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Abstract

Let
�

A be an arbitrary matrix and let A be a slight random perturbation of
�

A. We prove
that it is unlikely that A has large condition number. Using this result, we prove it is unlikely
that A has large growth factor under Gaussian elimination without pivoting. By combining
these results, we show that the smoothed precision necessary to solve Ax = b, for any b,
using Gaussian elimination without pivoting is logarithmic. Moreover, when

�

A is an all-zero
square matrix, our results significantly improve the average-case analysis of Gaussian elimination
without pivoting performed by Yeung and Chan (SIAM J. Matrix Anal. Appl., 1997).
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1 Introduction

Spielman and Teng [ST04], introduced the smoothed analysis of algorithms to explain the success
of algorithms and heuristics that could not be well understood through traditional worst-case and
average-case analyses. Smoothed analysis is a hybrid of worst-case and average-case analyses in
which one measures the maximum over inputs of the expected value of a measure of the perfor-
mance of an algorithm on slight random perturbations of that input. For example, the smoothed
complexity of an algorithm is the maximum over its inputs of the expected running time of the
algorithm under slight perturbations of that input. If an algorithm has low smoothed complexity
and its inputs are subject to noise, then it is unlikely that one will encounter an input on which
the algorithm performs poorly. (See also the Smoothed Analysis Homepage [Smo])

Smoothed analysis is motivated by the existence of algorithms and heuristics that are known
to work well in practice, but which are known to have poor worst-case performance. Average-case
analysis was introduced in an attempt to explain the success of such heuristics. However, average-
case analyses are often unsatisfying as the random inputs they consider may bare little resemblance
to the inputs actually encountered in practice. Smoothed analysis attempts to overcome this
objection by proving a bound that holds in every neighborhood of inputs.

In this paper, we prove that perturbations of arbitrary matrices are unlikely to have large
condition numbers or large growth factors under Gaussian Elimination without pivoting. As a
consequence, we conclude that the smoothed precision necessary for Gaussian elimination is log-
arithmic. We obtain similar results for perturbations that affect only the non-zero and diagonal
entries of symmetric matrices. We hope that these results will be a first step toward a smoothed
analysis of Gaussian elimination with partial pivoting—an algorithm that is widely used in practice
but known to have poor worst-case performance.

In the rest of this section, we recall the definitions of the condition numbers and growth factors of
matrices, and review prior work on their average-case analysis. In Section 3, we perform a smoothed
analysis of the condition number of a matrix. In Section 4, we use the results of Section 3 to obtain a
smoothed analysis of the growth factors of Gaussian elimination without pivoting. In Section 5, we
combine these results to obtain a smoothed bound on the precision needed by Gaussian elimination
without pivoting. Definitions of zero-preserving perturbations and our results on perturbations that
only affect the non-zero and diagonal entries of symmetric matrices appear in Section 6. In the
conclusion section, we explain how our results may be extended to larger families of perturbations,
present some counter-examples, and suggest future directions for research. Other conjectures and
open questions appear in the body of the paper.

The analysis in this paper requires many results from probability. Where reasonable, these have
been deferred to the appendix.
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1.1 Condition numbers and growth factors

We use the standard notation for the 1, 2 and ∞-norms of matrices and column vectors, and define

‖A‖ ����� =
���	�

i,j
|Ai,j| .

Definition 1.1 (Condition Number).

���
 ��������� 
�� ���	� 
�� �

A � ��� �����! #"�� � �$�! % �#�'& �(
)��*
A

� �
"#�(+� ���" &-,

κ(A) = ‖A‖2

∥

∥

∥A
−1
∥

∥

∥

2
.

The condition number measures how much the solution to a system Ax = b changes as one
makes slight changes to A and b. A consequence is that if ones solves the linear system using
fewer than . ��/ (κ(A)) bits of precision, one is likely to obtain a result far from a solution. For more
information on the condition number of a matrix, we refer the reader to one of [GL83, TB97, Dem97].

The simplest and most often implemented method of solving linear systems is Gaussian elimina-
tion. Natural implementations of Gaussian elimination use O

(

n3
)

arithmetic operations to solve a
system of n linear equations in n variables. If the coefficients of these equations are specified using
b bits, in the worst case it suffices to perform the elimination using O(bn) bits of precision [GLS91].
This high precision may be necessary because the elimination may produce large intermediate en-
tries [TB97]. However, in practice one usually obtains accurate answers using much less precision.
In fact, it is rare to find an implementation of Gaussian elimination that uses anything more than
double precision, and high-precision solvers are rarely used or needed in practice [TB97, TS90]
(for example, LAPACK uses 64 bits [ABB+99]). One of the main results of this paper is that
O (b + . ��/ n) bits of precision usually suffice for Gaussian elimination in the smoothed analysis
framework.

