Graphs, Vectors, and Matrices
Daniel A. Spielman
Yale University

AMS Josiah Willard Gibbs Lecture
January 6, 2016

From Applied to Pure Mathematics

Algebraic and Spectral Graph Theory

Sparsification: approximating graphs by graphs with fewer edges

The Kadison-Singer problem

A Social Network Graph

A Social Network Graph

A Social Network Graph

"vertex"

A Social Network Graph

A Big Social Network Graph

A Graph $G=(V, E)$
$V=$ vertices,$\quad E=$ edges, pairs of vertices

The Graph of a Mesh

Examples of Graphs

Examples of Graphs

How to understand large-scale structure

Draw the graph
Identify communities and hierarchical structure
Use physical metaphors
Edges as resistors or rubber bands
Examine processes
Diffusion of gas / Random Walks

The Laplacian quadratic form of $G=(V, E)$

$$
x: V \rightarrow \mathbb{R} \quad \sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

The Laplacian quadratic form of $G=(V, E)$

$$
x: V \rightarrow \mathbb{R} \quad \sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

The Laplacian quadratic form of $G=(V, E)$

$$
x: V \rightarrow \mathbb{R} \quad \sum_{(a, b) \in E}(x(a)-x(b))^{2}
$$

The Laplacian matrix of $G=(V, E)$

$$
\begin{gathered}
x: V \rightarrow \mathbb{R} \quad \sum_{(a, b) \in E}(x(a)-x(b))^{2} \\
=x^{T} L x
\end{gathered}
$$

Graphs as Resistor Networks

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.

Graphs as Resistor Networks

Induced voltages minimize $\quad \sum(x(a)-x(b))^{2}$, subject to constraints.

$$
(a, b) \in E
$$

Graphs as Resistor Networks

Induced voltages minimize $\quad \sum(x(a)-x(b))^{2}$, subject to constraints.

$$
(a, b) \in E
$$

Graphs as Resistor Networks

Induced voltages minimize $\sum(x(a)-x(b))^{2}$, subject to constraints. $(a, b) \in E$

Graphs as Resistor Networks

Induced voltages minimize subject to constraints.

$$
\sum(x(a)-x(b))^{2}
$$

$$
(a, b) \in E
$$

Effective conductance $=$ current flow with one volt

Weighted Graphs

Edge (a, b) assigned a non-negative real weight $w_{a, b} \in \mathbb{R}$ measuring strength of connection
1 /resistance

$$
x^{T} L x=\sum_{(a, b) \in E} w_{a, b}(x(a)-x(b))^{2}
$$

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

Want to map $V \rightarrow \mathbb{R}$ with most edges short

Edges are drawn as curves for visibility.

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

Want to map $V \rightarrow \mathbb{R}$ with most edges short
Minimize $\quad x^{T} L x=\sum(x(a)-x(b))^{2}$

$$
(a, b) \in E
$$

to fix scale, require

$$
\sum_{a} x(a)^{2}=1
$$

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

Want to map $V \rightarrow \mathbb{R}$ with most edges short
Minimize $\quad x^{T} L x=\sum(x(a)-x(b))^{2}$

$$
(a, b) \in E
$$

to fix scale, require

$$
\sum_{a} x(a)^{2}=1
$$

$$
\|x\|=1
$$

Courant-Fischer Theorem

$$
\lambda_{1}=\min _{\substack{x \neq 0 \\\|x\|=1}} x^{T} L x \quad v_{1}=\arg \min _{\substack{x \neq 0 \\\|x\|=1}} x^{T} L x
$$

Where λ_{1} is the smallest eigenvalue of L and v_{1} is the corresponding eigenvector.

Courant-Fischer Theorem

$$
\lambda_{1}=\min _{\substack{x \neq 0 \\\|x\|=1}} x^{T} L x
$$

$$
v_{1}=\arg \min _{\substack{x \neq 0 \\\|x\|=1}} x^{T} L x
$$

Where λ_{1} is the smallest eigenvalue of L and v_{1} is the corresponding eigenvector.

