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Disclaimer 
 
The Kadison-Singer Problem, defined. 
 
Restricted Invertibility, a simple proof. 
 
Break 
 
Kadison-Singer, outline of proof.	  



The Kadison-Singer Problem (‘59) 

A	  posi've	  solu'on	  is	  equivalent	  to:	  
	  Anderson’s	  Paving	  Conjectures	  (‘79,	  ‘81)	  
	  Bourgain-‐Tzafriri	  Conjecture	  (‘91)	  
	  Feich'nger	  Conjecture	  (‘05)	  
	  Many	  others	  

	  
Implied	  by:	  

	  Akemann	  and	  Anderson’s	  Paving	  Conjecture	  (‘91)	  
	  Weaver’s	  KS2	  Conjecture	  
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Let     be a maximal Abelian subalgebra of               , 
the algebra of bounded linear operators on 
 
Let                  be a pure state. 
Is the extension of     to                unique? 	  

	  
	  
	  	  
	  

A

⇢ : A ! C
⇢

See	  Nick	  Harvey’s	  Survey	  or	  Terry	  Tao’s	  Blog	  

B(`2(N))
`2(N)

B(`2(N))

The Kadison-Singer Problem (‘59) 



Anderson’s Paving Conjecture ‘79  

For all          there is a k so that for every 
n-by-n symmetric matrix A with zero diagonals, 
 
there is a partition of                  into  	  

kA(Sj , Sj)k  ✏ kAk for j = 1, . . . , k

✏ > 0

Recall 	  kAk = max

kxk=1
kAxk

{1, ..., n} S1, ..., Sk
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For all          there is a k so that for every 
n-by-n symmetric matrix A with zero diagonals, 
 
there is a partition of                  into  	  

kA(Sj , Sj)k  ✏ kAk for j = 1, . . . , k
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kAk = sup
kxk=1

kAxk

Anderson’s Paving Conjecture ‘79  

For all          there is a k so that for every 
self-adjoint bounded linear operator A on    , 
 
there is a partition of      into  	  

kA(Sj , Sj)k  ✏ kAk for j = 1, . . . , k

✏ > 0
`2

N S1, ..., Sk



Anderson’s Paving Conjecture ‘79  

For all          there is a k so that for every 
n-by-n symmetric matrix A with zero diagonals, 
 
there is a partition of                  into  	  

kA(Sj , Sj)k  ✏ kAk for j = 1, . . . , k

✏ > 0

{1, ..., n} S1, ..., Sk

Is equivalent if restrict to projection matrices. 
                   [Casazza, Edidin, Kalra, Paulsen ‘07]	  



Anderson’s Paving Conjecture ‘79  

There exist an           and a k so that for    
    
   such that                     and   
 
   then exists a partition of                 into k parts s.t. 	  

✏ > 0

kvik2  1/2

{1, . . . , n}

Equivalent to [Harvey ‘13]:	  

v1, ..., vn 2 Cd

P
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Moments of  Vectors 
The moment of vectors  
   in the direction of a unit vector     is  	  
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Vectors with Spherical Moments 
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Vectors with Spherical Moments 
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Also called isotropic position 	  
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Partition into Approximately ½-Spherical Sets 
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S1
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Big vectors make this difficult  
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Big vectors make this difficult  



Weaver’s Conjecture KS2 

There exist positive constants    and    so that 
 
   if all  
 
   then exists a partition into S1 and S2 with 	  

↵ ✏

kvik  ↵

eigs(
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Weaver’s Conjecture KS2 

There exist positive constants    and    so that 
 
   if all  
 
   then exists a partition into S1 and S2 with 	  

↵ ✏

Implies Akemann-Anderson Paving Conjecture,  
 which implies Kadison-Singer	  

kvik  ↵

eigs(
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eigs(
P
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2 + 3↵

