The Solution of the Kadison-Singer Problem

Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India)

Outline

Disclaimer

The Kadison-Singer Problem, defined.
Restricted Invertibility, a simple proof.
Break
Kadison-Singer, outline of proof.

The Kadison-Singer Problem (‘59)

A positive solution is equivalent to:
Anderson's Paving Conjectures ('79, ‘81)
Bourgain-Tzafriri Conjecture ('91)
Feichtinger Conjecture ('05)
Many others

Implied by:
Akemann and Anderson’s Paving Conjecture ('91)
Weaver's KS 2 Conjecture

The Kadison-Singer Problem ('59)

A positive solution is equivalent to:
Anderson's Paving Conjectures ('79, ‘81)
Bourgain-Tzafriri Conjecture ('91)
Feichtinger Conjecture ('05)
Many others

Implied by:
Akemann and Anderson’s Paving Conjecture ('91)
Weaver's KS 2 Conjecture

The Kadison-Singer Problem ('59)

A positive solution is equivalent to:
Anderson's Paving Conjectures ('79, '81)
Bourgain-Tzafriri Conjecture ('91)
Feichtinger Conjecture ('05)
Many others

Implied by:
Akemann and Anderson’s Paving Conjecture ('91)
Weaver's KS 2 Conjecture

The Kadison-Singer Problem ('59)

Let \mathcal{A} be a maximal Abelian subalgebra of $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$, the algebra of bounded linear operators on $\ell^{2}(\mathbb{N})$

Let $\rho: \mathcal{A} \rightarrow \mathbb{C}$ be a pure state.
Is the extension of ρ to $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ unique?

See Nick Harvey's Survey or Terry Tao’s Blog

Anderson's Paving Conjecture ‘79

For all $\epsilon>0$ there is a k so that for every n-by-n symmetric matrix A with zero diagonals,
there is a partition of $\{1, \ldots, n\}$ into S_{1}, \ldots, S_{k}

$$
\left\|A\left(S_{j}, S_{j}\right)\right\| \leq \epsilon\|A\| \quad \text { for } \quad j=1, \ldots, k
$$

Recall $\|A\|=\max _{\|x\|=1}\|A x\|$

Anderson's Paving Conjecture ‘79

For all $\epsilon>0$ there is a k so that for every n-by-n symmetric matrix A with zero diagonals,
there is a partition of $\{1, \ldots, n\}$ into S_{1}, \ldots, S_{k}

$$
\left\|A\left(S_{j}, S_{j}\right)\right\| \leq \epsilon\|A\| \quad \text { for } \quad j=1, \ldots, k
$$

Recall $\|A\|=\max _{\|x\|=1}\|A x\|$

Anderson's Paving Conjecture ‘79

For all $\epsilon>0$ there is a k so that for every self-adjoint bounded linear operator A on ℓ_{2},
there is a partition of \mathbb{N} into S_{1}, \ldots, S_{k}

$$
\begin{aligned}
& \left\|A\left(S_{j}, S_{j}\right)\right\| \leq \epsilon\|A\| \quad \text { for } \quad j=1, \ldots, k \\
& \|A\|=\sup _{\|x\|=1}\|A x\|
\end{aligned}
$$

Anderson's Paving Conjecture ‘79

For all $\epsilon>0$ there is a k so that for every n-by-n symmetric matrix A with zero diagonals,
there is a partition of $\{1, \ldots, n\}$ into S_{1}, \ldots, S_{k}

$$
\left\|A\left(S_{j}, S_{j}\right)\right\| \leq \epsilon\|A\| \quad \text { for } \quad j=1, \ldots, k
$$

Is equivalent if restrict to projection matrices.
[Casazza, Edidin, Kalra, Paulsen ‘07]

Anderson's Paving Conjecture ‘79

Equivalent to [Harvey '13]:

There exist an $\epsilon>0$ and a k so that for $v_{1}, \ldots, v_{n} \in \mathbb{C}^{d}$
such that $\left\|v_{i}\right\|^{2} \leq 1 / 2$ and $\sum v_{i} v_{i}^{*}=I$
then exists a partition of $\{1, \ldots, n\}$ into k parts s.t.

$$
\left\|\sum_{i \in S_{j}} v_{i} v_{i}^{*}\right\| \leq 1-\epsilon
$$

Moments of Vectors

The moment of vectors v_{1}, \ldots, v_{n} in the direction of a unit vector u is $\sum_{i}\left(v_{i}^{T} u\right)^{2}$
v_{1}

1

2.5
v_{1}

4

Moments of Vectors

The moment of vectors v_{1}, \ldots, v_{n} in the direction of a unit vector u is

$$
\begin{aligned}
\sum_{i}\left(v_{i}^{T} u\right)^{2} & =\sum_{i} u^{T}\left(v_{i} v_{i}^{T}\right) u \\
& =u^{T}\left(\sum_{i} v_{i} v_{i}^{T}\right) u
\end{aligned}
$$

Vectors with Spherical Moments

For every unit vector u

$$
\sum_{i}\left(v_{i}^{T} u\right)^{2}=1
$$

Vectors with Spherical Moments

For every unit vector u

$$
\begin{aligned}
& \sum_{i}\left(v_{i}^{T} u\right)^{2}=1 \\
& \sum_{i} v_{i} v_{i}^{T}=I
\end{aligned}
$$

Also called isotropic position

Partition into Approximately $1 / 2$-Spherical Sets

Partition into Approximately $1 / 2$-Spherical Sets

$$
1 / 4 \leq \sum_{i \in S_{j}}\left(v_{i}^{T} u\right)^{2} \leq 3 / 4
$$

Partition into Approximately $1 / 2$-Spherical Sets

$$
1 / 4 \leq \sum_{i \in S_{j}}\left(v_{i}^{T} u\right)^{2} \leq 3 / 4
$$

$$
1 / 4 \leq \operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{T}\right) \leq 3 / 4
$$

Partition into Approximately $1 / 2$-Spherical Sets

$$
1 / 4 \leq \sum_{i \in S_{j}}\left(v_{i}^{T} u\right)^{2} \leq 3 / 4
$$

$$
1 / 4 \leq \operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{T}\right) \leq 3 / 4
$$

$$
\Longleftrightarrow \operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{T}\right) \leq 3 / 4
$$

because $\sum_{i \in S_{1}} v_{i} v_{i}^{T}=I-\sum_{i \in S_{2}} v_{i} v_{i}^{T}$

