. The output is the change in
brightness along a step on the surface using ŵ, which can also be computed via dot product
with the gradient ∇I. We write

dI(ŵ) = ∇I · ŵ(2.1a)

= ŵ
[

ρ〈�L, �N〉
]

(2.1b)

= ρ
〈(

∇�w
�L
)

, �N
〉
+ ρ

〈
�L,
(
∇�w

�N
)〉

(2.1c)

= 0 + ρ〈�L, dN(�w)〉(2.1d)

= ρ〈�lt, dN(�w)〉G(2.1e)

= −ρ�lT II �w,

where the first term in (2.1c) is zero because the light source is fixed. To understand the last
line, recall two things. First, dN = −G−1II, where G is the first fundamental form and II is
the second fundamental form [11]. Second, computation of a dot product on a tangent plane
is induced by the metric G. Thus, 〈�v1, �v2〉G = �v1

T G �v2. This calculation shows that, once dN
is solved for, it is trivial to calculate the direction of the light source.

Proposition 2.1. The brightness gradient ∇I can be expressed as the vector −ρ�lTt II.D
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SFS WITHOUT LIGHT SOURCE 651

Along an isophote surface curve α(t), the brightness is constant. Writing �v = α′(0), we
have ρ〈�lt, dN(�v)〉G = −ρ�lT II�v = ∇I · v̂ = 0. Thus, we conclude the following.

Proposition 2.2. Each isophote tangent vector �v on S is a function of the normal curva-
tures and light source and is defined by the equation

〈�lt, dN(�v)〉G = 0.

In addition, we calculate each component of the brightness gradient via dot product with
�ei:

Ix = ρ〈�lt, dN(�e1)〉G,(2.2)

Iy = ρ〈�lt, dN(�e2)〉G.(2.3)

2.4. Covariant derivative of projected light source. One of the major advantages of our
approach is that we do not assume a known light source direction. In fact, using the covariant
derivative described below, we can calculate the change in the projected light source vector
without knowing its precise location!

Remark 1. Here, we briefly remark on the use of covariant derivatives for surfaces in R
3.

We consider “movements” in the image plane and sync them with “movements” through the
tangent plane bundle on the surface. The problem is that the image plane vectors are on
a flat surface, whereas the vectors on the surface tangent planes “live” in different tangent
spaces: The surface tangent planes are all different orientations of R2 in R

3. Thus, to calculate
derivatives via limits of differences, we need to “parallel transport” nearby vectors to a common
tangent plane. The covariant derivative achieves this. For our purposes, we think of the
covariant derivative in two ways. The first definition, which we use in this section, is the
expression as the composition of a derivative operator in R

3 and a projection operator onto
a tangent plane. This is an extrinsic definition—it is a definition that requires use of the
ambient space. The second definition, which we use in Appendix A.2, will be in terms of
parallel transport.

We exploit the structure in �lt: It is the result of a projection from a fixed vector �L down
into the tangent plane Tp(S). Thus, the change in �lt just results from changes in the tangent

plane, which are dependent on the surface curvatures and not on �L. Importantly, we avoid
having to represent �L in our calculations by considering only its projected changes. We now
show this rigorously.

Lemma 2.3. The covariant derivative of the projected light source is dependent on the po-
sition of the light source only through the observed intensity. Thus,

∇�u
�lt = −

(
I(p0)

ρ

)
dN(�u).

Proof. Let Πp0 be the projection operator taking a vector in 3-space onto the tangent
plane of S at p0. Recall that the covariant derivative of a tangent vector can be expressed as
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652 BENJAMIN KUNSBERG AND STEVEN W. ZUCKER

the composition of a derivative operator and Πp0 :

∇�u
�lt = Πp0

(
d�lt
dt

)
(2.4a)

= Πp0

(
d

dt
(�L− (�L · �N) �N )

)
(2.4b)

= Πp0

(
d�L

dt
− d

dt

[
(�L · �N) �N

])
(2.4c)

= Πp0

(
0− d

dt

[
�L · �N

]
�N − (�L · �N)

d �N

dt

)
(2.4d)

= Πp0

(
−
[
d�L

dt
· �N + �L · d

�N

dt

]
�N − (�L · �N)dN(�u)

)
(2.4e)

= −(�L · �N)dN(�u)(2.4f)

= −
(
I(p0)

ρ

)
dN(�u).(2.4g)

To go from (2.4e) to (2.4f), we note that the first term is just a scalar multiplied by �N ,
whereas the second term lies completely in the tangent plane. Thus, when we apply the
projection operator Πp0 , the first term is lost and the second term is kept unaffected.

The fact that this change in the projected light source does not contain an �L allows us to
remove the light source dependence from the second derivatives of intensity.

2.5. Covariant derivative of the isophote condition. We now use the changes in the
brightness gradient and the isophote directions to restrict our surface parameters. Let v̂ be
the unit length image vector in the direction of the isophote at an arbitrary point p. Let û
be the unit length image vector in the direction of the brightness gradient at p. In the image,
v̂ ⊥ û, but the projected vectors on the surface �v and �u may not be orthogonal (w.r.t. R3) on
the tangent plane at p.

Considering these particular changes in û and v̂ is equivalent to choosing a basis. This will
result in solving for equations of the three second derivatives {Dv̂ v̂, Dûv̂, Dûû}, although we
could have considered the changes in {Ix, Iy} and instead solved for {Ixx, Ixy, Iyy}. However,
the equations simplify when choosing the basis defined by the isophote and brightness gradient.