Main Theorem 

For all  
 
   if all  
 
   then exists a partition into S1 and S2 with 	  

↵ > 0

kvik  ↵

Implies Akemann-Anderson Paving Conjecture,  
 which implies Kadison-Singer	  



A Random Partition? 
Works with high probability if all                           

  (by Tropp ‘11, variant of Matrix Chernoff, Rudelson)  	  
kvik2  O(1/ log d)
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A Random Partition? 
Works with high probability if all                           

  (by Tropp ‘11, variant of Matrix Chernoff, Rudelson)  	  

Troublesome case: each                
   is a scaled axis vector	  

kvik = ↵

 are         of each 	  1/↵2

chance that all in one direction  
land in same set is	   2�1/↵2

kvik2  O(1/ log d)

Chance there exists a direction in which 
all land in same set is	  

1�
⇣
1� 2�1/↵2

⌘d
! 1



The Graphical Case 

From a graph G = (V,E) with |V| = n and |E| = m 
Create m vectors in n dimensions:	  

va,b(c) =

8
><

>:

1 if c = a

�1 if c = b

0 otherwise

X

(a,b)2E

va,bv
T
a,b = LG

If G is a good d-regular expander, all eigs close to d 
very close to spherical	  



Partitioning Expanders 

Can partition the edges of a good 
expander to obtain two expanders. 

Broder-Frieze-Upfal ‘94: 
  construct random partition guaranteeing  
  degree at least d/4, some expansion 
 
Frieze-Molloy ‘99: Lovász Local Lemma, 
   good expander 
 
Probability is works is low, but can prove non-zero	  



Interlacing Families of  Polynomials 

A new technique for proving existence  
from very low probabilities 
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Restricted Invertibility (Bourgain-Tzafriri)	

Special case: 
 
  For                             with 
 
  for every             there is a 
 
  so that      

v1, ..., vn 2 Cd

k  d S ⇢ {1, ..., n} , |S| = k
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Is far from singular on the span of 	  {vi}i2S
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�1(vv⇤) = v⇤v = kvk2 ⇡ d
n

Restricted Invertibility (Bourgain-Tzafriri)	

  For                             with 
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For             says                        ,  
 
while  	  

k = 1 �1(vv⇤) & d
n

Similar bound for k a constant fraction of d! 	  
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Method of  proof  

Let                 be chosen uniformly from  {v1, ..., vn}r1, ..., rk

1.                                    is real rooted E�

hX
rjr

⇤
j

i
(x)

the	  characteris*c	  polynomial	  in	  the	  variable	  x	

of	  the	  matrix	  inside	  the	  brackets	  
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Method of  proof  

Let                 be chosen uniformly from  {v1, ..., vn}r1, ..., rk

1.                                    is real rooted 

2.  
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Rank-1 updates of  characteristic polynomials 

As                        ,   

Lemma: For a symmetric matrix A,   

E�
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Rank-1 updates of  characteristic polynomials 

As                        ,   

Lemma: For a symmetric matrix A,   

Proof: follows from rank-1 update for determinants: 

det(A+ uu⇤) = det(A)(1 + u⇤A�1u)
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The expected characteristic polynomial 

Lemma: For a symmetric matrix A,   

Corollary: 
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Real Roots 
Lemma: if          is real rooted, so is  

p(x) (1� c@

x

)p(x)

p(x)

�p

0(x)

+	   +	  -‐	   -‐	   +	  



Real Roots 

Lemma: if          is real rooted, so is  
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Lower bound on the kth root 
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Lower bound on the kth root 
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Lower bound on the kth root 
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Proof: the polynomials  
 
 
  
   form an interlacing family. 

