Laplacian Matrices of Graphs: Algorithms and Applications

Daniel A. Spielman - Yale Institute For Network Science

ICML, June 21, 2016

Outline

Laplacians
Interpolation on graphs
Spring networks
Clustering
Isotonic regression

Sparsification

Solving Laplacian Equations
Best results
The simplest algorithm

Interpolation on Graphs

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize

$$
\sum_{(i, j) \in E}(x(i)-x(j))^{2}
$$

Subject to given values

Interpolation on Graphs

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize

$$
\sum_{(i, j) \in E}(x(i)-x(j))^{2}
$$

Subject to given values

Interpolation on Graphs

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize

$$
\sum_{(i, j) \in E}(x(i)-x(j))^{2}=x^{T} L_{G} x
$$

Subject to given values

Take derivatives. Minimize by solving Laplacian

Interpolation on Graphs

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize

$$
\sum_{(i, j) \in E}(x(i)-x(j))^{2}=x^{T} L_{G} x
$$

Subject to given values

The Laplacian Quadratic Form

$$
\sum_{(i, j) \in E}(x(i)-x(j))^{2}
$$

The Laplacian Matrix of a Graph

$$
x^{T} L_{G} x=\sum_{(i, j) \in E}(x(i)-x(j))^{2}
$$

Spring Networks

View edges as rubber bands or ideal linear springs
Nail down some vertices, let rest settle

In equilibrium, nodes are averages of neighbors.

Spring Networks

View edges as rubber bands or ideal linear springs
Nail down some vertices, let rest settle

When stretched to length ℓ
potential energy is $\ell^{2} / 2$

Spring Networks

Nail down some vertices, let rest settle

Physics: position minimizes total potential energy

$$
\frac{1}{2} \sum_{(i, j) \in E}(x(i)-x(j))^{2}
$$

subject to boundary constraints (nails)

Spring Networks

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize

$$
\sum_{(i, j) \in E}(x(i)-x(j))^{2}=x^{T} L_{G} x
$$

Spring Networks

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize

$$
\sum_{(i, j) \in E}(x(i)-x(j))^{2}=x^{T} L_{G} x
$$

Spring Networks

Interpolate values of a function at all vertices from given values at a few vertices.

Minimize

$$
\sum_{(i, j) \in E}(x(i)-x(j))^{2}=x^{T} L_{G} x
$$

In the solution, variables are the average of their neighbors

Drawing by Spring Networks
 (Tutte ’63)

Drawing by Spring Networks

(Tutte ’63)

Drawing by Spring Networks

(Tutte ’63)

Drawing by Spring Netuferks
(Tutte '63)

Drawing by Spring Netuferks
(Tutte '63)

Drawing by Spring Netuprerks
(Tutte '63)
If the graph is planar, then the spring drawing has no crossing edges!

Drawing by Spring Netūिrks
(Tutte '63)

Drawing by Spring Networks
(Tutte '63)

Measuring boundaries of sets
Boundary: edges leaving a set

Measuring boundaries of sets

Boundary: edges leaving a set
Characteristic Vector of S :

$$
x(i)= \begin{cases}1 & i \text { in } S \\ 0 & i \text { not in } S\end{cases}
$$

Measuring boundaries of sets
Boundary: edges leaving a set
Characteristic Vector of S :

$$
\begin{gathered}
x(i)= \begin{cases}1 & i \text { in } S \\
0 & i \text { not in } S\end{cases} \\
\sum_{(i, j) \in E}(x(i)-x(j))^{2} \\
=\mid \text { boundary }(S) \mid
\end{gathered}
$$

Spectral Clustering and Partitioning

Find large sets of small boundary

Heuristic to find
x with $x^{T} L_{G} x$ small
Compute eigenvector

$$
L_{G} v_{2}=\lambda_{2} v_{2}
$$

Consider the level sets

The Laplacian Matrix of a Graph

$\left(\begin{array}{rrrrrr}3 & -1 & -1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 & 0 & -1 \\ -1 & 0 & 3 & -1 & -1 & 0 \\ -1 & 0 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & -1 & 3 & -1 \\ 0 & -1 & 0 & -1 & -1 & 3\end{array}\right) \quad \begin{aligned} & \text { Symmetric } \\ & \\ & \\ & \text { Non-positive } \\ & \text { off-diagonals } \\ & \\ & \text { Diagonally dominant }\end{aligned}$