Since Wilkinson’s seminal work [Wil61], it has been understood that it suffices to carry out
Gaussian elimination with b + . ��/ 2(5nκ(A) ‖L‖∞ ‖U‖∞ / ‖A‖∞ + 3) bits of accuracy to obtain a
solution that is accurate to b bits. In this formula, L and U are the LU-decomposition of A; that
is, U is the upper-triangular matrix and L is the lower-triangular matrix with 1s on the diagonal
for which A = LU.

1.2 Prior work

The average-case behaviors of the condition numbers and growth factors of matrices have been
studied both analytically and experimentally. In his paper, “The probability that a numerical
analysis problem is difficult”, Demmel [Dem88] proved that it is unlikely that a Gaussian random
matrix centered at the origin has large condition number. Demmel’s bounds on the condition
number were improved by Edelman [Ede88].

Average-case analysis of growth factors began with the experimental work of Trefethen and
Schreiber [TS90], who found that Gaussian random matrices rarely have large growth factors under
partial or full pivoting.
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Definition 1.2 (Gaussian Matrix). � ��� � 
�� �
G
� � ���������	�	
�����
	����������������
�
�� ��*�� � 
�� �  ����

σ2 � *
� � � � �� � 
 , ��*

G
� � �  �$ #"���� �� �"#�� � �  ���� � 
�� �	� �! � �#��� � �  "� � 
�� � & . �$# � ��� � � �  0

�  #" � ���  #" � 
�")"#���-� � � �$�! 
σ %

Yeung and Chan [YC97] study the growth factors of Gaussian elimination without pivoting on
Gaussian random matrices of variance 1. They define ρU and ρL by

ρU(A) = ‖U‖∞ / ‖A‖∞ , and

ρL(A) = ‖L‖∞ ,

where A = LU is the LU-factorization of A obtained without pivoting. They prove

Theorem 1.3 (Yeung-Chan). & � �(
 ��� � � � � ���! � ���  ��� c > 0
�  #"

0 < b < 1
��� � � ��� �	� � *

G
� �

�  
n × n

 � �#��� � �  �
 �  #"�� � ��� � 
�� � ��*'� � 
�� �  ����
1
�  #"

G = LU
� � ��� �)(+*-, * � � � ��
��/. �	� �$�! ��*

G � ��� �� 

0 

[ρL(G) > x] ≤ cn3

x
,
�  #"

0 

[ρU(G) > x] ≤ � �$ 

(

cn7/2

x
,
1

n

)

+
cn5/2

x
+ bn.

As it is generally believed that partial pivoting is better than no pivoting, their result pro-
vides some intuition for the experimental results of Trefethen and Schreiber demonstrating that
random matrices rarely have large growth factors under partial pivoting. However, we note that
it is difficult to make this intuition rigorous as there are matrices A for which no pivoting has
‖L‖ � ��� ‖U‖ � ��� /‖A‖ � ��� = 2 while partial pivoting has growth factor 2n−1. (See also [Hig90])

The running times of many numerical algorithms depend on the condition numbers of their
inputs. For example, the number of iterations taken by the method of conjugate gradients can
be bounded in terms of the square root of the condition number. Similarly, the running times of
interior-point methods can be bounded in terms of condition numbers [Ren95]. Blum [Blu89] sug-
gested that a complexity theory of numerical algorithms should be parameterized by the condition
number of an input in addition to the input size. Smale [Sma97] proposed a complexity theory of
numerical algorithms in which one:

1. proves a bound on the running time of an algorithm solving a problem in terms of its condition
number, and then

2. proves that it is unlikely that a random problem instance has large condition number.

This program is analogous to the average-case complexity of Theoretical Computer Science.
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1.3 Our results

To better model the inputs that occur in practice, we propose replacing step 2 of Smale’s program
with

2 ′. prove that for every input instance it is unlikely that a slight random perturbation of that
instance has large condition number.

That is, we propose to bound the smoothed value of the condition number. Our first result in
this program is presented in Section 3, where we improve upon Demmel’s [Dem88] and Edel-
man’s [Ede88] average-case results to show that a slight Gaussian perturbation of an arbitrary
matrix is unlikely to have large condition number.