Partition into Approximately $1 / 2$-Spherical Sets

$$
1 / 4 \leq \sum_{i \in S_{j}}\left(v_{i}^{T} u\right)^{2} \leq 3 / 4
$$

$$
1 / 4 \leq \operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{T}\right) \leq 3 / 4
$$

$$
\Longleftrightarrow \quad\left\|\sum_{i \in S_{j}} v_{i} v_{i}^{T}\right\| \leq 3 / 4
$$

because $\sum_{i \in S_{1}} v_{i} v_{i}^{T}=I-\sum_{i \in S_{2}} v_{i} v_{i}^{T}$

Big vectors make this difficult

Big vectors make this difficult

Weaver's Conjecture KS_{2}

There exist positive constants α and ϵ so that
if all $\left\|v_{i}\right\| \leq \alpha$
then exists a partition into S_{1} and S_{2} with

$$
\operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{*}\right) \leq 1-\epsilon
$$

Weaver's Conjecture KS_{2}

There exist positive constants α and ϵ so that
if all $\left\|v_{i}\right\| \leq \alpha$
then exists a partition into S_{1} and S_{2} with

$$
\operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{*}\right) \leq 1-\epsilon
$$

Implies Akemann-Anderson Paving Conjecture, which implies Kadison-Singer

Main Theorem

For all $\alpha>0$
if all $\left\|v_{i}\right\| \leq \alpha$
then exists a partition into S_{1} and S_{2} with

$$
\operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{*}\right) \leq \frac{1}{2}+3 \alpha
$$

Implies Akemann-Anderson Paving Conjecture, which implies Kadison-Singer

A Random Partition?

Works with high probability if all $\left\|v_{i}\right\|^{2} \leq O(1 / \log d)$ (by Tropp '11, variant of Matrix Chernoff, Rudelson)

A Random Partition?

Works with high probability if all $\left\|v_{i}\right\|^{2} \leq O(1 / \log d)$ (by Tropp '11, variant of Matrix Chernoff, Rudelson)

Troublesome case: each $\left\|v_{i}\right\|=\alpha$ is a scaled axis vector

$$
\text { are } 1 / \alpha^{2} \text { of each }
$$

A Random Partition?

Works with high probability if all $\left\|v_{i}\right\|^{2} \leq O(1 / \log d)$
(by Tropp '11, variant of Matrix Chernoff, Rudelson)

Troublesome case: each $\left\|v_{i}\right\|=\alpha$ is a scaled axis vector
are $1 / \alpha^{2}$ of each

chance that all in one direction land in same set is $2^{-1 / \alpha^{2}}$

A Random Partition?

Works with high probability if all $\left\|v_{i}\right\|^{2} \leq O(1 / \log d)$ (by Tropp '11, variant of Matrix Chernoff, Rudelson)

Troublesome case: each $\left\|v_{i}\right\|=\alpha$ is a scaled axis vector
are $1 / \alpha^{2}$ of each
 chance that all in one direction land in same set is $2^{-1 / \alpha^{2}}$

Chance there exists a direction in which all land in same set is

$$
1-\left(1-2^{-1 / \alpha^{2}}\right)^{d} \rightarrow 1
$$

The Graphical Case

From a graph $G=(V, E)$ with $|V|=n$ and $|E|=m$ Create m vectors in n dimensions:

$$
v_{a, b}(c)= \begin{cases}1 & \text { if } c=a \\ -1 & \text { if } c=b \\ 0 & \text { otherwise }\end{cases}
$$

$$
\sum_{(a, b) \in E} v_{a, b} v_{a, b}^{T}=L_{G}
$$

If G is a good d -regular expander, all eigs close to d very close to spherical

Partitioning Expanders

Can partition the edges of a good expander to obtain two expanders.

Broder-Frieze-Upfal '94:
construct random partition guaranteeing degree at least d/4, some expansion

Frieze-Molloy '99: Lovász Local Lemma, good expander

Probability is works is low, but can prove non-zero

Interlacing Families of Polynomials

A new technique for proving existence from very low probabilities

Restricted Invertibility (Bourgain-Tzafriri)

Special case:

For $v_{1}, \ldots, v_{n} \in \mathbb{C}^{d}$ with $\sum_{i} v_{i} v_{i}^{*}=I$
for every $k \leq d$ there is a $S \subset\{1, \ldots, n\},|S|=k$
so that

$$
\lambda_{k}\left(\sum_{i \in S} v_{i} v_{i}^{*}\right) \geq\left(1-\sqrt{\frac{k}{d}}\right)^{2} \frac{d}{n}
$$

Restricted Invertibility (Bourgain-Tzafriri)

Special case:

For $v_{1}, \ldots, v_{n} \in \mathbb{C}^{d}$ with $\sum_{i} v_{i} v_{i}^{*}=I$
for every $k \leq d$ there is a $S \subset\{1, \ldots, n\},|S|=k$ so that

$$
\lambda_{k}\left(\sum_{i \in S} v_{i} v_{i}^{*}\right) \geq\left(1-\sqrt{\frac{k}{d}}\right)^{2} \frac{d}{n}
$$

Is far from singular on the span of $\left\{v_{i}\right\}_{i \in S}$

Restricted Invertibility (Bourgain-Tzafriri)

For $v_{1}, \ldots, v_{n} \in \mathbb{C}^{d}$ with $\sum_{i} v_{i} v_{i}^{*}=I$
for every $k \leq d$ there is a $S \subset\{1, \ldots, n\},|S|=k$
so that $\quad \lambda_{k}\left(\sum_{i \in S} v_{i} v_{i}^{*}\right) \geq\left(1-\sqrt{\frac{k}{d}}\right)^{2} \frac{d}{n}$

$$
\begin{aligned}
& \text { For } k=1 \text { says } \lambda_{1}\left(v v^{*}\right) \gtrsim \frac{d}{n} \\
& \text { while } \lambda_{1}\left(v v^{*}\right)=v^{*} v=\|v\|^{2} \approx \frac{d}{n}
\end{aligned}
$$

Similar bound for k a constant fraction of $d!$

Method of proof

Let r_{1}, \ldots, r_{k} be chosen uniformly from $\left\{v_{1}, \ldots, v_{n}\right\}$

1. $\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)$ is real rooted
the characteristic polynomial in the variable x of the matrix inside the brackets