For $x^{T} L x=\quad \sum(x(a)-x(b))^{2}$

$$
(a, b) \in E
$$

$\lambda_{1}=0$ and v_{1} is a constant vector

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

Want to map $V \rightarrow \mathbb{R}$ with most edges short
Minimize $x^{T} L x=\sum(x(a)-x(b))^{2}$

$$
(a, b) \in E
$$

Such that $\|x\|=1 \quad$ and

$$
\sum_{a} x(a)=0
$$

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

Want to map $V \rightarrow \mathbb{R}$ with most edges short
Minimize $x^{T} L x=\sum(x(a)-x(b))^{2}$

$$
(a, b) \in E
$$

Such that $\|x\|=1 \quad$ and

$$
\sum_{a} x(a)=0
$$

Courant-Fischer Theorem:
solution is v_{2}, the eigenvector of λ_{2}, the second-smallest eigenvalue

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

$\sum(x(a)-x(b))^{2}=$ area under blue curves $(a, b) \in E$

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

$\sum(x(a)-x(b))^{2}=$ area under blue curves $(a, b) \in E$

$\|x\|=1$

Space the points evenly

And, move them to the circle

Finish by putting me back in the center

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

Want to map $V \rightarrow \mathbb{R}^{2}$ with most edges short

Minimize

$$
\sum_{(a, b) \in E}\left\|\binom{x(a)}{y(a)}-\binom{x(b)}{y(b)}\right\|^{2}
$$

Such that

$$
\begin{aligned}
& \|x\|=1 \quad \text { and } \quad \sum_{a} x(a)=0 \\
& \|y\|=1 \quad \text { and } \quad \sum_{a} y(a)=0
\end{aligned}
$$

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

Want to map $V \rightarrow \mathbb{R}^{2}$ with most edges short
Minimize $\sum_{(a, b) \in E}\left\|\binom{x(a)}{y(a)}-\binom{x(b)}{y(b)}\right\|^{2}$
Such that

$$
\|x\|=1 \quad \text { and } \quad 1^{T} x=0
$$

$$
\|y\|=1 \quad \text { and } \quad 1^{T} y=0
$$

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

Want to map $V \rightarrow \mathbb{R}^{2}$ with most edges short
Minimize $\sum_{(a, b) \in E}\left\|\binom{x(a)}{y(a)}-\binom{x(b)}{y(b)}\right\|^{2}$
Such that

$$
\|x\|=1 \quad \text { and } \quad 1^{T} x=0
$$

$$
\|y\|=1 \quad \text { and } \quad 1^{T} y=0
$$

$$
\text { and } \quad x^{T} y=0, \quad \text { to prevent } \quad x=y
$$

Spectral Graph Drawing (Hall '70)

Minimize $\sum_{(a, b) \in E}\left\|\binom{x(a)}{y(a)}-\binom{x(b)}{y(b)}\right\|^{2}$
Such that $\quad\|x\|=1 \quad\|y\|=1$

$$
1^{T} x=0 \quad 1^{T} y=0 \quad \text { and } \quad x^{T} y=0
$$

Courant-Fischer Theorem:
solution is $x=v_{2}, y=v_{3}$, up to rotation

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

Spectral
Drawing

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

Original
Drawing
Spectral
Drawing

Spectral Graph Drawing (Hall ${ }^{\prime} 70$)

Original
Drawing
Spectral
Drawing

Dodecahedron

Best embedded by first three eigenvectors

Spectral drawing of Erdos graph:

 edge between co-authors of papers

When there is a "nice" drawing:

Most edges are short
Vertices are spread out and don't clump too much
λ_{2} is close to 0

When λ_{2} is big, say $>10 /|V|^{1 / 2}$ there is no nice picture of the graph

Expanders: when λ_{2} is big

Formally: infinite families of graphs of constant degree d and large λ_{2}

Examples: random d-regular graphs Ramanujan graphs

Have no communities or clusters.