To emphasize the conceptual picture, we will derive the Dv̂ v̂ equation here and save the
equations in the general case for the appendix. We start by first calculating Iv and then taking
the directional derivative of Iv in the direction v̂. From section 2.3, we can write

0 = Iv = ∇I · v̂ = ρ〈�lt, dN(�v)〉G.(2.5)

Applying the scalar directional derivative with respect to v̂ on both sides and using the result
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SFS WITHOUT LIGHT SOURCE 653

P0

P1

P2

Figure 9. A diagram explaining our use of the shading flow field. As we move on β1(t) in the direction
of the image isophote v̂ from P0 to P1, the flow field V (x, y) changes by Dv̂V . Similarly, we may move in
direction û along β2(s), which is perpendicular (in the image) to the isophote. Then, our flow field changes by
DûV . We want to relate these changes in closed form to the curvatures of the surface.

from (2.4f) (see Figure 9), we get

0 = v̂
[

ρ〈�lt, dN(�v)〉G
]

(2.6a)

= ρ〈∇�v
�lt, dN(�v)〉G + ρ〈�lt,∇�v(dN(�v))〉G(2.6b)

= ρ〈−(�L · �N)dN(�v), dN(�v)〉G + ρ〈�lt,∇�v(dN(�v))〉G(2.6c)

= −I〈dN(�v), dN(�v)〉G + ρ〈�lt,∇�v(dN(�v))〉G.(2.6d)

We now unpack 〈�lt,∇�v(dN(�v))〉G, which requires a technical computation using parallel
transport and tensor algebra. On first reading, some readers may wish to skip directly to the
main results in section 3.

2.6. Covariant derivative of the shape operator dN . We expand the rightmost term of
(2.6d). This will also expand into several terms; we will analyze each separately. Although
dN(v) is an unknown vector, we want to understand its covariant derivative ∇�u(dN(�v)) as a
function of surface changes ∇�u(dN) and isophote changes ∇�u�v. We apply the chain rule to
get

∇�v(dN(�v)) = (∇�vdN) (�v) + dN(∇�v�v).(2.7)

We now focus on the first term of this expression.

2.6.1. Expansion of dN in terms of the Hessian H. Note that dN is a (1, 1) tensor, and
thus we need to be careful when taking its covariant derivative. Recall that the matrix repre-
sentation of dN is −G−1II and that raising and lowering the tensor characteristic commutes
with covariant differentiation:

(∇�vdN) (�v) = − (∇�vG−1II
)
(�v)(2.8a)

= − (G−1∇�vII
)
(�v).(2.8b)
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654 BENJAMIN KUNSBERG AND STEVEN W. ZUCKER

We now write each of the normal components as ni, so �N = {n1, n2, n3}. Note that, due
to our Monge patch representation of S(x, y), { �fxx, �fxy, �fyy} are nonzero only in their third

component, e.g., �Sxx = {0, 0, fxx}. Recall the definition of the second fundamental form II:

II =

[
�N · �fxx �N · �fxy
�N · �fxy �N · �fyy

]
(2.9a)

=

[
n3fxx n3fxy
n3fxy n3fyy

]
(2.9b)

= n3

[
fxx fxy
fxy fyy

]
.(2.9c)

For notational convenience, we use the Hessian H =
[ fxx fxy
fxy fyy

]
. Substituting into (2.8b) and

using the appropriate product rule, we obtain

(∇�vdN) (�v) = −G−1∇�v (n3H) (�v)(2.10a)

= −n3G−1∇�v (H) (�v)− �v[n3]G−1H(�v),(2.10b)

where �v[n3] denotes the directional derivative of the third component of �N in the direction �v.
Now, we consider the dot product with �lt, as in (2.6d). The second term of (2.10b) will be

exactly zero because H = n3II and �lt
T
II�v = 0.

〈�lt, (∇�vdN) (�v)〉G =
〈

�lt,−n3G−1∇�v (H) (v)− �v[n3]G
−1H(v)

〉
G

(2.11a)

= −n3(∇vH)(�v, �lt)− �v[n3]H(�v, �lt)(2.11b)

= −n3(∇vH)(�v, �lt).(2.11c)

For (2.11b), we replaced 〈�lt,∇�vH(v)〉 by (∇vH)(�v, �lt). This is appropriate tensor notation,
as ∇vH is a (0, 2) tensor. It remains to calculate ∇vH.

Proposition 2.4. Let β(s) be a curve with �v = β(0). Let τs be the parallel transport operator,
and define, for an arbitrary tangent vector �w, the parallel transport adjustment vector �Tw ∈ R

2.

�Tw = lim
s→0

τ→s (�w(β(0))) − �w(β(0))

s
.(2.12)

Then, for a pair of arbitrary tangent vectors �w1 and �w2,

(∇vH) ( �w1, �w2) = �Tw2

T
H �w1 + �w2

T H �Tw1 − �w2
T�v[H] �w1.(2.13)

Proof. As this is a dense calculation, we have left the proof to Appendix A.