Method of proof

Let r_{1}, \ldots, r_{k} be chosen uniformly from $\left\{v_{1}, \ldots, v_{n}\right\}$

1. $\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)$ is real rooted
2. $\lambda_{k}\left(\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)\right) \geq\left(1-\sqrt{\frac{k}{d}}\right)^{2} \frac{d}{n}$
the k-th root of the polynomial

Method of proof

Let r_{1}, \ldots, r_{k} be chosen uniformly from $\left\{v_{1}, \ldots, v_{n}\right\}$

1. $\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)$ is real rooted
2. $\lambda_{k}\left(\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)\right) \geq\left(1-\sqrt{\frac{k}{d}}\right)^{2} \frac{d}{n}$
3. With non-zero probability

$$
\lambda_{k}\left(\chi\left[\sum r_{j} r_{j}^{*}\right](x)\right) \geq \lambda_{k}\left(\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)\right)
$$

Because is an interlacing family of polynomials

Method of proof

Let r_{1}, \ldots, r_{k} be chosen uniformly from $\left\{v_{1}, \ldots, v_{n}\right\}$

1. $\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)$ is real rooted
2. $\lambda_{k}\left(\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)\right) \geq\left(1-\sqrt{\frac{k}{d}}\right)^{2} \frac{d}{n}$
3. With non-zero probability

$$
\lambda_{k}\left(\chi\left[\sum r_{j} r_{j}^{*}\right](x)\right) \geq \lambda_{k}\left(\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)\right)
$$

Because is an interlacing family of polynomials

Rank-1 updates of characteristic polynomials

$$
\text { As } \sum_{i} v_{i} v_{i}^{*}=I, \quad \mathbb{E} r_{j} r_{j}^{*}=\frac{1}{n} I
$$

Lemma: For a symmetric matrix A,

$$
\mathbb{E} \chi\left[A+r_{j} r_{j}^{*}\right](x)=\left(1-\frac{1}{n} \partial_{x}\right) \chi[A](x)
$$

Rank-1 updates of characteristic polynomials

As $\sum_{i} v_{i} v_{i}^{*}=I, \quad \mathbb{E} r_{j} r_{j}^{*}=\frac{1}{n} I$

Lemma: For a symmetric matrix A,

$$
\mathbb{E} \chi\left[A+r_{j} r_{j}^{*}\right](x)=\left(1-\frac{1}{n} \partial_{x}\right) \chi[A](x)
$$

Proof: follows from rank-1 update for determinants:

$$
\operatorname{det}\left(A+u u^{*}\right)=\operatorname{det}(A)\left(1+u^{*} A^{-1} u\right)
$$

The expected characteristic polynomial

Lemma: For a symmetric matrix A,

$$
\mathbb{E} \chi\left[A+r_{j} r_{j}^{*}\right](x)=\left(1-\frac{1}{n} \partial_{x}\right) \chi[A](x)
$$

Corollary:

$$
\mathbb{E} \chi\left[\sum_{j=1}^{k} r_{j} r_{j}^{*}\right](x)=\left(1-\frac{1}{n} \partial_{x}\right)^{k} x^{d}
$$

Real Roots

Lemma: if $p(x)$ is real rooted, so is $\left(1-c \partial_{x}\right) p(x)$

Real Roots

Lemma: if $p(x)$ is real rooted, so is $\left(1-c \partial_{x}\right) p(x)$

Real Roots

Lemma: if $p(x)$ is real rooted, so is $\left(1-c \partial_{x}\right) p(x)$

Real Roots

Lemma: if $p(x)$ is real rooted, so is $\left(1-c \partial_{x}\right) p(x)$

Real Roots

Lemma: if $p(x)$ is real rooted, so is $\left(1-c \partial_{x}\right) p(x)$

$+$

Real Roots

Lemma: if $p(x)$ is real rooted, so is $\left(1-c \partial_{x}\right) p(x)$

$$
\mathbb{E} \chi\left[\sum_{j=1}^{k} r_{j} r_{j}^{*}\right](x)=\left(1-\frac{1}{n} \partial_{x}\right)^{k} x^{d}
$$

So, $\mathbb{E} \chi\left[\sum_{j=1}^{k} r_{j} r_{j}^{*}\right](x)$ is real rooted

Lower bound on the kth root

$$
\begin{aligned}
\mathbb{E} \chi\left[\sum_{j=1}^{k} r_{j} r_{j}^{*}\right](x) & =\left(1-\frac{1}{n} \partial_{x}\right)^{k} x^{d} \\
& =x^{d-k}\left(1-\frac{1}{n} \partial_{x}\right)^{d} x^{k} \\
& =x^{d-k} L_{k}^{d-k}(n x)
\end{aligned}
$$

a scaled associated Laguerre polynomial

Lower bound on the kth root

$$
\mathbb{E} \chi\left[\sum_{j=1}^{k} r_{j} r_{j}^{*}\right](x)=x^{d-k} L_{k}^{d-k}(n x)
$$

a scaled associated Laguerre polynomial

Let R be a k-by-d matrix of independent $\mathcal{N}(0,1 / n)$

$$
\begin{aligned}
& \mathbb{E} \chi\left[R R^{T}\right]=L_{k}^{d-k}(n x) \\
& \mathbb{E} \chi\left[R^{T} R\right]=x^{d-k} L_{k}^{d-k}(n x)
\end{aligned}
$$

Lower bound on the kth root

$$
\mathbb{E} \chi\left[\sum_{j=1}^{k} r_{j} r_{j}^{*}\right](x)=x^{d-k} L_{k}^{d-k}(n x)
$$

a scaled associated Laguerre polynomial

$$
\lambda_{k}\left(\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)\right) \geq\left(1-\sqrt{\frac{k}{d}}\right)^{2} \frac{d}{n}
$$

(Krasikov '06)

3. With non-zero probability

$\lambda_{k}\left(\chi\left[\sum r_{j} r_{j}^{*}\right](x)\right) \geq \lambda_{k}\left(\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)\right)$

Proof: the polynomials

$$
p_{i_{1}, i_{2}, \ldots, i_{k}}(x)=\chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{k}} v_{i_{k}}^{*}\right](x)
$$

form an interlacing family.