Definition 1.4 (Gaussian Perturbation).
( � ���

A
& � �  � 
 & � � 
 � 
 ,

n × n
��� � 
�� � % & � � ��� � 
�� � A� � � �������	�	
��������	
 ����
��	����
���� ��* �

A
��* � � 
�� �  #���

σ2 � * A
� �  & � # 
�� � � �� � �

A =
�
A + G � # � �(
�� G

� � �
 � �#��� � �  
 �  #"#� � ���	� 
�� � ��* � � 
�� �  #���

σ2 %	� � � . � ��
��(* �(
 � � A
� � �  � �#��� � �  ��� � 
�� � ��* � � 
�� �  #���

σ2

���� � �(
���" � � �
A %

In our smoothed analysis of the condition number, we consider an arbitrary n × n matrix �
A

of norm at most
√

n, and we bound the probability that κ(
�
A + G), the condition number of its

Gaussian perturbation, is large, where G is a Gaussian random matrix of variance σ2 ≤ 1. We
bound this probability in terms of σ and n. In contrast with the average-case analysis of Demmel
and Edelman, our analysis can be interpreted as demonstrating that if there is a little bit of
imprecision or noise in the entries of a matrix, then it is unlikely it is ill-conditioned. On the other
hand, Edelman [Ede92] writes of random matrices:

What is a mistake is to psychologically link a random matrix with the intuitive
notion of a “typical” matrix or the vague concept of “any old matrix.”

The reader might also be interested in recent work on the smoothed analysis of the condition
numbers of linear programs [BD02, DST02, ST03].

In Section 4, we use results from Section 3 to perform a smoothed analysis of the growth factors
of Gaussian elimination without pivoting. If one specializes our results to perturbations of an all-
zero square matrix, then one obtains a bound on ρU that improves the bound obtained by Yeung
and Chan by a factor of n and which agrees with their experimental observations. The result
obtained for ρL also improves the bound of Yeung and Chan [YC97] by a factor of n. However,
while Yeung and Chan compute the density functions of the distribution of the elements in L and
U, such precise estimates are not immediately available in our model. As a result, the techniques
we develop are applicable to a wide variety of models of perturbations beyond the Gaussian. For
example, one could use our techniques to obtain results of a similar nature if G were a matrix of
random variables chosen uniformly in [−1, 1]. We comment further upon this in the conclusions
section of the paper.
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The less effect a perturbation has, the more meaningful the results of smoothed analysis are.
As many matrices encountered in practice are sparse or have structure, it would be best to consider
perturbations that respect their sparsity pattern or structure. Our first result in this direction
appears in Section 6, in which we consider the condition numbers and growth factors of perturba-
tions of symmetric matrices that only alter their non-zero and diagonal elements. We prove results
similar to those proved for dense perturbations of arbitrary matrices.

2 Notation and Mathematical Preliminaries

We use bold lower-case Roman letters such as x, a, bj to denote vectors in R
?. Whenever a vector,

say a ∈ R
n is present, its components will be denoted by lower-case Roman letters with subscripts,

such as a1, . . . , an. Matrices are denoted by bold upper-case Roman letters such as A and scalars
are denoted by lower-case roman letters. Indicator random variables and random event variables
are denoted by upper-case Roman letters. Random variables taking real values are denoted by
upper-case Roman letters, except when they are components of a random vector or matrix.

The probability of an event A is written
0 


[A], and the expectation of a variable X is written�
[X]. The indicator random variable for an event A is written [A].
We write .  to denote the natural logarithm, base e, and explicitly write the base for all other

logarithms.
For integers a ≤ b, we let a : b denote the set of integers {x : a ≤ x ≤ b}. For a matrix A we let

Aa:b,c:d denote the submatrix of A indexed by rows in a : b and columns in c : d.
We will bound many probabilities by applying the following proposition.