2.7. Covariant differentiation of dN from covariant differentiation of H. Now, we
substitute (2.13) into (2.11c) to finish the expansion of the initial equation (2.6d):

〈�lt, (∇�vdN) (�v)〉G = −n3(∇vH)(�v, �lt)(2.14a)

= − �Tlt

T
II�v − �lt

T
II �Tv + n3

�lt
T
(�v[H])�v(2.14b)

= −�lt
T
II �Tv + n3

�lt
T
(�v[H])�v,(2.14c)
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SFS WITHOUT LIGHT SOURCE 655

where the first term of (2.14b) is proportional to �ltIIv, which is 0 by Proposition 2.2.

Now, provided the Gaussian curvature K �= 0, we can invert the Hessian. Thus, ρn3
�lt
T

= ρn3
�lt
T

HH−1 = ρ�lt
T
IIH−1 = −(∇I)T H−1, so

ρ〈�lt, (∇�vdN) (�v)〉G = −ρ�lt
T
II �Tv − (∇I)T H−1�v[H]�v.

2.8. Putting it all together. Substituting the above equation into (2.7), we get

ρ〈�lt, (∇�vdN(�v))〉G = ρ〈�lt, (∇�vdN) (�v) + dN(∇�v�v)〉G(2.15a)

= −ρ�lt
T
II �Tv − (∇I)T H−1�v[H]�v + ρ〈lt, dN(∇�v�v)〉G(2.15b)

= −ρ�lt
T
II �Tv − (∇I)T H−1�v[H]�v + ρ〈lt, dN(Dv̂ v̂ − �Tv)〉G(2.15c)

= −(∇I)T H−1�v[H]�v − (ρ�ltII) · Dv̂ v̂(2.15d)

= −(∇I)T H−1�v[H]�v +∇I · Dv̂ v̂,(2.15e)

where we have used the fact that a covariant derivative is the sum of the changes due to
parallel transport and the coordinate changes Dv̂ v̂ along the curve β(s) in (2.15c). This is the
shading flow change, as seen in Figure 9.

Plugging into (2.6d) and rearranging, we get

∇I · Dv̂ v̂ = I||dN(�v)||2 − (∇I)T H−1(�v[H])�v.

3. Shading equations. We have now computed the directional derivative of the vector v̂
in the direction v̂. For an arbitrary point p, let û be the image vector of unit length in the
direction of the brightness gradient. Then, we can repeat this calculation for the directional
derivative of v̂ in the direction û. In addition, we can calculate the directional derivative of
the vector û in the direction û. (Both of these proofs are similar to the one above and are left
to Appendix A.) This gives us a total of three equations equating the second-order intensity
information (as represented in vector derivative form on the left-hand side) directly to surface
properties.

Theorem 3.1. For any point p in the image plane, let {û, v̂} be the local image basis defined
by the brightness gradient and isophote. Let I be the intensity, ∇I be the brightness gradient,
f(x, y) be the height function, H be the Hessian, and dN be the shape operator. Then, the
following equations hold, regardless of the light source direction, as long as det(dN) �= 0:

(3.1) ∇I · Dv̂ v̂ = I||dN(�v)||2 − (∇I)T H−1(�v[H])�v,

(3.2) ∇I · Dûv̂ = I〈dN(�v), dN(�u)〉G + ||∇I|| ∇fT II(�v)√
1 + ||∇f ||2 − (∇I)T H−1(�u[H])�v,

(3.3) Iuu = −I||dN(�u)||2 − 2||∇I|| ∇fT II(�u)√
1 + ||∇f ||2 + (∇I)T H−1(�u[H])�u.
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0.4 0.5 0.6 0.7 0.8 0.9

0.0

0.4

0.6

0.8

Figure 10. The SFS flow problem in one dimension. The blue curve is the 1D surface, which has the equa-
tion sin(x)+x2+x5. The red curve is the intensity function for the 1D setup, given a light source of norm 1 and
direction as shown. The green curve (overlaid) is the recovered surface f(x) using our P.D.E. formulation from
Corollary 4.1 below, given three boundary conditions. As you can see, the reconstruction is indistinguishable
from the correct surface.

These equations are novel; we call them the second-order shading equations. Note that the
left-hand side of (3.3) has an Iuu rather than ∇I ·Dûû, which must always be equal to 0. Note
that there is no dependence on the light source; thus, these equations directly restrict the
derivatives of our local surface patch without knowledge of the light source. We have included
in the appendix the expanded versions of these equations in terms of those derivatives.

4. Applications of the shading equations. Below, we investigate local surface ambiguity
via these second-order shading equations. We consider four cases, arranged from simple to
complicated:

1. In the 1D case, these equations can be solved directly in a P.D.E. formulation to
recover the curve exactly.

2. A second-order surface assumption, with a frontal-parallel tangent plane, leads to four
explicit solutions.

3. A second-order surface assumption with arbitrary tangent planes can be solved im-
plicitly.

4. “Critical” points and curves in the image have reduced shading ambiguity in the
general case.

4.1. Case 1: 1D SFS. For simplification and to build intuition, we consider the problem
of SFS in one dimension: Given a 1D intensity function I(x), solve for the smooth curve f(x)
corresponding to I(x) under Lambertian shading. Although this problem can be solved with
other means, we use it to illustrate the P.D.E. approach to solving these shading equations.
In this example, we build the intensity function using an unknown light source and recover
the shape exactly using our second-order shading equations. We treat our equation as a
P.D.E. and solve it numerically. See Figure 10 for the problem setup.
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SFS WITHOUT LIGHT SOURCE 657

4.1.1. P.D.E. formulation. On the curve f(x), the point sets of constant brightness are
now single points rather than isophote curves. Thus, we cannot talk about Dv̂ v̂ and Iuu.
However, Dûû still makes sense, as �u is now defined as the tangent fx to the curve f(x).
Thus, we can apply (3.3).

