Laplacian Matrices of Graphs: Spectral and Electrical Theory

Daniel A. Spielman

Dept. of Computer Science
Program in Applied Mathematics
Yale University
Toronto, Sep. 28, 2011

Outline

Introduction to graphs
Physical metaphors
Laplacian matrices
Spectral graph theory
A very fast survey
Trailer for lectures 2 and 3

Graphs and Networks

V: a set of vertices (nodes)
E : a set of edges an edge is a pair of vertices

Difficult to draw when big

Examples of Graphs

Examples of Graphs

Examples of Graphs

How to understand a graph

Use physical metaphors Edges as rubber bands
Edges as resistors

Examine processes
Diffusion of gas
Spilling paint
Identify structures
Communities

How to understand a graph

Use physical metaphors
Edges as rubber bands
Edges as resistors

Examine processes
Diffusion of gas
Spilling paint
Identify structures
Communities

Graphs as Spring Networks

View edges as rubber bands or ideal linear springs spring constant 1 (for now)

Nail down some vertices, let rest settle

Graphs as Spring Networks

View edges as rubber bands or ideal linear springs spring constant 1 (for now)

Nail down some vertices, let rest settle

When stretched to length ℓ potential energy is $\ell^{2} / 2$

Graphs as Spring Networks

Nail down some vertices, let rest settle.

Physics: position minimizes total potential energy

$$
\frac{1}{2} \sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

subject to boundary constraints (nails)

Graphs as Spring Networks

Nail down some vertices, let rest settle

Energy minimized when
free vertices are averages of neighbors

$$
\vec{x}(a)=\frac{1}{d_{a}} \sum_{(a, b) \in E} \vec{x}(b)
$$

d_{a} is degree of a, number of attached edges

Tutte’s Theorem ‘ 63

If nail down a face of a planar 3-connected graph, get a planar embedding!

Tutte’s Theorem ‘ 63

3-connected:
cannot break graph by cutting 2 edges

Tutte’s Theorem ‘ 63

3-connected:
cannot break graph by cutting 2 edges

Tutte’s Theorem ‘ 63

3-connected:
cannot break graph by cutting 2 edges

Tutte’s Theorem ‘ 63

3-connected:
cannot break graph by cutting 2 edges

Graphs as Resistor Networks

View edges as resistors connecting vertices
Apply voltages at some vertices. Measure induced voltages and current flow.

Graphs as Resistor Networks

View edges as resistors connecting vertices
Apply voltages at some vertices.
Measure induced voltages and current flow.
Current flow measures strength of connection between endpoints.

More short disjoint paths lead to higher flow.

Graphs as Resistor Networks

View edges as resistors connecting vertices
Apply voltages at some vertices. Measure induced voltages and current flow.

Graphs as Resistor Networks

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.

Induced voltages minimize

$$
\sum_{(a, b) \in E}(v(a)-v(b))^{2}
$$

Subject to fixed voltages (by battery)

Learning on Graphs [Zhu-Ghahramani-Lafferty '03]

Infer values of a function at all vertices from known values at a few vertices.

Minimize $\quad \sum(x(a)-x(b))^{2}$

$$
(a, b) \in E
$$

Subject to known values

Learning on Graphs [Zhu-Ghahramani-Lafferty '03]

Infer values of a function at all vertices from known values at a few vertices.

Minimize $\quad \sum(x(a)-x(b))^{2}$

$$
(a, b) \in E
$$

Subject to known values

The Laplacian quadratic form

$$
\sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

The Laplacian matrix of a graph

$$
x^{T} \underline{L} x=\sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

The Laplacian matrix of a graph

$$
x^{T} \underline{L} x=\sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

To minimize subject to boundary constraints, set derivative to zero.