The Laplacian Matrix of a Graph

$$
x^{T} L_{G} x=\sum(x(i)-x(j))^{2}
$$

$$
(\overline{i, j) \in E}
$$

$$
x(i)-x(j)=\left(\begin{array}{ll}
1 & -1
\end{array}\right)\binom{x(i)}{x(j)}
$$

$$
(x(i)-x(j))^{2}=\binom{x(i)}{x(j)}^{T}\binom{1}{-1}\binom{1}{-1}^{T}\binom{x(i)}{x(j)}
$$

$$
=\binom{x(i)}{x(j)}^{T}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\binom{x(i)}{x(j)}
$$

Laplacian Matrices of Weighted Graphs

$$
x^{T} L_{G} x=\sum_{(i, j) \in E} w_{i, j}(x(i)-x(j))^{2}
$$

$L_{G}=\sum w_{i, j}\left(b_{i, j} b_{i, j}^{T}\right)$
where $b_{i, j}=e_{i}-e_{j}$
$(i, j) \in E$

Laplacian Matrices of Weighted Graphs

$$
L_{G}=\sum w_{i, j}\left(b_{i, j} b_{i, j}^{T}\right) \quad \text { where } b_{i, j}=e_{i}-e_{j}
$$

$$
(i, \overline{j) \in E}
$$

$$
L_{G}=B^{T} W B
$$

B is the signed edge-vertex adjacency matrix with one row for each $b_{i, j}$
W is the diagonal matrix of weights $w_{i, j}$

Laplacian Matrices of Weighted Graphs

$$
L_{G}=\sum w_{i, j}\left(b_{i, j} b_{i, j}^{T}\right) \quad L_{G}=B^{T} W B
$$

$(i, j) \in E$

Quickly Solving Laplacian Equations

S, Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

Where m is number of non-zeros and n is dimension

Quickly Solving Laplacian Equations

S,Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

Koutis, Miller, Peng '11: Low-stretch trees and sampling

$$
\widetilde{O}\left(m \log n \log \epsilon^{-1}\right)
$$

Where m is number of non-zeros and n is dimension

Quickly Solving Laplacian Equations
S,Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

Koutis, Miller, Peng '11: Low-stretch trees and sampling

$$
\widetilde{O}\left(m \log n \log \epsilon^{-1}\right)
$$

Cohen, Kyng, Pachocki, Peng, Rao '14:

$$
\widetilde{O}\left(m \log ^{1 / 2} n \log \epsilon^{-1}\right)
$$

Quickly Solving Laplacian Equations
S,Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

Koutis, Miller, Peng '11: Low-stretch trees and sampling

$$
\widetilde{O}\left(m \log n \log \epsilon^{-1}\right)
$$

Cohen, Kyng, Pachocki, Peng, Rao '14:

$$
\widetilde{O}\left(m \log ^{1 / 2} n \log \epsilon^{-1}\right)
$$

Good code:
LAMG (lean algebraic multigrid) - Livne-Brandt
CMG (combinatorial multigrid) - Koutis

Quickly Solving Laplacian Equations

S, Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

An ϵ-accurate solution to $L_{G} x=b$
is an x satisfying

$$
\left\|x-x^{*}\right\|_{L_{G}} \leq \epsilon\left\|x^{*}\right\|_{L_{G}}
$$

where $\|v\|_{L_{G}}=\sqrt{v^{T} L_{G} v}=\left\|L_{G}^{1 / 2} v\right\|$

Quickly Solving Laplacian Equations
S,Teng '04: Using low-stretch trees and sparsifiers

$$
O\left(m \log ^{c} n \log \epsilon^{-1}\right)
$$

An ϵ-accurate solution to $L_{G} x=b$
is an x satisfying

$$
\left\|x-x^{*}\right\|_{L_{G}} \leq \epsilon\left\|x^{*}\right\|_{L_{G}}
$$

Allows fast computation of eigenvectors corresponding to small eigenvalues.

Laplacians in Linear Programming

Laplacians appear when solving Linear Programs on on graphs by Interior Point Methods

Lipschitz Learning : regularized interpolation on graphs (Kyng, Rao, Sachdeva, S ‘15)

Maximum and Min-Cost Flow
(Daitch, S ’08, Mądry ‘13)

Shortest Paths (Cohen, Mądry, Sankowski, Vladu '16) Isotonic Regression
(Kyng, Rao, Sachdeva '15)

Isotonic Regression

A function $x: V \rightarrow \mathbb{R}$ is isotonic with respect to a directed acyclic graph if x increases on edges.