We need to convert the surface geometric properties in (3.3) into their simpler 1D ana-
logues. For example, the Hessian H becomes fxx, the directional derivative �u[H] becomes
fxxx, and dN(�u) becomes the change in the normal as we move along the tangent direction:

dN(�u) =
fxx

1 + (fx)
2 .

Putting it all together, we get the simplified shading equation in one dimension, as follows.
Corollary 4.1.

Ixx = −I
f2
xx

(1 + a2)2
− 2Ix

afxx
(1 + a2)

+ Ix
fxxx
fxx

.(4.1)

Now, the functions {I, Ix, Ixx} are all known from the intensity curve, so (4.1) is a third-
order differential equation. Solving this with the appropriate boundary conditions will give
us our curve f(x). Note that these equations are ill-defined when fxx = 0, so one must be
careful and use approximations near these critical points.

4.1.2. Boundary conditions. As (4.1) is a third-order equation, it needs three boundary
conditions. We assume known Dirichlet boundary conditions on both endpoints, with a single
von Neumann condition at one of the endpoints. With these boundary conditions, we use
Mathematica’s NDSolve function to get the solution curve f̃(x). (See Figure 10.) Although
this is a toy example, it illustrates the precision that may be available in 2D SFS if we can
solve the shading equations in a P.D.E. formulation.

4.1.3. Extension to 2D shading. If a surface satisfies (3.1), (3.2), and (3.3) at every point
in the image, then that local surface will be a possible solution to SFS for that patch. That
is, when imaged under some set of light source positions, it will result in an identical image.
Thus, these equations implicitly define all smooth surfaces that can satisfy a shaded patch.
However, in order to solve that P.D.E., one must have boundary conditions, and it is unclear
in the 2D case exactly what these boundary conditions should be. In addition, we have no
guarantee that there will be a unique solution, as these are nonlinear equations and thus
don’t satisfy the standard P.D.E. uniqueness theorem. In fact, we know that many different
global surfaces can lead to the exact same image. Thus, we will consider some solutions under
simplifications (equivalently, assumptions on our surface). For completeness, we write the
shading equations in the standard P.D.E. fashion in Appendix B.

4.2. Case 2: Second-order assumption and frontal-parallel. The shading equations are
quite complicated, nonlinear, and of third order. Although it may be possible to directly solve
them as a P.D.E. system, we will initially look at surfaces where the equations reduce nicely.
(See also [31].) Consider a second-order Monge patch: S = (x, y, f(x, y)) with f(x, y) =
ax + by + cx2 + dxy + ey2. Since there are no third-order terms, the directional derivative of
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658 BENJAMIN KUNSBERG AND STEVEN W. ZUCKER

the Hessian will be a 0-matrix, and the equations simplify as follows.
Corollary 4.2.

∇I · Dv̂ v̂ = (I)||dN(�v)||2,(4.2a)

∇I · Dûv̂ = (I)〈dN(�v), dN(�u)〉G + ||∇I|| ∇fT II(�v)√
1 + ||∇f ||2 ,(4.2b)

Iuu = −(I)||dN(�u)||2 − 2||∇I|| ∇fT II(�u)√
1 + ||∇f ||2 .(4.2c)

Equation (4.2a) corresponds to the equation in the introductory figure, Figure 3. Speci-
fying further, let the tangent plane be frontal-parallel, i.e., where the normal to the tangent
plane is parallel to the view vector. In this case, at the origin, vectors on the image plane are
only translations of vectors on the tangent plane (in contrast to the general case, where there
may be rotations, dilations, etc.). The first fundamental form G is now the identity matrix.
Thus, the shape operator reduces: dN = −G−1II = −II = −n3H = −H. In addition, the
gradient ∇f = �0. Thus, the second term on the right-hand side of each equation is equal to
�0, as follows.

Corollary 4.3.

∇I · Dv̂ v̂

I
= �vH2�v,(4.3a)

∇I · Dûv̂

I
= �vH2�u,(4.3b)

−Iuu
I

= �uH2�u.(4.3c)

In this important special case, we get the elegant result that the normalized second deriva-
tives of intensity are proportional to the square of surface second derivatives. This has been hy-
pothesized in other work [35]. The twofold ambiguity, defined by the transformation H → −H,
emerges naturally. This is the well-explored concave/convex ambiguity. But there is more.

Without loss of generality, we assume that the Hessian is expressed in the basis {�v, �u}.
Then, the equations simplify once more:

∇I · Dv̂ v̂

I
= (f2

xx + f2
xy),(4.4a)

∇I · Dûv̂

I
= (fxx + fyy)fxy,(4.4b)

−Iuu
I

= (f2
yy + f2

xy).(4.4c)

If we plot these three equations in 3-space defined by coordinate axes of {fxx, fxy, fyy},
we see that the equations consist of two cylinders (situated perpendicular to each other) and
a hyperbolic cylinder, which has a set of four intersection points. Thus, we have a second
twofold ambiguity, which corresponds to a saddle/ellipsoid type of ambiguity. See Figure 11.
This is essentially unstudied in the SFS literature (but see [15]).
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Figure 11. For a frontal-parallel second-order Monge patch, we have exactly four surfaces available for
each shading flow (A). There is a concave/convex ambiguity in each row and a saddle/ellipsoid ambiguity in
each column.