Solve equation of form

$$
L x=b
$$

Weighted Graphs

Edge (a, b) assigned a non-negative real weight $w_{a, b} \in \mathbb{R}$ measuring strength of connection spring constant 1/resistance

$$
x^{T} L x=\sum_{(a, b) \in E} w_{a, b}(x(a)-x(b))^{2}
$$

Weighted Graphs

Edge (a, b) assigned a non-negative real weight $w_{a, b} \in \mathbb{R}$ measuring strength of connection spring constant 1/resistance

$$
x^{T} L x=\sum_{(a, b) \in E} w_{a, b}(x(a)-x(b))^{2}
$$

I'll show the matrix entries tomorrow

Measuring boundaries of sets

Boundary: edges leaving a set

Measuring boundaries of sets

Boundary: edges leaving a set

Measuring boundaries of sets

Boundary: edges leaving a set
Characteristic Vector of S :

$$
x(a)= \begin{cases}1 & a \text { in } S \\ 0 & a \text { not in } S\end{cases}
$$

Measuring boundaries of sets

Boundary: edges leaving a set

Characteristic Vector of S :

$$
x(a)= \begin{cases}1 & a \text { in } S \\ 0 & a \text { not in } S\end{cases}
$$S:

$$
x^{T} L x=\sum_{(a, b) \in E}(x(a)-x(b))^{2}=|\operatorname{boundary}(S)|
$$

Cluster Quality

Number of edges leaving S
Size of S
$=\frac{|\operatorname{boundary}(S)|}{|S|}$
$\stackrel{\text { def }}{=} \Phi(S) \quad$ (sparsity)

Cluster Quality

Number of edges leaving S
Size of S
$=\frac{|\operatorname{boundary}(S)|}{|S|}$
$\stackrel{\text { def }}{=} \Phi(S) \quad$ (sparsity)
$=\frac{x^{T} L x}{x^{T} x}=\frac{\sum_{(a, b) \in E}(x(a)-x(b))^{2}}{\sum_{a} x(a)^{2}}$
The Rayleigh Quotient of x with respect to L

Spectral Graph Theory

A n-by-n symmetric matrix has n real eigenvalues $\lambda_{1} \leq \lambda_{2} \cdots \leq \lambda_{n}$ and eigenvectors v_{1}, \ldots, v_{n} such that

$$
L v_{i}=\lambda_{i} v_{i}
$$

Spectral Graph Theory

A n-by-n symmetric matrix has n real eigenvalues $\lambda_{1} \leq \lambda_{2} \cdots \leq \lambda_{n}$ and eigenvectors v_{1}, \ldots, v_{n} such that

$$
L v_{i}=\lambda_{i} v_{i}
$$

These eigenvalues and eigenvectors tell us a lot about a graph!

Theorems
Algorithms
Heuristics

The Rayleigh Quotient and Eigenvalues

A n-by-n symmetric matrix has n
real eigenvalues $\lambda_{1} \leq \lambda_{2} \cdots \leq \lambda_{n}$ and eigenvectors v_{1}, \ldots, v_{n} such that

$$
L v_{i}=\lambda_{i} v_{i}
$$

Courant-Fischer Theorem:

$$
\lambda_{1}=\min _{x \neq 0} \frac{x^{T} L x}{x^{T} x} \quad v_{1}=\arg \min _{x \neq 0} \frac{x^{T} L x}{x^{T} x}
$$

The Courant Fischer Theorem

$$
\begin{array}{ll}
\lambda_{1}=\min _{x \neq 0} \frac{x^{T} L x}{x^{T} x} & v_{1}=\arg \min _{x \neq 0} \frac{x^{T} L x}{x^{T} x} \\
\lambda_{2}=\min _{x \perp v_{1}} \frac{x^{T} L x}{x^{T} x} & v_{2}=\arg \min _{x \perp v_{1}} \frac{x^{T} L x}{x^{T} x}
\end{array}
$$

The Courant Fischer Theorem

$$
\begin{array}{ll}
\lambda_{1}=\min _{x \neq 0} \frac{x^{T} L x}{x^{T} x} & v_{1}=\arg \min _{x \neq 0} \frac{x^{T} L x}{x^{T} x} \\
\lambda_{2}=\min _{x \perp v_{1}} \frac{x^{T} L x}{x^{T} x} & v_{2}=\arg \min _{x \perp v_{1}} \frac{x^{T} L x}{x^{T} x}
\end{array}
$$

$$
\begin{aligned}
\lambda_{k} & =\min _{x \perp v_{1}, \ldots, v_{k-1}} \frac{x^{T} L x}{x^{T} x} \\
v_{k} & =\arg \min _{x \perp v_{1}, \ldots, v_{k-1}} \frac{x^{T} L x}{x^{T} x}
\end{aligned}
$$