Proposition 2.1 (Minimum ≤ Average ≤ Maximum).
( � �

µ(X, Y)
& � �  #�! ,  #�(/ � � ��� ���$ � � ,

/!
 � & . � * �  #� � �$�! � �  #" . � � X
�  #"

Y
& � 
 �  �"#� � � � 
�� � & . � � "�� � � 
�� &���� ��" � ������
�"��$ �/ � �

µ(X, Y) %�� * A(X, Y)� � �  ��� �� � �  #"
F(X, Y)

� � � * �  #� � �$�! � ��� �� 

� �$ 
X

0 

Y

[A(X, Y)] ≤ 0 

X,Y

[A(X, Y)] ≤ ���	�
X

0 

Y

[A(X, Y)] , and

� �$ 
X

�
Y [F(X, Y)] ≤ � X,Y [F(X, Y)] ≤ ���	�

X

�
Y [F(X, Y)] ,

# � �(
 � �$ ��� � . �(* � , ���  #" �  #"�
�� / � � , � �  �" � �(
 � � � Y � � "#� � � 
�� &���� ��" � ������
�"#�$ �/ � � ��� � �$ #" � ����"�"�� � � 
�� &���� �$�! 
�! 

µ(X, Y) %
We recall that a matrix Q is an orthonormal matrix if its inverse is equal to its transpose, that

is, QTQ = I. In Section 3 we will use the following proposition.

Proposition 2.2 (Orthonormal Transformation of Gaussian).
( � � �

A
& � � ��� � 
�� � �$ 

R
n×n

�  #"
Q

& � �  ��
 ��� �! #��
 ��� . ��� � 
�� � �$ 
R

n×n %�� * A
� � �  � �#��� � �  � �(
 ��� 
 & � � �$�! ��* �

A
��* � � 
�� �  #���

σ2 ���� �� 
QA

� � �  � �#��� � �  � �(
 ��� 
 & � � �$�! ��*
Q
�
A
��*�� � 
�� �  #���

σ2 %
We will also use the following extension of Proposition 2.17 of [ST04].
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Proposition 2.3 (Gaussian Measure of Halfspaces).
( � �

t
& � �  ,��  #� � � ��� � ��
 �$ 

R
n �  #"

r
& �

�  , 
 � � . % ( � � �b & � � � ��� � ��
 �$ 
R

n �  #"
b
& � �  � �#��� � �  � �(
 ��� 
 & � � �$�! ��* �

b
��*�� � 
�� �  #���

σ2 % & � �� 

0 

b

[∣

∣

∣
tTb

∣

∣

∣
≤ r
]

≤ 1√
2πσ

∫ t=r

t=−r

e−t2/2σ2

dt.

In this paper we will use the following properties of matrix norms and vector norms.

Proposition 2.4 (Product).

���
 �  , � � � 
 ��* ���	� 
��$��� �

A
�  #"

B
��� � � ��� �	�

AB
� � "��(+� #��" � �  #"�* ��
��� �(
 ,

1 ≤ p ≤ ∞ �
‖AB‖p ≤ ‖A‖p ‖B‖p .

Proposition 2.5 (Vector Norms).

���
 �  , ��� . �#�  � ��� � ��
 a

�$ 
R

n � ‖a‖1 /
√

n ≤ ‖a‖2 ≤ ‖a‖1 %
Proposition 2.6 (2-norm).


���
 �  , ��� � 
�� �
A �

‖A‖2 =
∥

∥

∥A
T
∥

∥

∥

2
,

� � & � ����� 
�� � �-��� . � � ��� � . � 
�/ � � � �(� / �� �� � . � �)��* √ATA %
Proposition 2.7 (‖A‖∞: the maximum absolute row sum norm).


���
 ��� �(
 , ��� � 
�� �
A �

‖A‖∞ =
���	�

i

∥

∥

∥a
T
i

∥

∥

∥

1
,

# � �(
 �
a1, . . . ,an

� 
�� ��� � 
 ��# � ��*
A % & �-�#� � * ��
 �  , ����&���� � 
�� � D

��*
A �

‖D‖∞ ≤ ‖A‖∞ .

Proposition 2.8 (‖A‖1: the maximum absolute column sum norm).

���
 ��� �(
 , ��� � 
�� �

A �

‖A‖1 =
���	�

i
‖ai‖1 ,

# � �(
 �
a1, . . . ,an

� 
�� ��� � ��� . ���  � ��* A % & �-�#�

‖A‖1 =
∥

∥

∥A
T
∥

∥

∥

∞
.

3 Smoothed analysis of the condition number of a matrix

In this section, we will prove the following theorem which shows that for every matrix it is unlikely
that a slight perturbation of that matrix has large condition number.
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Theorem 3.1 (Smoothed Analysis of Condition number).
( � � �

A
& � �  

n× n
��� � 
�� � ��� � � � ,

* , �$ �/ ∥
∥

�
A
∥

∥

2
≤ √

n � �  #" . � � A
& � �  � �#��� � �  � �(
 ��� 
 & � � �$�! ��* �

A
��*'� � 
�� �  #���

σ2 ≤ 1 % & � �� � ∀x ≥ 1 �

0 

[κ(A) ≥ x] ≤

14.1n
(

1 +
√

2 .  (x)/9n
)

xσ
.