3. With non-zero probability 
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Interlacing 

Polynomial 

interlaces 

 

if   

q(x) =
Qd�1

i=1 (x� �i)

p(x) =
Qd

i=1(x� ↵i)

↵1  �1  ↵2  · · ·↵d�1  �d�1  ↵d

If generalize to allow same degree, 

  Cauchy’s interlacing theorem says 

                         interlaces �[A](x)
�[A+ vv

⇤](x)
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p1(x)

Common Interlacing 

      and           have a common interlacing if 
can partition the line into intervals so that  
each contains one root from each polynomial	  

p2(x)
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If                                have a common interlacing, 
 
then 

Common Interlacing 
p1(x), p2(x), . . . , pn(x)
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If                                have a common interlacing, 
 
then 

Common Interlacing 
p1(x), p2(x), . . . , pn(x)

min

j
�k(pj)  �k

✓
E
j
pj

◆
 max

j
�k(pj)

�1

�2

�3

�d�1

)	  )	  )	  )	  (	   (	   (	  (	  
All	  are	  	  
non-‐nega*ve	  	  
here	  

All	  are	  non-‐posi*ve	  here	  

So,	  the	  average	  has	  a	  root	  between	  the	  smallest	  and	  largest	  kth	  roots	  	  



Without a common interlacing 
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Without a common interlacing 

(x+ 1)(x+ 2) (x� 1)(x� 2)

x

2 + 4



Without a common interlacing 
(x+ 4)(x� 1)(x� 8)

(x+ 3)(x� 9)(x� 10.3)



Without a common interlacing 
(x+ 4)(x� 1)(x� 8)

(x+ 3)(x� 9)(x� 10.3)

(x+ 3.2)(x� 6.8)(x� 7)



If                                have a common interlacing, 
 
then 

Common Interlacing 
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is an interlacing family 

if its members can be placed on the leaves of a tree so that 
   when every node is labeled with the average of leaves below, 
   siblings have common interlacings 

Ei [ p2,i ]Ei [ p1,i ]

p2,2p2,1p1,1 p1,2

Ei,j [ pi,j ]

Interlacing Family of  Polynomials 
{p�(x)}�

Ei [ p3,i ]

p2,3p1,3 p3,1 p3,2 p3,3



is an interlacing family 

For                       , set  
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Ei [ p1,i ]



is an interlacing family 

For                       , set  

Interlacing Family of  Polynomials 
{p�(x)}�

� 2 {1, .., n}k pi1,...,ih = Eih+1,...,ik pi1,...,ik

p2,2p2,1p1,1 p1,2 p2,3p1,3 p3,1 p3,2 p3,3

p1 p2

p;

p3



Interlacing Family of  Polynomials 
Theorem: 
   There is an              so that 

p2,2p2,1p1,1 p1,2 p2,3p1,3 p3,1 p3,2 p3,3

p1 p2

p;

p3

i1, ..., ik

�k(pi1,...,ik) � �k (p;)



It remains to prove that the polynomials  
 
 
  
   form an interlacing family. 

Will imply that with non-zero probability 
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Common interlacings 

                                   have a common interlacing iff 
 
for every convex combination 

p1(x), p2(x), . . . , pn(x)

P
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Common interlacings 

                                   have a common interlacing iff 
 
for every distribution    on  

p1(x), p2(x), . . . , pn(x)

is real rooted 

µ {1, ..., n}

Ej⇠µ pj(x)

Proof: by similar picture.   
  (Dedieu ‘80, Fell ‘92, Chudnovsky-Seymour ‘07) 
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Nodes on the tree are labeled with 

pi1,...,ih(x) = Eih+1,...,ik pi1,...,ik(x)

We need to show that for each              the polynomials  i1, ..., ih

pi1,...,ih,j(x) have a common interlacing 
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An interlacing family 
We need to show that for each              the polynomials  i1, ..., ih

pi1,...,ih,j(x) have a common interlacing 

Proof:  

Cauchy’s interlacing theorem implies 
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An interlacing family 
We need to show that for each              the polynomials  i1, ..., ih

pi1,...,ih,j(x) have a common interlacing 

Proof:  

Cauchy’s interlacing theorem implies 
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An interlacing family 
Proof:  

Cauchy’s interlacing theorem implies 
 
 
have a common interlacing.  So, for all distributions 
 
 
is real rooted.  	  
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An interlacing family 
Proof:  

Cauchy’s interlacing theorem implies 
 
 
have a common interlacing.  So, for all distributions 
 
 
is real rooted.  And, 
 
 
is also real rooted for every distribution   . 	  
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Method of  proof  

Let                 be chosen uniformly from  {v1, ..., vn}r1, ..., rk

1.                                    is real rooted 

2.  