Isotonic Regression

High-school GPA

Isotonic Regression

Isotonic Regression

We want the estimate to be monotonically increasing

Isotonic Regression

High-school GPA
Given $y: V \rightarrow \mathbb{R}$ find the isotonic x minimizing $\|x-y\|$

Isotonic Regression

High-school GPA
Given $y: V \rightarrow \mathbb{R}$ find the isotonic x minimizing $\|x-y\|$

Fast IPM for Isotonic Regression

(Kyng, Rao, Sachdeva '15)
Given $y: V \rightarrow \mathbb{R}$ find the isotonic \mathbf{x} minimizing $\|x-y\|_{1}$

Fast IPM for Isotonic Regression

(Kyng, Rao, Sachdeva '15)
Given $y: V \rightarrow \mathbb{R}$ find the isotonic \mathbf{x} minimizing $\|x-y\|_{1}$
or $\|x-y\|_{p}$ for any $p>1$
in time $O\left(m^{3 / 2} \log ^{3} m\right)$

Linear Program for Isotonic Regression

Signed edge-vertex incidence matrix
$\left(\begin{array}{ccccccc}1 & 0 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1\end{array}\right)$

x is isotonic if $B x \leq 0$

Linear Program for Isotonic Regression

Given y, minimize $\|x-y\|_{1}$
subject to $B x \leq 0$
$\left(\begin{array}{ccccccc}1 & 0 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1\end{array}\right)$

Linear Program for Isotonic Regression

Given y, minimize $\quad \sum_{i} r_{i}$
subject to $B x \leq 0$

$$
\left|x_{i}-y_{i}\right|=r_{i}
$$

$\left(\begin{array}{ccccccc}1 & 0 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1\end{array}\right)$

Linear Program for Isotonic Regression

Given y, minimize $\quad \sum_{i} r_{i}$
subject to $B x \leq 0$

$$
\left|x_{i}-y_{i}\right| \leq r_{i}
$$

$\left(\begin{array}{ccccccc}1 & 0 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1\end{array}\right)$

Linear Program for Isotonic Regression

Given y, minimize $\quad \sum_{i} r_{i}$
subject to $B x \leq 0$

$$
\begin{aligned}
x_{i}-y_{i} & \leq r_{i} \\
-\left(x_{i}-y_{i}\right) & \leq r_{i}
\end{aligned}
$$

$\left(\begin{array}{ccccccc}1 & 0 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1\end{array}\right)$

Linear Program for Isotonic Regression

Minimize $\sum_{i} r_{i}$
subject to $\left(\begin{array}{cc}0 & B \\ -I & I \\ -I & -I\end{array}\right)\binom{r}{x} \leq\left(\begin{array}{c}0 \\ y \\ -y\end{array}\right)$

Linear Program for Isotonic Regression

Minimize $\sum_{i} r_{i}$

$$
\text { subject to }\left(\begin{array}{cc}
0 & B \\
-I & I \\
-I & -I
\end{array}\right)\binom{r}{x} \leq\left(\begin{array}{c}
0 \\
y \\
-y
\end{array}\right)
$$

IPM solves a sequence of equations of form

$$
\left(\begin{array}{cc}
0 & B \\
-I & I \\
-I & -I
\end{array}\right)^{T}\left(\begin{array}{ccc}
S_{0} & 0 & 0 \\
0 & S_{1} & 0 \\
0 & 0 & S_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & B \\
-I & I \\
-I & -I
\end{array}\right)
$$

with positive diagonal matrices S_{0}, S_{1}, S_{2}

Linear Program for Isotonic Regression

$$
\begin{gathered}
\left(\begin{array}{cc}
0 & B \\
-I & I \\
-I & -I
\end{array}\right)^{T}\left(\begin{array}{ccc}
S_{0} & 0 & 0 \\
0 & S_{1} & 0 \\
0 & 0 & S_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & B \\
-I & I \\
-I & -I
\end{array}\right) \\
=\left(\begin{array}{cc}
S_{1}+S_{2} & S_{2}-S_{1} \\
S_{2}-S_{1} & \underbrace{B^{T} S_{0} B}_{\text {Laplacian! }}+S_{1}+S_{2}
\end{array}\right)
\end{gathered}
$$

S_{0}, S_{1}, S_{2} are positive diagonal

Linear Program for Isotonic Regression

$$
\begin{gathered}
\left(\begin{array}{cc}
0 & B \\
-I & I \\
-I & -I
\end{array}\right)^{T}\left(\begin{array}{ccc}
S_{0} & 0 & 0 \\
0 & S_{1} & 0 \\
0 & 0 & S_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & B \\
-I & I \\
-I & -I
\end{array}\right) \\
\quad=\left(\begin{array}{cc}
S_{1}+S_{2} & S_{2}-S_{1} \\
S_{2}-S_{1} & \underbrace{B^{T} S_{0} B}_{\text {Laplacian! }}+S_{1}+S_{2}
\end{array}\right)
\end{gathered}
$$