The first eigenvalue

$$
\begin{aligned}
\lambda_{1} & =\min _{x \neq 0} \frac{x^{T} L x}{x^{T} x} \\
& =\min _{x \neq 0} \frac{\sum_{(a, b) \in E}(x(a)-x(b))^{2}}{\|x\|^{2}}
\end{aligned}
$$

Setting $x(a)=1$ for all a

We find $\lambda_{1}=0$ and $v_{1}=1$

The second eigenvalue

$\lambda_{2}>0 \quad$ if and only if G is connected

Proof: if G is not connected, are two functions with Rayleigh quotient zero

The second eigenvalue

$\lambda_{2}>0 \quad$ if and only if G is connected

Proof: if G is not connected, are two functions with Rayleigh quotient zero

The second eigenvalue

$\lambda_{2}>0 \quad$ if and only if G is connected

Proof: if G is connected,
$x \perp 1$ means $\sum_{a} x(a)=0$
So must be an edge (a, b) for which

$$
x(a)<x(b) \text { and so }(x(a)-x(b))^{2}>0
$$

The second eigenvalue

$\lambda_{2}>0 \quad$ if and only if G is connected

Proof: if G is connected,
$x \perp 1$ means $\sum_{a} x(a)=0$
So must be an edge (a, b) for which

$$
x(a)<x(b) \text { and so }(x(a)-x(b))^{2}>0
$$

The second eigenvalue

$\lambda_{2}>0 \quad$ if and only if G is connected

Fiedler ('73) called λ_{2}
"the algebraic connectivity of a graph"
The further from 0 , the more connected.

Cheeger's Inequality [Cheeger '70]

[Alon-Milman ‘85, Jerrum-Sinclair ‘89, Diaconis-Stroock ‘91]

1. λ_{2} is big if and only if G does not have good clusters.
2. If λ_{2} is small, can use v_{2} to find a good cluster.

Cheeger's Inequality [Cheeger '70]

[Alon-Milman ‘85, Jerrum-Sinclair ‘89, Diaconis-Stroock ‘91]

1. λ_{2} is big if and only if G does not have good clusters.

When every vertex has d edges,

$$
\lambda_{2} / 2 \leq \min _{|S| \leq n / 2} \Phi(S) \leq \sqrt{2 d \lambda_{2}}
$$

$$
\Phi(S)=\frac{|\operatorname{boundary}(S)|}{|S|}
$$

Cheeger's Inequality [Cheeger '70]

[Alon-Milman ‘85, Jerrum-Sinclair ‘89, Diaconis-Stroock ‘91]

1. λ_{2} is big if and only if G does not have good clusters.
2. If λ_{2} is small, can use v_{2} to find a good cluster.

In a moment...

Spectral Graph Drawing [Hall ‘70]

Arbitrary
Drawing

Spectral Graph Drawing [Hall ‘70]

Plot vertex a at $\left(v_{2}(a), v_{3}(a)\right)$ draw edges as straight lines

Arbitrary
Drawing

Spectral
Drawing

A Graph

Drawing of the graph using $\mathrm{v}_{2}, \mathrm{v}_{3}$

Plot vertex a at $\left(v_{2}(a), v_{3}(a)\right)$

The Airfoil Graph, original coordinates

The Airfoil Graph, spectral coordinates

The Airfoil Graph, spectral coordinates

Spectral drawing of Streets in Rome

Spectral drawing of Erdos graph: edge between co-authors of papers

Dodecahedron

Best embedded by first three eigenvectors

Spectral graph drawing: Tutte justification

Condition for eigenvector $L x=\lambda x$
Gives $\vec{x}(a)=\frac{1}{d_{a}-\lambda} \sum_{(a, b) \in E} \vec{x}(b)$ for all a
λ small says $\vec{x}(a)$ near average of neighbors