Note that we reduced the possible surfaces greatly by assuming that the third-order surface
derivatives were 0 and that the tangent plane is frontal-parallel. That is, we assumed know-
ledge of four parameters (on the third-order derivatives) and two parameters (tangent plane).
In general, without these assumptions, the shading ambiguity space (for second-order inten-
sity) will be six-dimensional. In section 4.3, we will relax the condition of a frontal-parallel
tangent plane.

4.3. Case 3: A Second-order assumption. We turn back to the question posed in the
first example, but with only the second-order assumption on a surface patch. That is, we
again write S = (x, y, f(x, y)) with f(x, y) = ax + by + cx2 + dxy + ey2. This is a more
complicated example than the previous two. In this case, we work with the system defined
by (4.2a), (4.2c), (4.2b). Recently, Xiong et al. [39] devised a shape reconstruction algorithm
based on this quadratic assumption.

In the local second-order patch, there are five parameters that need to be calculated: the
two tangent plane orientation parameters and the three surface curvatures. There are also an
additional three parameters (two for the light source position and one for the albedo) that
are involved in the image formation process. If we consider the previous discussion, then we
have six conditions {I, Ix, Iy, Ixx, Ixy, Iyy} with eight parameters. Our equations factor out
both the albedo and light source directions—thus, we ignore {I, Ix, Iy} and end up with three
conditions {Ixx, Ixy, Iyy} on five surface parameters. It is reasonable to expect that we will
have a 2D family of surfaces corresponding to each patch. In addition, we expect that the
family of surfaces may be parametrized by the light source position on the upper hemisphere
or equivalently the two parameters of the tangent plane.

This agrees with what we saw in section 4.2. Since we now have no assumption on the two
parameters of the tangent plane, we must have a 2D ambiguity multiplied by any ambiguity
we found in that section.

We can apply the shading equations above to the Monge patch f(x, y) to get three poly-
nomial equations in {a, b, c, d, e}. We denote them as gi(c, d, e), i = 1, 2, 3. (For this analysis,
we used Mathematica.) We will not display these polynomial equations here, as they are
equivalent to those in Appendix C. By choosing either the tangent plane coefficients or the
dominant light source direction, these fourth-order polynomial equations {gi} define the re-
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Figure 12. Panel (A) shows a shading flow, and (B) shows nine second-order Monge patches, all with
different tangent planes that are solutions to the polynomial equations and thus can result in the shading flow
in panel (A) when lit properly.

maining coefficients {c, d, e}.
For any chosen {a, b} there may be either 0, 2, or 4 real roots of these polynomial equations.

Each root represents a corresponding second-order Monge patch that would result in the same
local shading flow. Since the analysis is difficult, we have observed experimentally that the
polynomial system with a given shading flow and tangent plane choice will have real roots
only outside a rectangle containing the origin. That is, the region of tangent planes where
there is no solution is of the form {−x0 ≤ a ≤ x1 ∪ −y0 ≤ b ≤ y1}. Of course, the rectangle’s
exact dimensions depend on the tangent plane choice. Unfortunately, due to the complexity
of this polynomial system, we are unable to state the exact relationship between the rectangle,
the shading flow, and the choice of tangent plane.

However, given the shading flow and any single choice of the tangent plane {a, b}, we can
solve the {gi} to calculate all the possible roots of the equation for that tangent plane choice,
which is the necessary part for our goal of shape reconstruction. In Figure 12, we show an
example of a shading flow that corresponds to each of the following surfaces, all with slightly
different tangent planes.

4.4. Case 4: Fourfold ambiguity. If there is to be a real solution to the polynomial system
{gi} for a chosen {a0, b0}, we must have either two or four solutions. The reason for part of this
ambiguity is due to the squared nature of the ||dN(�v)|| terms, just as we saw with the H → −H
ambiguity in the frontal-parallel case. This leads to the standard concave/convex ambiguity
pair. The second pair of solutions (if it exists) is due to the saddle/spherical ambiguity, as
shown in Figures 11 and 13. We get one surface for each positive and negative pair of the
principal curvatures: {k1 > 0, k2 > 0}, {k1 > 0, k2 < 0}, {k1 < 0, k2 > 0}, {k1 < 0, k2 < 0}.
To see the complete ambiguity in movie form, please view the associated multimedia files
(92647 01.gif [local/web 13.3MB], 92647 02.gif [local/web 13.6MB], 92647 03.gif [local/web
13.7MB], and 92647 04.gif [local/web 13.2MB]). There is one multimedia file for each branch,
as explained further in Figure 13.
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Figure 13. Panel (A) is the surface corresponding to the frontal-parallel tangent plane, as seen in the
center of Figure 12(B). In addition to the 2D ambiguity, as illustrated in Figure 12 there can also be up to four
different surfaces for a given tangent plane. Here, (B), (C), and (D) are the other surfaces corresponding to
panel (A). Note that there are a pair of saddle surfaces and a pair of spherical surfaces. The transformation
taking (A) to (B) and (C) to (D) is the concave-convex ambiguity. In addition, there is a novel ambiguity
between saddles and spherical shapes. To see the complete ambiguity in movie form, please view the associated
multimedia files (92647 01.gif [local/web 13.3MB] for panel (A), 92647 02.gif [local/web 13.6MB] for panel (B),
92647 03.gif [local/web 13.7MB] for panel (C), and 92647 04.gif [local/web 13.2MB] for panel (D)). In each
animation, the left panel is a shaded third-order surface; the middle is a zoom-in of the outlined area from the
left panel, corresponding to the region where second-order terms are dominant and thus second-order equations
are accurate; and the right panel shows all second-order surfaces (of the appropriate family) and corresponding
light source positions (yellow vector) that will create the image in the middle panel.