S_{0}, S_{1}, S_{2} are positive diagonal
Kyng, Rao, Sachdeva '15:
Reduce to solving Laplacians to constant accuracy

Spectral Sparsification

Every graph can be approximated by a sparse graph with a similar Laplacian

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all $x \quad \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon$

$$
L_{H} \approx_{\epsilon} L_{G}
$$

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all $x \quad \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon$
Preserves boundaries of every set

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all $x \quad \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon$
Solutions to linear equations are similiar

$$
L_{H} \approx_{\epsilon} L_{G} \Longleftrightarrow L_{H}^{-1} \approx_{\epsilon} L_{G}^{-1}
$$

Spectral Sparsification

Every graph G has an ϵ-approximation H with $n(2+\epsilon)^{2} / \epsilon^{2}$ edges

Every graph G has an ϵ-approximation H with $n(2+\epsilon)^{2} / \epsilon^{2}$ edges

Random regular graphs approximate complete graphs

Fast Spectral Sparsification

(S \& Srivastava ‘08)
If sample each edge with probability
inversely proportional to its effective spring constant, only need $O\left(n \log n / \epsilon^{2}\right)$ samples

Takes time $O\left(m \log ^{2} n\right)$ (Koutis, Levin, Peng '12)
(Lee \& Sun '15)
Can find an ϵ-approximation with $O\left(n / \epsilon^{2}\right)$ edges in time $O\left(n^{1+c}\right)$ for every $c>0$

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

Gaussian Elimination:
compute upper triangular U so that

$$
L_{G}=U^{T} U
$$

Approximate Gaussian Elimination: compute sparse upper triangular U so that

$$
L_{G} \approx U^{T} U
$$

Gaussian Elimination

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right)
$$

1. Find the rank-1 matrix that agrees on the first row and column

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 1 & 2 & 1 \\
-8 & 2 & 4 & 2 \\
-4 & 1 & 2 & 1
\end{array}\right)=\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{llll}
4 & -1 & -2 & -1
\end{array}\right)
$$

2. Subtract it

Gaussian Elimination

1. Find the rank-1 matrix that agrees on the first row and column

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 1 & 2 & 1 \\
-8 & 2 & 4 & 2 \\
-4 & 1 & 2 & 1
\end{array}\right)=\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{llll}
4 & -1 & -2 & -1
\end{array}\right)
$$

2. Subtract it

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right)-\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 1 & 2 & 1 \\
-8 & 2 & 4 & 2 \\
-4 & 1 & 2 & 1
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4 & -2 & -2 \\
0 & -2 & 10 & -2 \\
0 & -2 & -2 & 6
\end{array}\right)
$$

3. Repeat

Gaussian Elimination

2. Subtract it

$\left(\begin{array}{cccc}16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7\end{array}\right)-\left(\begin{array}{cccc}16 & -4 & -8 & -4 \\ -4 & 1 & 2 & 1 \\ -8 & 2 & 4 & 2 \\ -4 & 1 & 2 & 1\end{array}\right)=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 10 & -2 \\ 0 & -2 & -2 & 6\end{array}\right)$

1. Find the rank-1 matrix that agrees on the next row and column

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4 & -2 & -2 \\
0 & -2 & 1 & 1 \\
0 & -2 & 1 & 1
\end{array}\right)=\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{llll}
0 & 2 & -1 & -1
\end{array}\right)
$$

Gaussian Elimination

1. Find the rank-1 matrix that agrees on the next row and column
$\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 1 & 1 \\ 0 & -2 & 1 & 1\end{array}\right)=\left(\begin{array}{c}0 \\ 2 \\ -1 \\ -1\end{array}\right)\left(\begin{array}{llll}0 & 2 & -1 & -1\end{array}\right)$
2. Subtract it
$\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 10 & -2 \\ 0 & -2 & -2 & 6\end{array}\right)-\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 1 & 1 \\ 0 & -2 & 1 & 1\end{array}\right)=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 9 & -3 \\ 0 & 0 & -3 & 5\end{array}\right)$

Gaussian Elimination

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right)
$$

$$
=\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)^{T}+\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)^{T}+\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)^{T}+\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)^{T}
$$