Incredibly useful in Computer Science:
Act like random graphs (pseudo-random)
Used in many important theorems and algorithms

Good Expander Graphs

d-regular graphs with $\lambda_{2}, \ldots, \lambda_{n} \approx d$
Courant-Fischer: for all $\begin{aligned} & 1^{T} x=0 \\ & \|x\|=1\end{aligned} \quad x^{T} L_{G} x \approx d$

Good Expander Graphs

d-regular graphs with $\lambda_{2}, \ldots, \lambda_{n} \approx d$
Courant-Fischer: for all $\begin{aligned} & 1^{T} x=0 \\ & \|x\|=1\end{aligned} \quad x^{T} L_{G} x \approx d$

For K_{n}, the complete graph on n vertices

$$
\begin{gathered}
\lambda_{2}, \ldots, \lambda_{n}=n, \text { so for } \begin{array}{l}
1^{T} x=0 \\
\|x\|=1
\end{array} \quad x^{T} L_{K_{n}} x=n \\
L_{K_{n}} \approx \frac{n}{d} L_{G}
\end{gathered}
$$

Good Expander Graphs

$$
L_{K_{n}} \approx \frac{n}{d} L_{G}
$$

Sparse Approximations of Graphs (S-Teng 04)

A graph H is a sparse approximation of G if H has few edges and $L_{H} \approx L_{G}$
few: the number of edges in H is

$$
O(n) \text { or } O(n \log n) \text {, where } n=|V|
$$

$$
L_{H} \approx_{\epsilon} L_{G} \text { if } \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon \text { for all } x
$$

Sparse Approximations of Graphs (S-Teng ${ }^{6} 04$)

A graph H is a sparse approximation of G if H has few edges and $L_{H} \approx L_{G}$
few: the number of edges in H is
$O(n)$ or $O(n \log n)$, where $n=|V|$

$$
\begin{gathered}
L_{H} \approx_{\epsilon} L_{G} \text { if } \frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon \text { for all } x \\
\frac{1}{1+\epsilon} L_{G} \preccurlyeq L_{H} \preccurlyeq(1+\epsilon) L_{G}
\end{gathered}
$$

Where $M \preccurlyeq \widetilde{M}$ if $x^{T} M x \leq x^{T} \widetilde{M} x$ for all x

Sparse Approximations of Graphs (S-Teng ${ }^{64}$)

A graph H is a sparse approximation of G if H has few edges and $L_{H} \approx L_{G}$
few: the number of edges in H is
$O(n)$ or $O(n \log n)$, where $n=|V|$
$L_{H} \approx_{\epsilon} L_{G}$ if $\frac{1}{1+\epsilon} \leq \frac{x^{T} L_{H} x}{x^{T} L_{G} x} \leq 1+\epsilon$ for all x

$$
\frac{1}{1+\epsilon} L_{G} \preccurlyeq L_{H} \preccurlyeq(1+\epsilon) L_{G}
$$

Where $M \preccurlyeq \widetilde{M}$ if $x^{T} M x \leq x^{T} \widetilde{M} x$ for all x

Sparse Approximations of Graphs (S-Teng ${ }^{64}$)

The number of edges in H is

$$
O(n) \text { or } O(n \log n), \text { where } n=|V|
$$

$$
\frac{1}{1+\epsilon} L_{G} \preccurlyeq L_{H} \preccurlyeq(1+\epsilon) L_{G}
$$

Where $M \preccurlyeq \widetilde{M}$ if $x^{T} M x \leq x^{T} \widetilde{M} x$ for all x

Why we sparsify graphs

To save memory when storing graphs.

To speed up algorithms:
flow problems in graphs (Benczur-Karger ‘96)
linear equations in Laplacians (S-Teng ${ }^{6} 04$)

Graph Sparsification Theorems

For every $G=(V, E, w)$, there is a $H=(V, F, z)$ s.t.

$$
L_{G} \approx_{\epsilon} L_{H} \quad \text { and } \quad|F| \leq(2+\epsilon)^{2} n / \epsilon^{2}
$$

Graph Sparsification Theorems

For every $G=(V, E, w)$, there is a $H=(V, F, z)$ s.t.