Interlacing

Polynomial $p(x)=\prod_{i=1}^{d}\left(x-\alpha_{i}\right)$
interlaces $\quad q(x)=\prod_{i=1}^{d-1}\left(x-\beta_{i}\right)$
if $\quad \alpha_{1} \leq \beta_{1} \leq \alpha_{2} \leq \cdots \alpha_{d-1} \leq \beta_{d-1} \leq \alpha_{d}$

Interlacing

Polynomial $p(x)=\prod_{i=1}^{d}\left(x-\alpha_{i}\right)$
interlaces $\quad q(x)=\prod_{i=1}^{d-1}\left(x-\beta_{i}\right)$
if $\quad \alpha_{1} \leq \beta_{1} \leq \alpha_{2} \leq \cdots \alpha_{d-1} \leq \beta_{d-1} \leq \alpha_{d}$
For example, $p(x)$ interlaces $\partial_{x} p(x)$

Interlacing

Polynomial $p(x)=\prod_{i=1}^{d}\left(x-\alpha_{i}\right)$
interlaces $\quad q(x)=\prod_{i=1}^{d-1}\left(x-\beta_{i}\right)$
if $\quad \alpha_{1} \leq \beta_{1} \leq \alpha_{2} \leq \cdots \alpha_{d-1} \leq \beta_{d-1} \leq \alpha_{d} \leq \beta_{d}$

If generalize to allow same degree,
Cauchy's interlacing theorem says
$\chi[A](x)$ interlaces $\chi\left[A+v v^{*}\right](x)$

Common Interlacing

$p_{1}(x)$ and $p_{2}(x)$ have a common interlacing if can partition the line into intervals so that each contains one root from each polynomial

Common Interlacing

$p_{1}(x)$ and $p_{2}(x)$ have a common interlacing if can partition the line into intervals so that each contains one root from each polynomial

Common Interlacing

If $p_{1}(x), p_{2}(x), \ldots, p_{n}(x)$ have a common interlacing
then $\min _{j} \lambda_{k}\left(p_{j}\right) \leq \lambda_{k}\left(\underset{j}{\mathbb{E}} p_{j}\right) \leq \max _{j} \lambda_{k}\left(p_{j}\right)$

Common Interlacing

If $p_{1}(x), p_{2}(x), \ldots, p_{n}(x)$ have a common interlacing
then $\min _{j} \lambda_{k}\left(p_{j}\right) \leq \lambda_{k}\left(\underset{j}{\mathbb{E}} p_{j}\right) \leq \max _{j} \lambda_{k}\left(p_{j}\right)$

Common Interlacing

If $p_{1}(x), p_{2}(x), \ldots, p_{n}(x)$ have a common interlacing
then $\min _{j} \lambda_{k}\left(p_{j}\right) \leq \lambda_{k}\left(\underset{j}{\mathbb{E}} p_{j}\right) \leq \max _{j} \lambda_{k}\left(p_{j}\right)$

So, the average has a root between the smallest and largest kth roots

Without a common interlacing

Common Interlacing

If $p_{1}(x), p_{2}(x), \ldots, p_{n}(x)$ have a common interlacing
then $\min _{j} \lambda_{k}\left(p_{j}\right) \leq \lambda_{k}\left(\underset{j}{\mathbb{E}} p_{j}\right) \leq \max _{j} \lambda_{k}\left(p_{j}\right)$

Interlacing Family of Polynomials

$\left\{p_{\sigma}(x)\right\}_{\sigma}$ is an interlacing family
if its members can be placed on the leaves of a tree so that when every node is labeled with the average of leaves below, siblings have common interlacings

Interlacing Family of Polynomials

$\left\{p_{\sigma}(x)\right\}_{\sigma}$ is an interlacing family
For $\sigma \in\{1, . ., n\}^{k}$, set $p_{i_{1}, \ldots, i_{h}}=\mathbb{E}_{i_{h+1}, \ldots, i_{k}} p_{i_{1}, \ldots, i_{k}}$

Interlacing Family of Polynomials

$\left\{p_{\sigma}(x)\right\}_{\sigma}$ is an interlacing family
For $\sigma \in\{1, . ., n\}^{k}$, set $p_{i_{1}, \ldots, i_{h}}=\mathbb{E}_{i_{h+1}, \ldots, i_{k}} p_{i_{1}, \ldots, i_{k}}$

Interlacing Family of Polynomials

Theorem:
There is an i_{1}, \ldots, i_{k} so that

$$
\lambda_{k}\left(p_{i_{1}, \ldots, i_{k}}\right) \geq \lambda_{k}\left(p_{\emptyset}\right)
$$

Interlacing Family of Polynomials

It remains to prove that the polynomials

$$
p_{i_{1}, i_{2}, \ldots, i_{k}}(x)=\chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{k}} v_{i_{k}}^{*}\right](x)
$$

form an interlacing family.
Will imply that with non-zero probability

$$
\lambda_{k}\left(\chi\left[\sum r_{j} r_{j}^{*}\right](x)\right) \geq \lambda_{k}\left(\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)\right)
$$

Common interlacings

$p_{1}(x), p_{2}(x), \ldots, p_{n}(x)$ have a common interlacing iff
for every convex combination $\sum_{j} \mu_{j}=1, \mu_{j} \geq 0$

$$
\sum_{j} \mu_{j} p_{j}(x)
$$

is real rooted

Common interlacings

$p_{1}(x), p_{2}(x), \ldots, p_{n}(x)$ have a common interlacing iff
for every distribution μ on $\{1, \ldots, n\}$

$$
\mathbb{E}_{j \sim \mu} p_{j}(x)
$$

is real rooted

Common interlacings

$p_{1}(x), p_{2}(x), \ldots, p_{n}(x)$ have a common interlacing iff
for every distribution μ on $\{1, \ldots, n\}$

$$
\mathbb{E}_{j \sim \mu} p_{j}(x)
$$

is real rooted

Proof: by similar picture.
(Dedieu '80, Fell '92, Chudnovsky-Seymour '07)

An interlacing family

$$
p_{i_{1}, i_{2}, \ldots, i_{k}}(x)=\chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{k}} v_{i_{k}}^{*}\right](x)
$$

Nodes on the tree are labeled with

$$
p_{i_{1}, \ldots, i_{h}}(x)=\mathbb{E}_{i_{h+1}, \ldots, i_{k}} p_{i_{1}, \ldots, i_{k}}(x)
$$