As bounds on the norm of a random matrix are standard, we focus on the norm of the inverse.
Recall that 1/

∥

∥A−1
∥

∥

2
=
� �$ 

x ‖Ax‖2 / ‖x‖2.

The first step in the proof is to bound the probability that
∥

∥A−1v
∥

∥

2
is small for a fixed unit

vector v. This result is also used later (in Section 4.1) in studying the growth factor. Using this
result and an averaging argument, we then bound the probability that

∥

∥A−1
∥

∥

2
is large.

Lemma 3.2 (Projection of A−1).
( � � �

A
& � �  � 
 & � � 
 � 
 ,����-��� 
�� ��� � 
�� � �$ 

R
n×n � �  #" . � � A

& �
�  � �#��� � �  � �(
 ��� 
 & �	� �$�! ��* �

A
��* � � 
�� �  #���

σ2 % ( � � v
& � �  � 
 & � � 
 � 
 , �  �� � � ��� � ��
 % & � �� 

0 
 [∥
∥

∥
A−1v

∥

∥

∥

2
> x
]

<

√

2

π

1

xσ

Proof. Let Q be an orthonormal matrix such that QTe1 = v. Let �B = Q
�
A and B = QA. By

Proposition 2.2, B is a Gaussian perturbation of �B of variance σ2. We have

∥

∥

∥
A−1v

∥

∥

∥

2
=
∥

∥

∥
A−1QTe1

∥

∥

∥

2
=
∥

∥

∥
(QA)−1e1

∥

∥

∥

2
=
∥

∥

∥
B−1e1

∥

∥

∥

2
.

Thus, to prove the lemma it is sufficient to show

0 

B

[∥

∥

∥B
−1e1

∥

∥

∥

2
> x
]

<

√

2

π

1

xσ
.

We observe that
∥

∥

∥B
−1e1

∥

∥

∥

2
=
∥

∥

∥(B−1):,1

∥

∥

∥

2
,

the length of the first column of B−1. The first column of B−1, by the definition of the matrix inverse,
is the vector that is orthogonal to every row of B but the first and that has inner product 1 with
the first row of B. Hence its length is the reciprocal of the length of the projection of the first row
of B onto the subspace orthogonal to the rest of the rows.

Let b1, . . . ,bn be the rows of B and �
b1, . . . ,

�
bn be the rows of �B. Note that bi is a Gaussian

perturbation of �bi of variance σ2. Let t be the unit vector that is orthogonal to the span of
b2, . . . ,bn. Then

∥

∥

∥
(B−1):,1

∥

∥

∥

2
=

∣

∣

∣

∣

1

tTb1

∣

∣

∣

∣

.
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Thus,

0 

B

[∥

∥

∥
B−1v

∥

∥

∥

2
> x
]

=
0 


b1,...,bn

[∣

∣

∣

∣

1

tTb1

∣

∣

∣

∣

> x

]

≤ ���	�
b2,...,bn

0 

b1

[∣

∣

∣
tTb1

∣

∣

∣
< 1/x

]

<

√

2

π

1

xσ
,

where the first inequality follows from Proposition 2.1 and the second inequality follows from Lemma
A.2.

Theorem 3.3 (Smallest singular value).
( � � �

A
& � �  � 
 & � � 
 � 
 , ����� � 
 � ��� � 
�� � �$ 

R
n×n � �  #"

. � � A
& � �  � �#��� � �  � �(
 ��� 
 & �	� �$�! ��* �

A
��*'� � 
�� �  #���

σ2 % & � �� 

0 

A

[∥

∥

∥A
−1
∥

∥

∥

2
≥ x

]

≤ 2.35

√
n

xσ

Proof. Let v be a uniformly distributed random unit vector in R
n. It follows from Lemma 3.2 that

0 

A,v

[∥

∥

∥
A−1v

∥

∥

∥

2
≥ x

]

≤
√

2

π

1

xσ
(3.1)

Since A is a Gaussian perturbation of �A, with probability 1 there is a unique pair (u,−u) of
unit vectors such that