$$
L_{G} \approx_{\epsilon} L_{H} \quad \text { and } \quad|F| \leq(2+\epsilon)^{2} n / \epsilon^{2}
$$

(Batson-S-Srivastava '09)

By careful random sampling, can quickly get

$$
|F| \leq O\left(n \log n / \epsilon^{2}\right)
$$

(S-Srivastava ${ }^{〔} 08$)

Laplacian Matrices

$$
\begin{aligned}
x^{T} L_{G} x & =\sum_{(a, b) \in E}(x(a)-x(b))^{2} \\
L_{G} & =\sum_{(a, b) \in E} L_{a, b} \\
L_{1,2} & =\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \\
& =\binom{1}{-1}\left(\begin{array}{ll}
1 & -1
\end{array}\right)
\end{aligned}
$$

Laplacian Matrices

$$
\begin{aligned}
x^{T} L_{G} x & =\sum_{(a, b) \in E}(x(a)-x(b))^{2} \\
L_{G} & =\sum_{(a, b) \in E} L_{a, b} \\
& =\sum_{(a, b) \in E} u_{a, b} u_{a, b}^{T}
\end{aligned}
$$

Laplacian Matrices

$$
\begin{array}{rlr}
x^{T} L_{G} x & =\sum_{(a, b) \in E}(x(a)-x(b))^{2} \\
L_{G} & =\sum_{(a, b) \in E} L_{a, b} \\
& =\sum_{(a, b) \in E} u_{a, b} u_{a, b}^{T} \quad u_{a, b}=\delta_{a}-\delta_{b} \\
& =(0 U)\left(U^{T}\right)
\end{array}
$$

Matrix Sparsification

$$
\begin{aligned}
& (M)=(U)\left(U^{T}\right)
\end{aligned}
$$

$$
\frac{1}{(1+\epsilon)} M \preccurlyeq \widetilde{M} \preccurlyeq(1+\epsilon) M
$$

Matrix Sparsification

$$
\begin{aligned}
& (M)=(U)\left(U^{T}\right) \\
& (\widetilde{M})=(\| \| M)
\end{aligned}
$$

$$
\frac{1}{(1+\epsilon)} M \preccurlyeq \widetilde{M} \preccurlyeq(1+\epsilon) M
$$

Matrix Sparsification

$$
\begin{aligned}
& (M)=(U)\left(U^{T}\right) \\
& (\widetilde{M})=(\| \|\| \| \|)=\begin{array}{c}
\text { subset of vectors, } \\
\text { scaled up }
\end{array} \\
& \frac{1}{(1+\epsilon)} M \preccurlyeq \widetilde{M} \preccurlyeq(1+\epsilon) M
\end{aligned}
$$

Matrix Sparsification

$$
\begin{aligned}
& (M)=(U)\left(U^{T}\right)=\sum_{i} u_{i} u_{i}^{T} \\
& (\widetilde{M})=(\| \|\| \|)=\sum_{i} s_{i} u_{i} u_{i}^{T} \\
& \text { most } s_{i}=0
\end{aligned}
$$

$$
\frac{1}{(1+\epsilon)} M \preccurlyeq \widetilde{M} \preccurlyeq(1+\epsilon) M
$$

Simplification of Matrix Sparsification

$$
\frac{1}{(1+\epsilon)} M \preccurlyeq \widetilde{M} \preccurlyeq(1+\epsilon) M
$$

is equivalent to

$$
\frac{1}{(1+\epsilon)} I \preccurlyeq M^{-1 / 2} \widetilde{M} M^{-1 / 2} \preccurlyeq(1+\epsilon) I
$$

Simplification of Matrix Sparsification

$$
\frac{1}{(1+\epsilon)} I \preccurlyeq M^{-1 / 2} \widetilde{M} M^{-1 / 2} \preccurlyeq(1+\epsilon) I
$$

Set $v_{i}=M^{-1 / 2} u_{i}$

$$
\sum_{i} v_{i} v_{i}^{T}=I
$$

We need

Simplification of Matrix Sparsification

$$
\frac{1}{(1+\epsilon)} I \preccurlyeq M^{-1 / 2} \widetilde{M} M^{-1 / 2} \preccurlyeq(1+\epsilon) I
$$