3. With non-zero probability 
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Because	  is	  an	  interlacing	  family	  of	  polynomials	  



In part 2 

Will use the same approach to prove  
    Weaver’s conjecture, and thereby Kadison-Singer 
 
But, employ multivariate analogs of these arguments 
 
and a direct bound on the roots of the polynomials. 



Main Theorem 

For all  
 
   if all                  and  
 
   then exists a partition into S1 and S2 with 	  

↵ > 0
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Implies Akemann-Anderson Paving Conjecture,  
 which implies Kadison-Singer	  

eigs(
P

i2Sj
viv⇤i )  1

2 + 3↵

P
viv⇤i = I



eigs

0

BB@

X

i2S1

viv
⇤
i 0

0
X

i2S2

viv
⇤
i

1

CCA  1
2 + 3↵

We want 



We want 

roots

0

BB@�

2

664

X

i2S1

viv
⇤
i 0

0

X

i2S2

viv
⇤
i

3

775 (x)

1

CCA  1
2 + 3↵



We want 

Consider expected polynomial with a random partition.	  

roots

0

BB@�

2

664

X

i2S1

viv
⇤
i 0

0

X

i2S2

viv
⇤
i

3

775 (x)

1

CCA  1
2 + 3↵



Method of  proof  

1.  Prove expected characteristic polynomial 
  has real roots 

2.  Prove its largest root is at most  
	  

3.  Prove is an interlacing family, so 
          exists a partition whose polynomial 

         has largest root at most  	  

1/2 + 3↵

1/2 + 3↵



The Expected Polynomial 
Indicate choices by                  :  	  �1, ...,�n i 2 S�i
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Mixed Characteristic Polynomials 

For                  independently chosen random vectors 	  

is their mixed characteristic polynomial. 

a1, ..., an

Theorem: It only depends on 
                and, is real-rooted 	  

E�[
P

i aia
⇤
i ]

Ai = E aia⇤i



Ai = E aia⇤i

Mixed Characteristic Polynomials 

For                  independently chosen random vectors 	  

is their mixed characteristic polynomial. 

a1, ..., an

E�[
P

i aia
⇤
i ] = µ(A1, ..., An)

Theorem: It only depends on 
                and, is real-rooted 	  

Tr (Ai) = Tr (E aia⇤i ) = ETr (aia⇤i ) = E kaik2



Mixed Characteristic Polynomials 

For                  independently chosen random vectors 	  

is their mixed characteristic polynomial. 

a1, ..., an

The constant term is the mixed discriminant of	  
A1, . . . , An

E�[
P

i aia
⇤
i ] = µ(A1, ..., An)



The constant term 
When diagonal and           ,       is a matrix permanent. d = n cd
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The constant term 

is minimized when 	  

Proved by Egorychev and Falikman ‘81. 
Simpler proof by Gurvits (see Laurent-Schrijver) 

If                   and 	  
P

Ai = I Tr(Ai) = 1

When diagonal and           ,       is a matrix permanent. 
Van der Waerden’s Conjecture becomes	  

d = n cd

cd Ai =
1

n
I



The constant term 

is minimized when 	  

This was a conjecture of Bapat. 