We need to show that for each i_{1}, \ldots, i_{h} the polynomials
$p_{i_{1}, \ldots, i_{h}, \underline{j}}(x)$ have a common interlacing

An interlacing family

$$
p_{i_{1}, i_{2}, \ldots, i_{k}}(x)=\chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{k}} v_{i_{k}}^{*}\right](x)
$$

Nodes on the tree are labeled with

$$
p_{i_{1}, \ldots, i_{h}}(x)=\mathbb{E}_{i_{h+1}, \ldots, i_{k}} p_{i_{1}, \ldots, i_{k}}(x)
$$

We need to show that for each i_{1}, \ldots, i_{h} the polynomials

$$
p_{i_{1}, \ldots, i_{h}, \underline{\underline{1}}}(x) \text { have a common interlacing }
$$

Proof:

$$
\begin{equation*}
=\left(1-\frac{1}{n} \partial_{x}\right)^{k-h-1} \chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}+v_{j} v_{j}^{*}\right] \tag{x}
\end{equation*}
$$

An interlacing family

We need to show that for each i_{1}, \ldots, i_{h} the polynomials
$p_{i_{1}, \ldots, i_{h}, \underline{j}}(x)$ have a common interlacing
Proof:

$$
=\left(1-\frac{1}{n} \partial_{x}\right)^{k-h-1} \chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}+v_{j} v_{j}^{*}\right](x)
$$

Cauchy's interlacing theorem implies

$$
\chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}+v_{j} v_{j}^{*}\right](x)
$$

All interlace

$$
\chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}\right](x)
$$

An interlacing family

We need to show that for each i_{1}, \ldots, i_{h} the polynomials
$p_{i_{1}, \ldots, i_{h}, j}(x)$ have a common interlacing
Proof:

$$
=\left(1-\frac{1}{n} \partial_{x}\right)^{k-h-1} \chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}+v_{j} v_{j}^{*}\right](x)
$$

Cauchy's interlacing theorem implies

$$
\chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}+v_{j} v_{j}^{*}\right](x)
$$

have a common interlacing

An interlacing family

Proof:

$$
=\left(1-\frac{1}{n} \partial_{x}\right)^{k-h-1} \chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}+v_{j} v_{j}^{*}\right](x)
$$

Cauchy's interlacing theorem implies

$$
\chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}+v_{j} v_{j}^{*}\right](x)
$$

have a common interlacing. So, for all distributions μ

$$
\mathbb{E}_{j \sim \mu} \chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}+v_{j} v_{j}^{*}\right](x)
$$

is real rooted.

An interlacing family

Proof:

$$
=\left(1-\frac{1}{n} \partial_{x}\right)^{k-h-1} \chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}+v_{j} v_{j}^{*}\right](x)
$$

Cauchy's interlacing theorem implies

$$
\chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}+v_{j} v_{j}^{*}\right](x)
$$

have a common interlacing. So, for all distributions μ

$$
\mathbb{E}_{j \sim \mu} \chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}+v_{j} v_{j}^{*}\right](x)
$$

is real rooted. And,
$\mathbb{E}_{j \sim \mu}\left(1-\frac{1}{n} \partial_{x}\right)^{k-h-1} \chi\left[v_{i_{1}} v_{i_{1}}^{*}+\cdots+v_{i_{h}} v_{i_{h}}^{*}+v_{j} v_{j}^{*}\right](x)$ is also real rooted for every distribution μ.

Method of proof

Let r_{1}, \ldots, r_{k} be chosen uniformly from $\left\{v_{1}, \ldots, v_{n}\right\}$

1. $\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)$ is real rooted
2. $\lambda_{k}\left(\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)\right) \geq\left(1-\sqrt{\frac{k}{d}}\right)^{2} \frac{d}{n}$
3. With non-zero probability

$$
\lambda_{k}\left(\chi\left[\sum r_{j} r_{j}^{*}\right](x)\right) \geq \lambda_{k}\left(\mathbb{E} \chi\left[\sum r_{j} r_{j}^{*}\right](x)\right)
$$

Because is an interlacing family of polynomials

In part 2

Will use the same approach to prove
Weaver's conjecture, and thereby Kadison-Singer
But, employ multivariate analogs of these arguments
and a direct bound on the roots of the polynomials.

Main Theorem

For all $\alpha>0$
if all $\left\|v_{i}\right\| \leq \alpha$ and $\sum v_{i} v_{i}^{*}=I$
then exists a partition into S_{1} and S_{2} with

$$
\operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{*}\right) \leq \frac{1}{2}+3 \alpha
$$

Implies Akemann-Anderson Paving Conjecture, which implies Kadison-Singer

We want

We want

$$
\operatorname{roots}\left(\chi\left[\begin{array}{cc}
\sum_{i \in S_{1}} v_{i} v_{i}^{*} & 0 \\
0 & \sum_{i \in S_{2}} v_{i} v_{i}^{*}
\end{array}\right](x)\right) \leq \frac{1}{2}+3 \alpha
$$

We want

$$
\operatorname{roots}\left(\chi\left[\begin{array}{cc}
\sum_{i \in S_{1}} v_{i} v_{i}^{*} & 0 \\
0 & \sum_{i \in S_{2}} v_{i} v_{i}^{*}
\end{array}\right](x)\right) \leq \frac{1}{2}+3 \alpha
$$

Consider expected polynomial with a random partition.

Method of proof

1. Prove expected characteristic polynomial has real roots
2. Prove its largest root is at most $1 / 2+3 \alpha$
3. Prove is an interlacing family, so exists a partition whose polynomial has largest root at most $1 / 2+3 \alpha$

The Expected Polynomial

Indicate choices by $\sigma_{1}, \ldots, \sigma_{n}: i \in S_{\sigma_{i}}$

$$
p_{\sigma_{1}, \ldots, \sigma_{n}}(x)=\chi\left[\begin{array}{cc}
\sum_{i: \sigma_{i}=1} v_{i} v_{i}^{*} & 0 \\
0 & \sum_{i: \sigma_{i}=2} v_{i} v_{i}^{*}
\end{array}\right]
$$

(x)

The Expected Polynomial

$$
a_{i}=\binom{v_{i}}{0} \text { for } i \in S_{1} \quad a_{i}=\binom{0}{v_{i}} \text { for } i \in S_{2}
$$

$$
\left(\begin{array}{cc}
\sum_{i \in S_{1}} v_{i} v_{i}^{*} & 0 \\
0 & \sum_{i \in S_{2}} v_{i} v_{i}^{*}
\end{array}\right)=\sum_{i} a_{i} a_{i}^{*}
$$

Mixed Characteristic Polynomials

For a_{1}, \ldots, a_{n} independently chosen random vectors

$$
\mathbb{E} \chi\left[\sum_{i} a_{i} a_{i}^{*}\right]
$$

is their mixed characteristic polynomial.