Set $v_{i}=M^{-1 / 2} u_{i}$

$$
\sum_{i} v_{i} v_{i}^{T}=I
$$

"Decomposition of the identity"
"Parseval frame"

$$
\sum_{i}\left(v_{i}^{T} t\right)^{2}=\|t\|^{2}
$$

"Isotropic Position"

Matrix Sparsification by Sampling

(Rudelson '99, Ahlswede-Winter ‘02, Tropp '11)

For $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n} \quad$ with $\quad \sum_{i} v_{i} v_{i}^{T}=I$
Choose v_{i} with probability $p_{i} \sim\left\|v_{i}\right\|^{2}$
If choose v_{i}, set $s_{i}=1 / p_{i}$

$$
\begin{gathered}
s_{i}= \begin{cases}1 / p_{i} & \text { with probability } p_{i} \\
0 & \text { with probability } 1-p_{i}\end{cases} \\
\mathbb{E}\left[\sum_{i} s_{i} v_{i} v_{i}^{T}\right]=\sum_{i} v_{i} v_{i}^{T}
\end{gathered}
$$

Matrix Sparsification by Sampling

(Rudelson '99, Ahlswede-Winter '02, Tropp '11)

For $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n} \quad$ with $\quad \sum_{i} v_{i} v_{i}^{T}=I$
Choose v_{i} with probability $p_{i} \sim\left\|v_{i}\right\|^{2}$ If choose v_{i}, set $s_{i}=1 / p_{i}$ (effective conductance)

$$
\begin{gathered}
s_{i}= \begin{cases}1 / p_{i} & \text { with probability } p_{i} \\
0 & \text { with probability } 1-p_{i}\end{cases} \\
\mathbb{E}\left[\sum_{i} s_{i} v_{i} v_{i}^{T}\right]=\sum_{i} v_{i} v_{i}^{T}
\end{gathered}
$$

Matrix Sparsification by Sampling

(Rudelson '99, Ahlswede-Winter '02, Tropp '11)

For $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n} \quad$ with

$$
\sum_{i} v_{i} v_{i}^{T}=I
$$

Choose v_{i} with probability $p_{i}=C(\log n)\left\|v_{i}\right\|^{2} / \epsilon^{2}$ If choose v_{i}, set $s_{i}=1 / p_{i}$

$$
\begin{gathered}
s_{i}= \begin{cases}1 / p_{i} & \text { with probability } p_{i} \\
0 & \text { with probability } 1-p_{i}\end{cases} \\
\mathbb{E}\left[\sum_{i} s_{i} v_{i} v_{i}^{T}\right]=\sum_{i} v_{i} v_{i}^{T}
\end{gathered}
$$

Matrix Sparsification by Sampling

(Rudelson '99, Ahlswede-Winter '02, Tropp '11)

For $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n} \quad$ with

$$
\sum_{i} v_{i} v_{i}^{T}=I
$$

Choose v_{i} with probability $p_{i}=C(\log n)\left\|v_{i}\right\|^{2} / \epsilon^{2}$ If choose v_{i}, set $s_{i}=1 / p_{i}$

With high probability, choose $O\left(n \log n / \epsilon^{2}\right)$ vectors

$$
\text { and } \quad \sum_{i} s_{i} v_{i} v_{i}^{T} \approx_{\epsilon} I
$$

Optimal (?) Matrix Sparsification

(Batson-S-Srivastava ‘09)
For $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$
with

$$
\sum_{i} v_{i} v_{i}^{T}=I
$$

Can choose $(2+\epsilon)^{2} n / \epsilon^{2} \quad$ vectors and nonzero values for the s_{i} so that

$$
\sum_{i} s_{i} v_{i} v_{i}^{T} \approx_{\epsilon} I
$$

Optimal (?) Matrix Sparsification

(Batson-S-Srivastava ‘09)
For $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$
with