To summarize, we can use these equations to recover all the second-order surface infor-
mation (up to the fourfold ambiguity), given any tangent plane orientation. However, we
do not have the tangent plane information a priori. Thus, even with the local second-order
assumption, we already must deal with at least a 2D shading ambiguity at every local patch
due to the unknown light source positions.

For this reason, we believe the SFS problem can—and should—either be solved at certain
points in the image (considered next) or be combined with other means for obtaining tangent
plane information.

4.5. Ambiguity reduction at critical points. Much work has focused on the question:
“Where should one draw lines on a surface in order to give the best impression of the surface
shape?” Recently, Decarlo et al. [9] have considered “suggestive contours,” and Judd, Durand,
and Adelson [24] have suggested apparent ridges. How do we decide which feature lines are
“better”? [8] Why are certain curves so helpful in psychophysics? We believe these questions
can be answered by looking at the shading ambiguity on these feature lines.

Consider the example of contours of critical points on a surface. We define them here as
the points where the brightness gradient is zero. (In reality, we consider ∇I < ε.) Thus, these
are connected points that are local maxima or minima. Koenderink has analyzed isolated
points of this type in a simplified case [30]. For now, consider the generic case when the
Gaussian curvature is not zero and so H−1 is well-defined. As the isophote direction v̂ is no
longer well-defined at these points, we need to change the basis to {x, y}. Our equations (3.1),
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(3.2), and (3.3) become

Ixx = −(I)||dN(�e1)||2,(4.5a)

Ixy = −(I)〈dN(�e1), dN(�e2)〉G,(4.5b)

Iyy = −(I)||dN(�e2)||2.(4.5c)

This is quite similar to the second-order, frontal-parallel case, but we didn’t need any
assumptions! Rather, we can apply these equations only to highlight points in the image.
This cursory analysis may explain why highlight lines are so effective at revealing surface
shape psychophysically. We believe that understanding shading ambiguity can be a useful
metric for deciding between different definitions of “shape representing contours.” We can
also go the other way; we can use the dimension of the shading ambiguity to define contours
(sets of points) where the surface information is mathematically more restricted by the shading
than at a generic point; key among these points are ridges [32]. Because of the complexity of
this analysis, it will be treated in a companion paper.

5. Discussion. Given a local image patch I, assumed to be Lambertian, we can consider
the continuous pixel intensity information in terms of derivatives of intensity. At every point
in the image, we have the information contained in {I, Ix, Iy, Ixx, Ixy, Iyy}. We could consider
more derivatives, but the second-order derivatives are the minimum order needed for removing
the explicit light source variables. If we consider more brightness derivatives, the additional
unknown parameters will grow faster than the additional constraints.

Let us consider how to use each informational element. The intensity I at a point alone
is useless in considering shape information (or even tangent plane orientation), as we don’t
know the albedo. With unknown albedo, any angle between the unknown light sources and
unknown normal is possible. (Of course, we have information from intensity at several nearby
points, but we are considering that information to be contained in the derivatives of I.)

The amount of information in Ix and Iy is usually expressed as a brightness gradient.
Unfortunately, given any surface with second fundamental form II of full rank, we can find
a set of light source positions that will result in that brightness gradient. Thus, {Ix, Iy}
does not give us any information about the surface unless we assume a prior on light source
positions: the set of surfaces before and after we consider the brightness gradient is the same.
In terms of counting conditions, the brightness gradient gives us two conditions on the scene,
but having to include the explicit light source positions in the equations adds at least two
more parameters. However, once we have solved for our surface, we can use the brightness
gradient to solve for the light source direction, which may vary for each local patch.

Finally, consider the second derivatives: {Ixx, Ixy, Iyy}. As we have shown, these are the
lowest-order derivatives of intensity that can factored into components of surface shape and
image properties, with no explicit dependence on the light source. Thus, our SFS reconstruc-
tion efforts will focus on the use of these equations in order to create a light source-invariant
algorithm.

Pentland [35] also attempted to calculate local surface shape via the constraints {I, Ix, Iy,
Ixx, Ixy, Iyy}. In order to make it well-posed, he needed a local spherical assumption. With
this assumption, he had six parameters to solve for: two for the light source direction, one
for the albedo ρ, two for the tangent plane orientation, and one for the radius of curvature.
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Our work differs in that, rather than putting a hard constraint on our shape, we allow for all
possible local surfaces.