Theorem: It only depends on $A_{i}=\mathbb{E} a_{i} a_{i}^{*}$ and, is real-rooted

Mixed Characteristic Polynomials

For a_{1}, \ldots, a_{n} independently chosen random vectors

$$
\mathbb{E} \chi\left[\sum_{i} a_{i} a_{i}^{*}\right]=\mu\left(A_{1}, \ldots, A_{n}\right)
$$

is their mixed characteristic polynomial.

Theorem: It only depends on $A_{i}=\mathbb{E} a_{i} a_{i}^{*}$ and, is real-rooted

$$
\operatorname{Tr}\left(A_{i}\right)=\operatorname{Tr}\left(\mathbb{E} a_{i} a_{i}^{*}\right)=\mathbb{E} \operatorname{Tr}\left(a_{i} a_{i}^{*}\right)=\mathbb{E}\left\|a_{i}\right\|^{2}
$$

Mixed Characteristic Polynomials

For a_{1}, \ldots, a_{n} independently chosen random vectors

$$
\mathbb{E} \chi\left[\sum_{i} a_{i} a_{i}^{*}\right]=\mu\left(A_{1}, \ldots, A_{n}\right)
$$

is their mixed characteristic polynomial.

The constant term is the mixed discriminant of

$$
A_{1}, \ldots, A_{n}
$$

The constant term

When diagonal and $d=n, c_{d}$ is a matrix permanent.

The constant term

When diagonal and $d=n, c_{d}$ is a matrix permanent. Van der Waerden's Conjecture becomes

$$
\text { If } \sum A_{i}=I \text { and } \operatorname{Tr}\left(A_{i}\right)=1
$$

c_{d} is minimized when $A_{i}=\frac{1}{n} I$

Proved by Egorychev and Falikman '81.
Simpler proof by Gurvits (see Laurent-Schrijver)

The constant term

For Hermitian matrices, c_{d} is the mixed discriminant Gurvits proved a lower bound on c_{d} :

$$
\begin{aligned}
& \text { If } \sum A_{i}=I \text { and } \operatorname{Tr}\left(A_{i}\right)=1 \\
& \qquad c_{d} \text { is minimized when } A_{i}=\frac{1}{n} I
\end{aligned}
$$

This was a conjecture of Bapat.

Other coefficients

One can generalize Gurvits's results to prove lower bounds on all the coefficients.

$$
\begin{aligned}
& \text { If } \sum A_{i}=I \text { and } \operatorname{Tr}\left(A_{i}\right)=1 \\
& \qquad\left|c_{k}\right| \text { is minimized when } A_{i}=\frac{1}{n} I
\end{aligned}
$$

But, this does not imply useful bounds on the roots

Real Stable Polynomials

A multivariate generalization of real rootedness.

Complex roots of $p \in \mathbb{R}[z]$ come in conjugate pairs.

So, real rooted iff no roots with positive complex part.

Real Stable Polynomials

$p \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$
is real stable if $\operatorname{imag}\left(z_{i}\right)>0$ for all i implies $p\left(z_{1}, \ldots, z_{n}\right) \neq 0$
it has no roots in the upper half-plane
Isomorphic to Gårding's hyperbolic polynomials
Used by Gurvits (in his second proof)

Real Stable Polynomials

$p \in \mathbb{R}\left[z_{1}, \ldots, z_{n}\right]$
is real stable if $\operatorname{imag}\left(z_{i}\right)>0$ for all i implies $p\left(z_{1}, \ldots, z_{n}\right) \neq 0$
it has no roots in the upper half-plane
Isomorphic to Gårding's hyperbolic polynomials
Used by Gurvits (in his second proof)

See surveys of Pemantle and Wagner

Real Stable Polynomials

Borcea-Brändén ‘08:
For PSD matrices A_{1}, \ldots, A_{n}

$$
\operatorname{det}\left[z_{1} A_{1}+\cdots+z_{n} A_{n}\right]
$$

is real stable

Real Stable Polynomials

$p\left(z_{1}, \ldots, z_{n}\right)$ real stable
implies $\left(1-\partial_{z_{i}}\right) p\left(z_{1}, \ldots, z_{n}\right)$ is real stable
(Lieb Sokal '81)
$p\left(z_{1}, \ldots, z_{n}\right)$ real stable implies $p(x, x, \ldots, x)$ is real rooted

Real Roots

$\mu\left(A_{1}, \ldots, A_{n}\right)(x)=$

$$
\left.\left(\prod_{i=1}^{n} 1-\partial_{z_{i}}\right) \operatorname{det}\left(\sum_{i=1}^{n} z_{i} A_{i}\right)\right|_{z_{1}=\cdots=z_{n}=x}
$$

So, every mixed characteristic polynomial is real rooted.

Our Interlacing Family

Indicate choices by $\sigma_{1}, \ldots, \sigma_{n}: i \in S_{\sigma_{i}}$

$$
\begin{align*}
& p_{\sigma_{1}, \ldots, \sigma_{n}}(x)=\chi\left[\begin{array}{cc}
\sum_{i: \sigma_{i}=1} v_{i} v_{i}^{*} & 0 \\
0 & \sum_{i: \sigma_{i}=2} v_{i} v_{i}^{*}
\end{array}\right] \tag{x}\\
& p_{\sigma_{1}, \ldots, \sigma_{k}}(x)=\underset{\sigma_{k+1}, \ldots, \sigma_{n}}{\mathbb{E}}\left[p_{\sigma_{1}, \ldots, \sigma_{n}}\right](x)
\end{align*}
$$

Interlacing

$p_{1}(x)$ and $p_{2}(x)$ have a common interlacing iff
$\lambda p_{1}(x)+(1-\lambda) p_{2}(x)$ is real rooted for all $0 \leq \lambda \leq 1$
We need to show that

$$
\lambda p_{\sigma_{1}, \ldots, \sigma_{k}, 1}(x)+(1-\lambda) p_{\sigma_{1}, \ldots \sigma_{k}, 2}(x)
$$

is real rooted.