Gaussian Elimination

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right)
$$

$$
=\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)^{T}+\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)^{T}+\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)^{T}+\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)^{T}
$$

$$
=\left(\begin{array}{cccc}
4 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
-2 & -1 & 3 & 0 \\
-1 & -1 & -1 & 2
\end{array}\right)\left(\begin{array}{cccc}
4 & -1 & -2 & -1 \\
0 & 2 & -1 & -1 \\
0 & 0 & 3 & -1 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

Gaussian Elimination

$$
\left(\begin{array}{cccc}
16 & -4 & -8 & -4 \\
-4 & 5 & 0 & -1 \\
-8 & 0 & 14 & 0 \\
-4 & -1 & 0 & 7
\end{array}\right)
$$

$$
=\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right)^{T}+\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
2 \\
-1 \\
-1
\end{array}\right)^{T}+\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
3 \\
-1
\end{array}\right)^{T}+\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right)^{T}
$$

$$
=\left(\begin{array}{cccc}
4 & -1 & -2 & -1 \\
0 & 2 & -1 & -1 \\
0 & 0 & 3 & -1 \\
0 & 0 & 0 & 2
\end{array}\right)^{T}\left(\begin{array}{cccc}
4 & -1 & -2 & -1 \\
0 & 2 & -1 & -1 \\
0 & 0 & 3 & -1 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

Gaussian Elimination

$\left(\begin{array}{cccc}16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7\end{array}\right)$
$=\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)^{T}+\left(\begin{array}{c}0 \\ 2 \\ -1 \\ -1\end{array}\right)\left(\begin{array}{c}0 \\ 2 \\ -1 \\ -1\end{array}\right)^{T}+\left(\begin{array}{c}0 \\ 0 \\ 3 \\ -1\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 3 \\ -1\end{array}\right)^{T}+\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 2\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 2\end{array}\right)^{T}$
Computation time proportional to the sum of the squares of the number of nonzeros in these vectors

Gaussian Elimination of Laplacians

If this is a Laplacian,
then so is this
$\left(\begin{array}{cccc}16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7\end{array}\right)-\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)^{T}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 10 & -2 \\ 0 & -2 & -2 & 6\end{array}\right)$

Gaussian Elimination of Laplacians

If this is a Laplacian, then so is this
$\left(\begin{array}{cccc}16 & -4 & -8 & -4 \\ -4 & 5 & 0 & -1 \\ -8 & 0 & 14 & 0 \\ -4 & -1 & 0 & 7\end{array}\right)-\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)\left(\begin{array}{c}4 \\ -1 \\ -2 \\ -1\end{array}\right)^{T}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 4 & -2 & -2 \\ 0 & -2 & 10 & -2 \\ 0 & -2 & -2 & 6\end{array}\right)$

When eliminate a node, add a clique on its neighbors

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

1. when eliminate a node, add a clique on its neighbors

2. Sparsify that clique, without ever constructing it

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

1. When eliminate a node of degree d,
add d edges at random between its neighbors, sampled with probability proportional to the weight of the edge to the eliminated node

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

0 . Initialize by randomly permuting vertices, and making $O\left(\log ^{2} n\right)$ copies of every edge

1. When eliminate a node of degree d,
add d edges at random between its neighbors, sampled with probability proportional to the weight of the edge to the eliminated node

Total time is $O\left(m \log ^{3} n\right)$

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

0 . Initialize by randomly permuting vertices, and making $O\left(\log ^{2} n\right)$ copies of every edge

1. When eliminate a node of degree d,
add d edges at random between its neighbors, sampled with probability proportional to the weight of the edge to the eliminated node

Total time is $O\left(m \log ^{3} n\right)$
Can be improved by sacrificing some simplicity

Approximate Gaussian Elimination

(Kyng \& Sachdeva ‘16)

Analysis by Random Matrix Theory:

Write $U^{T} U$ as a sum of random matrices.
$\mathbb{E}\left[U^{T} U\right]=L_{G}$
Random permutation and copying control the variances of the random matrices

Apply Matrix Freedman inequality (Tropp '11)

Recent Developments

Other families of linear systems (Kyng, Lee, Peng, Sachdeva, S ‘16)
complex-weighted Laplacians $\left(\begin{array}{cc}1 & e^{i \theta} \\ e^{-i \theta} & 1\end{array}\right)$
connection Laplacians

$$
\left(\begin{array}{cc}
I & Q \\
Q^{T} & I
\end{array}\right)
$$

Laplacians.jl

My web page on:
Laplacian linear equations, sparsification, local graph clustering, low-stretch spanning trees, and so on.

My class notes from
"Graphs and Networks" and "Spectral Graph Theory"
$L x=b$, by Nisheeth Vishnoi