$$
\sum_{i} v_{i} v_{i}^{T}=I
$$

Can choose $(2+\epsilon)^{2} n / \epsilon^{2} \quad$ vectors and nonzero values for the s_{i} so that

$$
\sum_{i} s_{i} v_{i} v_{i}^{T} \approx_{\epsilon} I
$$

Optimal (?) Matrix Sparsification

(Batson-S-Srivastava '09)
For $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$
with

$$
\sum_{i} v_{i} v_{i}^{T}=I
$$

Can choose $(2+\epsilon)^{2} n / \epsilon^{2} \quad$ vectors and nonzero values for the s_{i} so that

$$
\sum_{i} s_{i} v_{i} v_{i}^{T} \approx_{\epsilon} I
$$

$$
s_{i} \sim 1 /\left\|v_{i}\right\|^{2} 88
$$

The Kadison-Singer Problem '59

Equivalent to:
Anderson's Paving Conjectures (‘79, ‘81)
Bourgain-Tzafriri Conjecture ('91)
Feichtinger Conjecture ('05)
Many others
Implied by: Weaver's KS_{2} conjecture ('04)

Weaver's Conjecture: Isotropic vectors

$\sum_{i} v_{i} v_{i}^{T}=I$
for every unit vector t

$$
\sum_{i}\left(v_{i}^{T} t\right)^{2}=1
$$

Partition into approximately $1 / 2$-Isotropic Sets

S_{2}

Partition into approximately $1 / 2$-Isotropic Sets

$$
1 / 4 \leq \sum_{i \in S_{j}}\left(v_{i}^{T} t\right)^{2} \leq 3 / 4
$$

Partition into approximately $1 / 2$-Isotropic Sets

$$
\begin{array}{r}
1 / 4 \leq \sum_{i \in S_{j}}\left(v_{i}^{T} t\right)^{2} \leq 3 / 4 \\
1 / 4 \leq \operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{T}\right) \leq 3 / 4
\end{array}
$$

Partition into approximately $1 / 2$-Isotropic Sets

$$
1 / 4 \leq \sum_{i \in S_{j}}\left(v_{i}^{T} t\right)^{2} \leq 3 / 4
$$

$$
1 / 4 \leq \operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{T}\right) \leq 3 / 4
$$

$$
\Longleftrightarrow \operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{T}\right) \leq 3 / 4
$$

$$
\text { because } \sum_{i \in S_{1}} v_{i} v_{i}^{T}=I-\sum_{i \in S_{2}} v_{i} v_{i}^{T}
$$

Big vectors make this difficult

Big vectors make this difficult

Weaver's Conjecture KS_{2}

There exist positive constants α and ϵ so that
if all $\left\|v_{i}\right\|^{2} \leq \alpha$ and $\sum v_{i} v_{i}^{T}=I$
then exists a partition into S_{1} and S_{2} with

$$
\operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{T}\right) \leq 1-\epsilon
$$

Theorem (Marcus-S-Srivastava '15)

For all $\alpha>0$
if all $\left\|v_{i}\right\|^{2} \leq \alpha$ and $\sum v_{i} v_{i}^{T}=I$
then exists a partition into S_{1} and S_{2} with

$$
\operatorname{eigs}\left(\sum_{i \in S_{j}} v_{i} v_{i}^{T}\right) \leq \frac{1}{2}+3 \alpha
$$

We want

$$
\operatorname{eigs}\left(\begin{array}{cc}
\sum_{i \in S_{1}} v_{i} v_{i}^{T} & 0 \\
0 & \sum_{i \in S_{2}} v_{i} v_{i}^{T}
\end{array}\right) \leq \frac{1}{2}+3 \alpha
$$

We want

We want

Consider expected polynomial of a random partition.