If                   and 	  
P

Ai = I Tr(Ai) = 1

For Hermitian matrices,     is the mixed discriminant 
Gurvits proved a lower bound on    : 	  cd

cd

cd

Ai =
1

n
I



Other coefficients 
One can generalize Gurvits’s results  
to prove lower bounds on all the coefficients. 

is minimized when 	  

If                   and 	  
P

Ai = I Tr(Ai) = 1

Ai =
1

n
I|ck|

But, this does not imply useful bounds on the roots	  



Real Stable Polynomials 

A multivariate generalization of real rootedness. 

p 2 IR[z]Complex roots of                  come in conjugate pairs.	  

So, real rooted iff no roots with positive complex part.	  



Real Stable Polynomials 

Isomorphic	  to	  Gårding’s	  hyperbolic	  polynomials	  
	  
Used	  by	  Gurvits	  (in	  his	  second	  proof)	  

is real stable if 

it has no roots in the upper half-plane 

for all i 

implies  

p 2 IR[z1, . . . , zn]

imag(zi) > 0
p(z1, . . . , zn) 6= 0



Real Stable Polynomials 

Isomorphic	  to	  Gårding’s	  hyperbolic	  polynomials	  
	  
Used	  by	  Gurvits	  (in	  his	  second	  proof)	  

is real stable if 

it has no roots in the upper half-plane 

for all i 

implies  

p 2 IR[z1, . . . , zn]

imag(zi) > 0
p(z1, . . . , zn) 6= 0

See surveys of Pemantle and Wagner 



Real Stable Polynomials 

Borcea-Brändén ‘08: 
    For PSD matrices  

is real stable 

det[z1A1 + · · ·+ znAn]

A1, . . . , An



Real Stable Polynomials 

implies                      is real rooted 

  real stable p(z1, ..., zn)

p(x, x, ..., x)

implies                                   is real stable 

  real stable p(z1, ..., zn)

(Lieb Sokal ‘81) 

(1� @zi) p(z1, ..., zn)
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Real Roots 

µ(A1, . . . , An)(x) =

So, every mixed characteristic polynomial 
  is real rooted.	  
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Our Interlacing Family 
Indicate choices by                  :  	  �1, ...,�n i 2 S�i

p�1,...,�k(x) = E
�k+1,...,�n

[ p�1,...,�n ] (x)



Interlacing 

p1(x)      and           have a common interlacing iff p2(x)

�p1(x) + (1� �)p2(x) is real rooted for all 	  0  �  1

We need to show that 
 
 
is real rooted. 	  

�p�1,...,�k,1(x) + (1� �)p�1,...�k,2(x)



Interlacing 

p1(x)      and           have a common interlacing iff p2(x)

�p1(x) + (1� �)p2(x) is real rooted for all 	  0  �  1

We need to show that 
 
 
is real rooted. 	  

�p�1,...,�k,1(x) + (1� �)p�1,...�k,2(x)

It is a mixed characteristic polynomial, so is real-rooted. 	  

�k+1 = 1Set                with probability 
Keep      uniform for  	  

�
�i i > k + 1



An upper bound on the roots 

Theorem: If                   and                    then 
          	  

P
Ai = I Tr(Ai)  ✏

max-root (µ(A1, ..., An)(x))  (1 +
p
✏)2



An upper bound on the roots 

Theorem: If                   and                    then 
          	  

P
Ai = I Tr(Ai)  ✏

max-root (µ(A1, ..., An)(x))  (1 +
p
✏)2

An upper bound of 2 is trivial (in our special case). 
 
Need any constant strictly less than 2.	  
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An upper bound on the roots 

Define:                   is an upper bound on 
   the roots of                    if  	  

(w1, ..., wn)
p(z1, ..., zn)

p(z1, ..., zn) > 0 for 	  (z1, ..., zn) � (w1, ..., wn)
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An upper bound on the roots 

Define:                   is an upper bound on 
   the roots of                    if  	  

(w1, ..., wn)
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Eventually set 
z1, ..., zn = x

so want	  
w1 = · · · = wn
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Action of  the operators 
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p(x, y)
(1� @y)p(x, y)