At particular points, i.e., at a boundary [25] or a cusp [33], we can get an unambiguous local
estimate. However, to realize a global reconstruction, we will have to choose among generic
local patches via compatibility conditions. There are two obvious compatibility metrics to
use. First, we would like overlapping patches to have similar normals. Second, we would like
the light sources used for nearby patches to be close in R

3. We plan to implement this via a
relaxation labeling scheme [22] in an upcoming paper.

6. Conclusion. We have modeled the SFS problem as a light source-invariant map from
a unit length vector field to a local surface and analyzed the mathematical relationship be-
tween the curvature of the isophotes and the curvatures of the surface in terms of differential
geometry. To gain intuition, we considered these relationships on various simplified domains.
We were able to investigate the ambiguity family when either the surface was second-order
or the brightness gradient ∇I was zero. We showed a novel ambiguity between saddle shapes
and ellipsoids.

We close with a neurobiological point. It is known that the higher visual areas are selective
for surface properties, including their curvatures [40]. It is also known that many different
forms of orientation images, such as oriented texture noise and glossy patterns (see references
in [16]) are perceived as surfaces. To our knowledge the calculations here provide a suggestion
of how this inference might proceed from the shading flow to surfaces. Our calculations also
illustrate the ambiguity that remains. While the human visual system gives the impression of
solving SFS, sometimes the solution is very physically inaccurate [29]. Michelangelo clearly
“understood” the importance of drawing highlights, boundaries, and ridges to support the
shading inference. Much remains to be done with the differential geometric approach to
completely understand why.

Appendix A. Covariant differentiation of the Hessian H: Proof of Proposition 2.4.

A.1. Tensor decomposition of H. To covariantly differentiate H, we note that H is a
(0, 2) tensor, and so we can expand it as a sum of tensor products of 1-forms. We follow the
notation in [12]. Write H1, H2 as the two rows of H, and E1, E2 as the standard basis 1-forms.
In a tensor representation, H1 and H2 are also both 1-form fields (covariant tensors):

H =

[
fxx fxy
fxy fyy

]
(A.1a)

=
[
fxx fxy

]⊗ [1 0
]
+
[
fxy fyy

]⊗ [0 1
]

(A.1b)

= H1 ⊗ E1 + H2 ⊗ E2.(A.1c)

To covariantly differentiate H, we apply a product rule for tensor products:

∇�vH = H1 ⊗∇�vE1 + H2 ⊗∇�vE2(A.2)

+∇�vH1 ⊗ E1 +∇�vH2 ⊗ E2.

Note that each of these four terms is also a (0, 2) tensor, and thus each term requires as input
two vectors. Without loss of generality, we calculate one of the individual terms ∇vH1 ⊗ E1;D
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the rest are analogous. The covariant derivative of a covariant tensor requires actions on the
tensor inputs, so we introduce dummy vectors �w1, �w2 to use in our expression.

A.2. Parallel transport of H.
Remark 2. As mentioned in Remark 1, we recall the second, equivalent, definition of co-

variant differentiation here. We define it intrinsically, that is, independent of the ambient
space R

3. We will not go into the derivations regarding connections or Christoffel symbols,
which can be found in [12] and [11]. We just summarize by saying that parallel transport is
a way to “equate” nearby vectors in nearby tangent planes along a curve β(s). Using no-
tation as in [12], we will write the parallel transport in the forward direction of the vector
field �w(β(s)) as τ→s (�w(β(s))). Conversely, the parallel transport backwards along the curve is
written τ←s (�w(β(s))). Then, the covariant derivative can be defined intrinsically as

∇β′(0) �w = lim
s→0

(
τ←s (�w(β(s))) − �w(β(0))

s

)
.

Thus, covariant differentiation resolves the tangent plane orientation problem by first
transporting the vector �w(β(s)) ∈ Tβ(s)(S) back to a “parallel” vector in Tβ(0)(S) before
doing the standard derivative subtraction.

Now, due to the duality between 1-forms and vectors, when we apply covariant differen-
tiation to a 1-form, we parallel transport the vector it acts on forwards. (This is opposite to
a covariant derivative of a vector, which is parallel transported backwards in the derivative.)
Define β(s) as a curve passing through P with velocity �v. Note that the 1-form H1 and its
input vector �w1 are defined along β(s) and may be indexed at different positions. We will
denote the position of H1 using a subscript, such as H1

β(s). Using the definition of covariant

derivative for covariant tensors in [12], we obtain

(∇�vH1 ⊗ E1)( �w1, �w2) = E1( �w2) ·
(
lim
s→0

H1
β(s)(τ

→
s ( �w1(β(0)))) − H1

β(0)( �w1(β(0)))

s

)
(A.3a)

= E1( �w2) ·
(

H1
β(0)

(
lim
s→0

(τ→s ( �w1(β(0)))) − ( �w1(β(0)))

s

))
(A.3b)

− E1( �w2) ·
(

�v[H1] �w1

)
(A.3c)

= E1( �w2) · H1
(

�Tw1

)
− E1( �w2) ·

(
�v[H1] �w1

)
.(A.3d)

The dot represents multiplication here. To go from (A.3a) to (A.3b), we used the substitution

−�v[H1]( �w1) = lim
s→0

(−H1
β(s)(τ

→
s ( �w1(β(0)))) + H1

β(0)(τ
→
s ( �w1(β(0))))

s

)
.