Interlacing

$p_{1}(x)$ and $p_{2}(x)$ have a common interlacing iff
$\lambda p_{1}(x)+(1-\lambda) p_{2}(x)$ is real rooted for all $0 \leq \lambda \leq 1$
We need to show that

$$
\lambda p_{\sigma_{1}, \ldots, \sigma_{k}, 1}(x)+(1-\lambda) p_{\sigma_{1}, \ldots \sigma_{k}, 2}(x)
$$

is real rooted.
It is a mixed characteristic polynomial, so is real-rooted.
Set $\sigma_{k+1}=1$ with probability λ
Keep σ_{i} uniform for $i>k+1$

An upper bound on the roots

Theorem: If $\sum A_{i}=I$ and $\operatorname{Tr}\left(A_{i}\right) \leq \epsilon$ then

$$
\max -\operatorname{root}\left(\mu\left(A_{1}, \ldots, A_{n}\right)(x)\right) \leq(1+\sqrt{\epsilon})^{2}
$$

An upper bound on the roots

Theorem: If $\sum A_{i}=I$ and $\operatorname{Tr}\left(A_{i}\right) \leq \epsilon$ then $\max -\operatorname{root}\left(\mu\left(A_{1}, \ldots, A_{n}\right)(x)\right) \leq(1+\sqrt{\epsilon})^{2}$

An upper bound of 2 is trivial (in our special case).
Need any constant strictly less than 2.

An upper bound on the roots

Theorem: If $\sum A_{i}=I$ and $\operatorname{Tr}\left(A_{i}\right) \leq \epsilon$ then $\max -\operatorname{root}\left(\mu\left(A_{1}, \ldots, A_{n}\right)(x)\right) \leq(1+\sqrt{\epsilon})^{2}$
$\mu\left(A_{1}, \ldots, A_{n}\right)(x)=$

$$
\left.\left(\prod_{i=1}^{n} 1-\partial_{z_{i}}\right) \operatorname{det}\left(\sum_{i=1}^{n} z_{i} A_{i}\right)\right|_{z_{1}=\cdots=z_{n}=x}
$$

An upper bound on the roots

Define: $\left(w_{1}, \ldots, w_{n}\right)$ is an upper bound on the roots of $p\left(z_{1}, \ldots, z_{n}\right)$ if

$$
p\left(z_{1}, \ldots, z_{n}\right)>0 \text { for }\left(z_{1}, \ldots, z_{n}\right) \geq\left(w_{1}, \ldots, w_{n}\right)
$$

An upper bound on the roots

Define: $\left(w_{1}, \ldots, w_{n}\right)$ is an upper bound on the roots of $p\left(z_{1}, \ldots, z_{n}\right)$ if

$$
p\left(z_{1}, \ldots, z_{n}\right)>0 \text { for }\left(z_{1}, \ldots, z_{n}\right) \geq\left(w_{1}, \ldots, w_{n}\right)
$$

Eventually set

$$
z_{1}, \ldots, z_{n}=x
$$

so want

$$
w_{1}=\cdots=w_{n}
$$

Action of the operators

Action of the operators

Action of the operators

The roots of $\left(1-\partial_{x}\right) p(x)$

Define:

$$
\begin{aligned}
& \alpha-\max \left(\lambda_{1}, \ldots, \lambda_{n}\right)=\max \left\{u: \sum \frac{1}{u-\lambda_{i}}=\alpha\right\} \\
& \alpha-\max (p(x))=\alpha-\max (\operatorname{roots}(p))
\end{aligned}
$$

Theorem (Batson-S-Srivastava):
If $p(x)$ is real rooted and $\alpha>0$

$$
\alpha-\max \left(\left(1-\partial_{x}\right) p(x)\right) \leq \alpha-\max (p(x))+\frac{1}{1-\alpha}
$$

The roots of $\left(1-\partial_{x}\right) p(x)$

Theorem (Batson-S-Srivastava):
If $p(x)$ is real rooted and $\alpha>0$
$\alpha-\max \left(\left(1-\partial_{x}\right) p(x)\right) \leq \alpha-\max (p(x))+\frac{1}{1-\alpha}$
Proof: Define $\Phi_{p}(u)=\frac{p^{\prime}(u)}{p(u)}=\sum_{i} \frac{1}{u-\lambda_{i}}=\partial_{u} \log p(u)$
Set $u=\alpha-\max (p(x))$, so $\Phi_{p}(u)=\alpha$

Suffices to show for all $\delta \geq \frac{1}{1-\alpha}$

$$
\Phi_{p-p^{\prime}}(u+\delta) \leq \Phi_{p}(u)
$$

The roots of $\left(1-\partial_{x}\right) p(x)$

Define $\Phi_{p}(u)=\frac{p^{\prime}(u)}{p(u)}=\sum_{i} \frac{1}{u-\lambda_{i}}$
Set $u=\alpha-\max (p(x))$, so $\Phi_{p}(u)=\alpha$
Suffices to show for all $\delta \geq \frac{1}{1-\alpha}$

$$
\begin{gathered}
\Phi_{p-p^{\prime}}(u+\delta) \leq \Phi_{p}(u) \\
\\
\downarrow \text { (algebra) } \\
\Phi_{p}(u)-\Phi_{p}(u+\delta) \geq \frac{-\Phi_{p}^{\prime}(u+\delta)}{1-\Phi_{p}(u+\delta)}
\end{gathered}
$$

The roots of $\left(1-\partial_{x}\right) p(x)$

Define $\Phi_{p}(u)=\frac{p^{\prime}(u)}{p(u)}=\sum_{i} \frac{1}{u-\lambda_{i}}$

$$
\Phi_{p}(u)-\Phi_{p}(u+\delta) \geq \frac{-\Phi_{p}^{\prime}(u+\delta)}{1-\Phi_{p}(u+\delta)}
$$

$\Phi_{p}(u)$ convex for $u>\max (p(x))$ implies

$$
\Phi_{p}(u)-\Phi_{p}(u+\delta) \geq \delta\left(-\Phi_{p}^{\prime}(u+\delta)\right)
$$

Monotone decreasing implies only need

$$
\delta \geq \frac{1}{1-\Phi_{p}(u+\delta)}
$$

The roots of $\left(1-\partial_{x}\right) p(x)$

$\Phi_{p}(u)$ convex for $u>\max (p(x))$ implies

$$
\Phi_{p}(u)-\Phi_{p}(u+\delta) \geq \delta\left(-\Phi_{p}^{\prime}(u+\delta)\right)
$$

Monotone decreasing implies only need

$$
\delta \geq \frac{1}{1-\Phi_{p}(u+\delta)}
$$

and that $\quad \delta \geq \frac{1}{1-\alpha}=\frac{1}{1-\Phi_{p}(u)} \quad$ suffices.