Proof Outline

1. Prove expected characteristic polynomial has real roots
2. Prove its largest root is at most $1 / 2+3 \alpha$
3. Prove is an interlacing family, so
exists a partition whose polynomial has largest root at most $1 / 2+3 \alpha$

Interlacing

Polynomial $\quad p(x)=\prod_{i=1}^{d}\left(x-\alpha_{i}\right)$
interlaces $\quad q(x)=\prod_{i=1}^{d-1}\left(x-\beta_{i}\right)$
if $\quad \alpha_{1} \leq \beta_{1} \leq \alpha_{2} \leq \cdots \alpha_{d-1} \leq \beta_{d-1} \leq \alpha_{d}$

Example: $q(x)=\frac{d}{d x} p(x)$

Common Interlacing

$p_{1}(x)$ and $p_{2}(x)$ have a common interlacing if can partition the line into intervals so that each contains one root from each polynomial

Common Interlacing

If p_{1} and p_{2} have a common interlacing, max-root $\left(p_{i}\right) \leq \max -r o o t\left(\mathbb{E}_{i}\left[p_{i}\right]\right)$ for some i.

Common Interlacing

If p_{1} and p_{2} have a common interlacing, max-root $\left(p_{i}\right) \leq \max -r o o t\left(\mathbb{E}_{i}\left[p_{i}\right]\right)$ for some i.

Without a common interlacing

Without a common interlacing

Without a common interlacing

Without a common interlacing

Common Interlacing

If p_{1} and p_{2} have a common interlacing, max-root $\left(p_{i}\right) \leq \max -r o o t\left(\mathbb{E}_{i}\left[p_{i}\right]\right)$ for some i.

Common Interlacing

$p_{1}(x)$ and $p_{2}(x)$ have a common interlacing iff
$\lambda p_{1}(x)+(1-\lambda) p_{2}(x)$ is real rooted for all $0 \leq \lambda \leq 1$

Interlacing Family of Polynomials

$\left\{p_{\sigma}\right\}_{\sigma \in\{1,2\}^{n}}$ is an interlacing family
if its members can be placed on the leaves of a tree so that when every node is labeled with the average of leaves below, siblings have common interlacings

Interlacing Family of Polynomials

$\left\{p_{\sigma}\right\}_{\sigma \in\{1,2\}^{n}}$ is an interlacing family
if its members can be placed on the leaves of a tree so that when every node is labeled with the average of leaves below, siblings have common interlacings

Interlacing Family of Polynomials

$\left\{p_{\sigma}\right\}_{\sigma \in\{1,2\}^{n}}$ is an interlacing family
if its members can be placed on the leaves of a tree so that when every node is labeled with the average of leaves below, siblings have common interlacings

have a common interlacing

Interlacing Family of Polynomials

Theorem:
There is a σ so that $\max -\operatorname{root}\left(p_{\sigma}\right) \leq \max -\operatorname{root}\left(\mathbb{E}_{\sigma} p_{\sigma}\right)$

Interlacing Family of Polynomials

Theorem:
There is a σ so that $\max -\operatorname{root}\left(p_{\sigma}\right) \leq \max -\operatorname{root}\left(\mathbb{E}_{\sigma} p_{\sigma}\right)$

have a common interlacing

Interlacing Family of Polynomials

Theorem:
There is a σ so that $\max -\operatorname{root}\left(p_{\sigma}\right) \leq \max -\operatorname{root}\left(\mathbb{E}_{\sigma} p_{\sigma}\right)$

Our family is interlacing

$$
\mathbb{E}_{S_{1}, S_{2}}\left[\text { poly }\left(\begin{array}{cc}
\sum_{i \in S_{1}} v_{i} v_{i}^{T} & 0 \\
0 & \sum_{i \in S_{2}} v_{i} v_{i}^{T}
\end{array}\right)\right]
$$

Form other polynomials in the tree by fixing the choices of where some vectors go

Summary

1. Prove expected characteristic polynomial has real roots
2. Prove its largest root is at most $1 / 2+3 \alpha$
3. Prove is an interlacing family, so exists a partition whose polynomial has largest root at most $1 / 2+3 \alpha$

To learn more about Laplacians, see

My class notes from
"Spectral Graph Theory" and "Graphs and Networks"
My web page on
Laplacian linear equations, sparsification, etc.
To learn more about Kadison-Singer
Papers in Annals of Mathematics and survey from ICM.
Available on arXiv and my web page