In English, this just states, “the directional derivative of 1-form H1 is defined as the
difference in H1 as we parallel transport its input.” For notational simplicity, in (A.3d) we
assigned the change from parallel transport of an arbitrary vector w1 to be �Tw1 :

lim
s→0

τ→s ( �w1(β(0))) − �w1(β(0))

s
= �Tw1 .(A.4)
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�Tw1 can be written using the Christoffel symbols, but this will lead to unnecessary notation
as the terms involving �Tw1 will eventually cancel.

We now repeat the process for the other three terms in (A.2) and compile the four terms
into the original matrix representation to get

(∇vH) ( �w1, �w2) = �Tw2H �w1 + �w2
T H �Tw1 − �w2�v[H] �w1.(A.5)

Appendix B. Proofs for shading equations Dûû and Dûv̂. The proofs for the shading
equations (3.2) and (3.3) are analogous to the proof for the first shading equation, (3.1).
Rather than repeat the analysis almost verbatim, we instead describe where substitutions
need to be made.

B.1. For Dûv̂. Here, we take the directional derivative of the constraint 〈�lt, dN(�v)〉G in
the �u direction. Thus, we need to modify (2.6a) so that we take the directional derivative
with respect to �u rather than �v. From then on, every time we see a �v as a direction in which
to take a derivative, we will instead have �u. The analysis for Dûv̂ then follows the Dv̂ v̂ case
exactly except in the following one place.

The first term in (2.14b) (which was �TltII�v) is now �TltII�u and thus contributes a term
rather than 0. However this simplifies (using the Christoffel symbols Γk

ij) to

�Tlt =

[∑
i,j

Γ1
ij

�lt
i
uj

∑
i,j

Γ2
ij

�lt
i
uj
]

(B.1a)

=

[
fx(�lt

T
II�u)√

1+f2
x+f2

y

fy(�lt
T
II�u)√

1+f2
x+f2

y

]
(B.1b)

= �lt
T
II�u

[
fx fy

]
√

1 + f2
x + f2

y

(B.1c)

= ||∇I|| ∇f√
1 + ||∇f ||2 .(B.1d)

Thus,

�TltII�u = ||∇I|| (∇f)T II�u√
1 + ||∇f ||2 .(B.2)

And this is precisely the extra term included in (3.2).

B.2. For Dûû. Here, we take the directional derivative of the constraint 〈�lt, dN(�u)〉G = I�u
in the �u direction, giving us Iuu. Thus, we will get Iuu on the left-hand side of (2.6a). However,
the analogous second term for (2.15e) will now be 0, as D�u�u is always perpendicular to ∇I.
Thus, we will get an Iuu on the left-hand side of (3.3) rather than a term analogous to D�v�v on
the right-hand side of (2.15e). This leads to each term on the right-hand side of (3.3) being
the opposite sign of the previous equations (3.1) and (3.2).

The other differences between this proof and the previous one for Dûv̂ is that the terms
containing dN(�v) in the previous proof are now dN(�u). In (2.10b), the second term is now
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−�u[n3]G
−1H(�u). In the previous proofs, the corresponding term enters an inner product with

�lt (which is equal to 0) and thus contributes nothing. Here, we must calculate it separately.
Straightforward calculation yields

�u[n3] =
∇fT II�u√
1 + ||∇f ||2 .(B.3)

Thus,

〈�lt,−�u[n3]G
−1H(�u)〉G = − ∇fT II�u√

1 + ||∇f ||2 〈
�lt, dN(�u)〉G(B.4a)

= −||∇I|| ∇fT II�u√
1 + ||∇f ||2 .(B.4b)

Therefore, the sum of the two extra terms we get when applying the method for Dûû is
solely

−2||∇I|| ∇fT II�u√
1 + ||∇f ||2 .

Adding these respective terms into the formulas for Dûv̂ and Dûû and changing the ap-
propriate �v to �u give the second-order shading equation stated in (3.3).

Appendix C. P.D.E.s. For completeness, we add the shading equations in P.D.E. fashion
in the {x, y} basis, without the differential geometric notation:

0 = Ixx(C.1)

+

(
(1 + f2

x)f
2
xy − 2fxfyfxyfxx + (1 + f2

y )f
2
xx

(1 + f2
x + f2

y )
2

)
I

+ 2Ix
fxfxx + fyfxy
1 + f2

x + f2
y

−
(
Ix(fyyfxxx − fxyfxxy) + Iy(−fxyfxxx + fxxfxxy)

fxxfyy − f2
xy

)
,

0 = Iyy(C.2)

+

(
(1 + f2

x)f
2
yy − 2fxfyfxyfyy + (1 + f2

y )f
2
xy

(1 + f2
x + f2

y )
2

)
I

+ 2Iy
fxfxy + fyfyy
1 + f2

x + f2
y

−
(
Ix(fyyfxyy − fxyfyyy) + Iy(−fxyfxyy + fxxfyyy)

fxxfyy − f2
xy

)
,
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0 = Ixy(C.3)

+

(
fxy(fxx + fyy + f2

yfxx + f2
xfyy)− fxfy(f

2
xy + fxxfyy)

(1 + f2
x + f2

y )
2

)
I

+
fxIyfxx + (fxIx + fyIy)fxy + fyIxfyy

1 + f2
x + f2

y

−
(
Ix(fyyfxxy − fxyfxyy) + Iy(−fxyfxxy + fxxfxyy)

fxxfyy − f2
xy

)
.
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