Spectral graph drawing: Tutte justification

Condition for eigenvector $L x=\lambda x$
Gives $\vec{x}(a)=\frac{1}{d_{a}-\lambda} \sum_{(a, b) \in E} \vec{x}(b)$ for all a
λ small says $\vec{x}(a)$ near average of neighbors
For planar graphs:

$$
\begin{array}{ll}
\lambda_{2} \leq 8 d / n & {[\text { S-Teng ‘96] }} \\
\lambda_{3} \leq O(d / n) & {[\text { Kelner-Lee-Price-Teng ‘09] }}
\end{array}
$$

Small eigenvalues are not enough

Plot vertex a at $\left(v_{3}(a), v_{4}(a)\right)$

Spectral Graph Partitioning

[Donath-Hoffman '72, Barnes ‘82, Hagen-Kahng ‘92]

Spectral Graph Partitioning

[Donath-Hoffman '72, Barnes '82, Hagen-Kahng ‘92]

Cheeger's Inequality says there is a t so that

$$
\Phi(S) \leq \sqrt{2 d \lambda_{2}}
$$

Major topics in spectral graph theory

Graph Isomorphism: determining if two graphs are the same

Independent sets:
large sets of vertices containing no edges
Graph Coloring:
so that edges connect different colors

Major topics in spectral graph theory
Graph Isomorphism
Independent sets
Graph Coloring
Behavior under graph transformations
Random Walks and Diffusion
PageRank and Hits
Colin de Verdière invariant
Special Graphs
from groups
from meshes
Machine learning
Image processing

Solving linear equations in Laplacians

For energy minimization and computation of eigenvectors and eigenvalues

Can do it in time nearly-linear in the number of edges in the graph!

A powerful computational primitive.

Maximum flow problem

Send as much stuff as possible from s to t. At most one unit can go through each edge.

Maximum flow problem

Send as much stuff as possible from s to t. At most one unit can go through each edge.

Maximum flow problem

Send as much stuff as possible from s to t. At most one unit can go through each edge.

Standard approach: incrementally add flow paths

Maximum flow problem

Send as much stuff as possible from s to t. At most one unit can go through each edge.

Standard approach: incrementally add flow paths

Maximum flow problem

Send as much stuff as possible from s to t. At most one unit can go through each edge.

Standard approach: incrementally add flow paths

Maximum flow problem

Send as much stuff as possible from s to t. At most one unit can go through each edge.

Standard approach: incrementally add flow paths Issue: sometimes requires backtracking

Maximum flow problem, electrical approach

 [Christiano-Kelner-Madry-S-Teng '11]1. Try the electrical flow.

Maximum flow problem, electrical approach

 [Christiano-Kelner-Madry-S-Teng '11]1. Try the electrical flow.
2. Increase resistance when too much flow

Maximum flow problem, electrical approach

 [Christiano-Kelner-Madry-S-Teng '11]1. Try the electrical flow.
2. Increase resistance when too much flow

Solving linear equations in Laplacians

For energy minimization and computation of eigenvectors and eigenvalues

Can do it in time nearly-linear in the number of edges in the graph!

Key ideas:
how to approximate a graph by a tree or by a very sparse graph
random matrix theory
numerical linear algebra

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all x

$$
\frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon
$$

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all x

$$
\frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon
$$

To solve linear equations quickly, approximate G by a simpler graph H

Approximating Graphs
A graph H is an ϵ-approximation of G if
for all x

$$
\frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon
$$

A very strong notion of approximation
Preserves all electrical and spectral properties

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all $x \quad \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon$

Theorem [Batson-S-Srivastava '09]
Every graph G has an ϵ-approximation H with $|V|(2+\epsilon)^{2} / \epsilon^{2}$ edges

Approximating Graphs

A graph H is an ϵ-approximation of G if
for all $x \quad \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon$
Theorem [Batson-S-Srivastava '09]
Every graph G has an ϵ-approximation H with $|V|(2+\epsilon)^{2} / \epsilon^{2}$ edges

A powerful technique in linear algebra many applications

To learn more

Lectures 2 and 3:
More precision
More notation
Similar sophistication

To learn more

See my lecture notes from "Spectral Graph Theory" and "Graphs and Networks"