The roots of $\left(1-\partial_{x}\right) p(x)$

$\Phi_{p}(u)$ convex for $u>\max (p(x))$ implies

$$
\Phi_{p}(u)-\Phi_{p}(u+\delta) \geq \delta\left(-\Phi_{p}^{\prime}(u+\delta)\right)
$$

Monotone decreasing_implies only need

$$
\delta \geq \frac{1}{1-\Phi_{p}(u+\delta)}
$$

and that $\quad \delta \geq \frac{1}{1-\alpha}=\frac{1}{1-\Phi_{p}(u)} \quad$ suffices.

The roots of $\left(1-\partial_{x}\right) p(x)$

Theorem (Batson-S-Srivastava):
If $p(x)$ is real rooted and $\alpha>0$

$$
\alpha-\max \left(\left(1-\partial_{x}\right) p(x)\right) \leq \alpha-\max (p(x))+\frac{1}{1-\alpha}
$$

Gives a sharp upper bound on the roots of associated Laguerre polynomials.

The analogous argument with the min gives the lower bound that we claimed before.

An upper bound on the roots

Theorem: If $\sum A_{i}=I$ and $\operatorname{Tr}\left(A_{i}\right) \leq \epsilon$ then $\max -\operatorname{root}\left(\mu\left(A_{1}, \ldots, A_{n}\right)(x)\right) \leq(1+\sqrt{\epsilon})^{2}$
$\mu\left(A_{1}, \ldots, A_{n}\right)(x)=$

$$
\left.\left(\prod_{i=1}^{n} 1-\partial_{z_{i}}\right) \operatorname{det}\left(\sum_{i=1}^{n} z_{i} A_{i}\right)\right|_{z_{1}=\cdots=z_{n}=x}
$$

A robust upper bound

Define: $\left(w_{1}, \ldots, w_{n}\right)$ is an α-upper bound on $p\left(z_{1}, \ldots, z_{n}\right)$
if it is an α_{i}-max, in each z_{i}, and $\alpha_{i} \leq \alpha$

Theorem:
If w is an α-upper bound on p, then $w+\delta e_{j}$ is an α-upper bound on $p-\partial_{z_{j}} p$,

$$
\text { for } \delta \geq \frac{1}{1-\alpha}
$$

A robust upper bound

Theorem:
If w is an α-upper bound on p, and $\delta \geq \frac{1}{1-\alpha}$ $w+\delta e_{j}$ is an α-upper bound on $p-\partial_{z_{j}} p$,

Proof:
Same as before, but need to know that

$$
\frac{\partial_{z_{i}} p\left(z_{1}, \ldots, z_{n}\right)}{p\left(z_{1}, \ldots, z_{n}\right)}
$$

is decreasing and convex in z_{j}, above the roots

A robust upper bound

Proof:

Same as before, but need to know that

$$
\frac{\partial_{z_{i}} p\left(z_{1}, \ldots, z_{n}\right)}{p\left(z_{1}, \ldots, z_{n}\right)}
$$

is decreasing and convex in z_{j}, above the roots
Follows from a theorem of Helton and Vinnikov '07:
Every bivariate real stable polynomial can be written

$$
\operatorname{det}(A+B x+C y)
$$

A robust upper bound

Proof:

Same as before, but need to know that

$$
\frac{\partial_{z_{i}} p\left(z_{1}, \ldots, z_{n}\right)}{p\left(z_{1}, \ldots, z_{n}\right)}
$$

is decreasing and convex in z_{j}, above the roots
Or, as pointed out by Renegar,
from a theorem Bauschke, Güler, Lewis, and Sendov '01
Or, by a theorem of Brändén ' 07 .
Or, see Terry Tao's blog for a (mostly) self-contained proof

An upper bound on the roots

Theorem: If $\sum A_{i}=I$ and $\operatorname{Tr}\left(A_{i}\right) \leq \epsilon$ then

$$
\max -\operatorname{root}\left(\mu\left(A_{1}, \ldots, A_{n}\right)(x)\right) \leq(1+\sqrt{\epsilon})^{2}
$$

A probabilistic interpretation

For a_{1}, \ldots, a_{n} independently chosen random vectors with finite support
such that $\mathbb{E}\left[\sum_{i} a_{i} a_{i}^{T}\right]=I$ and $\left\|\mathbb{E}\left[a_{i} a_{i}^{T}\right]\right\| \leq \epsilon$
then $\operatorname{Pr}\left[\left\|\sum_{i} a_{i} a_{i}^{T}\right\| \leq(1+\sqrt{\epsilon})^{2}\right]>0$

Main Theorem

For all $\alpha>0$
if all $\left\|v_{i}\right\| \leq \alpha$
then exists a partition into S_{1} and S_{2} with

$$
\operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{T}\right) \leq \frac{1}{2}+3 \alpha
$$

Implies Akemann-Anderson Paving Conjecture, which implies Kadison-Singer

Anderson's Paving Conjecture ‘79

Reduction by Casazza-Edidin-Kalra-Paulsen '07 and Harvey '13:
There exist an $\epsilon>0$ and a k so that
if all $\left\|v_{i}\right\|^{2} \leq 1 / 2$ and $\sum v_{i} v_{i}^{T}=I$
then exists a partition of $\{1, \ldots, n\}$ into k parts s.t.

$$
\operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{T}\right) \leq 1-\epsilon
$$

Can prove using the same technique

A conjecture

If $\sum A_{i}=I$ and $\operatorname{Tr}\left(A_{i}\right) \leq \epsilon$ then max-root $\left(\mu\left(A_{1}, \ldots, A_{n}\right)(x)\right)$
is largest when $A_{i}=\frac{\epsilon}{d} I$

Questions

Can the partition be found in polynomial time?

What else can one construct this way?

How do operations that preserve real rootedness move the roots and the Stieltjes transform?