(1� ✏@y)p(x, y) ⇡ p(x, y � ✏)



The roots of   

Define: 
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Theorem (Batson-S-Srivastava): 
  If         is real rooted and 
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Proof:  Define 
 
 
   	   Set                                 , so   	  
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Set                                 , so   	  
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(algebra) 	  
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Define   	  
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�p(u) convex for                           implies   	  u > max(p(x))
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Monotone decreasing implies only need   	  
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�p(u) convex for                           implies   	  u > max(p(x))
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Monotone decreasing implies only need   	  
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=
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The roots of   (1� @
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Theorem (Batson-S-Srivastava): 
  If         is real rooted and 
          	  

p(x) ↵ > 0

↵-max((1� @

x

)p(x))  ↵-max(p(x)) +

1
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Gives a sharp upper bound on the roots of 
  associated Laguerre polynomials. 
 
The analogous argument with the min gives 
  the lower bound that we claimed before. 	  



An upper bound on the roots 

Theorem: If                   and                    then 
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A robust upper bound 

Define:                   is an    -upper bound on 
                         
if it is an     -max, in each    , and 
 
   	  

(w1, ..., wn)
p(z1, ..., zn)

↵

↵i zi ↵i  ↵

Theorem:  
    If                     	  is an    -upper bound on   , then  ↵ pw
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A robust upper bound 
Theorem:  
    If                     	  is an    -upper bound on   , and   ↵ pw

w + �ej is an    -upper bound on               ,         ↵ p� @zjp
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Proof:  
   Same as before, but need to know that                      	  

is decreasing and convex in    , above the roots	  zj

@zip(z1, . . . , zn)

p(z1, . . . , zn)



A robust upper bound 
Proof:  
   Same as before, but need to know that                      	  

is decreasing and convex in    , above the roots	  zj

@zip(z1, . . . , zn)

p(z1, . . . , zn)

Follows from a theorem of Helton and Vinnikov ’07:	  

Every bivariate real stable polynomial can be written	  

det(A+Bx+ Cy)



A robust upper bound 
Proof:  
   Same as before, but need to know that                      	  

is decreasing and convex in    , above the roots	  zj

@zip(z1, . . . , zn)

p(z1, . . . , zn)

Or, as pointed out by Renegar, 
 from a theorem Bauschke, Güler, Lewis, and Sendov ’01 

 
Or, by a theorem of Brändén ‘07. 
	  

Or, see Terry Tao’s blog for a (mostly) self-contained proof 



An upper bound on the roots 

Theorem: If                   and                    then 
          	  

P
Ai = I Tr(Ai)  ✏

max-root (µ(A1, ..., An)(x))  (1 +
p
✏)2



A probabilistic interpretation 

For                  independently chosen random vectors 
with finite support 	  

a1, ..., an

such that                                and  	  
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Main Theorem 

For all  
 
   if all  
 
   then exists a partition into S1 and S2 with 	  

↵ > 0

kvik  ↵

Implies Akemann-Anderson Paving Conjecture,  
 which implies Kadison-Singer	  

eigs(
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i2Sj
vivTi )  1

2 + 3↵



Anderson’s Paving Conjecture ‘79  

Reduction by Casazza-Edidin-Kalra-Paulsen ’07 and Harvey ’13: 
 

There exist an           and a k so that   
    
   if all                     and   
 
   then exists a partition of                 into k parts s.t. 	  

✏ > 0

P
vivTi = I

{1, . . . , n}

eigs(
P

i2Sj
vivTi )  1� ✏

kvik2  1/2

Can prove using the same technique 



A conjecture 

 If                   and                    then 
          	  

P
Ai = I Tr(Ai)  ✏

max-root (µ(A1, ..., An)(x))

is largest when  Ai =
✏
dI



Questions 

How do operations that preserve real rootedness 
move the roots and the Stieltjes transform?	  

Can the partition be found in polynomial time?	  

What else can one construct this way?	  