∥

∥A−1u
∥

∥

2
=
∥

∥A−1
∥

∥

2
. From the inequality

∥

∥

∥
A−1v

∥

∥

∥

2
≥
∥

∥

∥
A−1

∥

∥

∥

2

∣

∣

∣
uTv

∣

∣

∣
,

we know that for every c > 0,

0 

A,v

[∥

∥

∥A
−1v

∥

∥

∥

2
≥ x

√

c/n
]

≥ 0 

A,v

[∥

∥

∥A
−1
∥

∥

∥

2
≥ x and

∣

∣

∣u
Tv

∣

∣

∣ ≥
√

c/n
]

=
0 

A,v

[∥

∥

∥
A−1

∥

∥

∥

2
≥ x

] 0 

A,v

[

∣

∣

∣
uTv

∣

∣

∣
≥
√

c/n

∣

∣

∣

∣

∣

∥

∥

∥
A−1

∥

∥

∥

2
≥ x

]

=
0 

A

[∥

∥

∥
A−1

∥

∥

∥

2
≥ x

] 0 

A,v

[

∣

∣

∣
uTv

∣

∣

∣
≥
√

c/n

∣

∣

∣

∣

∣

∥

∥

∥
A−1

∥

∥

∥

2
≥ x

]

≥ 0 

A

[∥

∥

∥A
−1
∥

∥

∥

2
≥ x

] � �$ 
A:‖A−1‖2≥x

0 

v

[∣

∣

∣u
Tv

∣

∣

∣ ≥
√

c/n
]

(by Proposition 2.1)

≥ 0 

A

[∥

∥

∥A
−1
∥

∥

∥

2
≥ x

] 0 

G

[

|G| ≥
√

c
]

, (by Lemma B.1)
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where G is a Gaussian random variable with mean 0 and variance 1. To prove this last inequality,
we first note that that v is a random unit vector and is independent from u. Thus, in a basis of
R

n in which u is the first vector, v is a uniformly distributed random unit vector with the first

coordinate equal to uTv, and so we may apply Lemma B.1 to bound
0 


v

[

∣

∣uTv
∣

∣ ≥
√

c/n
]

from

below by
0 


G

[

|G| ≥ √
c
]

. So,

0 

A

[∥

∥

∥
A−1

∥

∥

∥

2
≥ x

]

≤
0 


A,v

[

∥

∥A−1v
∥

∥

2
≥ x

√

c/n
]

0 

G

[

|G| ≥ √
c
]

≤
√

2

π

√
n

xσ
√

c
0 


G

[

|G| ≥ √
c
] (by (3.1)).

Because this inequality is true for every c, we will choose a value for c that almost maximizes√
c
0 


G

[

|G| ≥ √
c
]

and which in turn almost minimizes the right hand side.
Choosing c = 0.57, and evaluating the error function numerically, we determine

0 

A

[∥

∥

∥
A−1

∥

∥

∥

2
≥ x

]

≤ 2.35

√
n

xσ
.

Note that Theorem 3.3 gives a smoothed analogue of the following bound of Edelman [Ede88]
on Gaussian random matrices.

Theorem 3.4 (Edelman).
( � �

G ∈ R
n×n & � �  � �#��� � �  
 �  �"#� � ��� � 
�� � # � ��� � � 
�� �  #���

σ2 � ��� �� 

0 

G

[∥

∥

∥
G−1

∥

∥

∥

2
≥ x

]

≤
√

n

xσ
.

As Gaussian random matrices can be viewed as Gaussian random perturbations of the n × n

all-zero square matrix, Theorem 3.3 extends Edelman’s theorem to Gaussian random perturbations
of an arbitrary matrix. The constant 2.35 in Theorem 3.3 is bigger than Edelman’s 1 for Gaussian
random matrices. We conjecture that it is possible to reduce 2.35 in Theorem 3.3 to 1 as well.

Conjecture 1 (Smallest Singular Value).
( � � �

A
& � �  � 
 & � � 
 � 
 , ����� � 
 � ��� � 
�� � �$ 

R
n×n � �  #"

. � � A
& � �  � �#��� � �  � �(
 ��� 
 & �	� �$�! ��* �

A
��*'� � 
�� �  #���

σ2 % & � �� 

0 

A

[∥

∥

∥
A−1

∥

∥

∥

2
≥ x

]

≤
√

n

xσ

We now apply Theorem 3.3 to prove Theorem 3.1.
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Proof of Theorem 3.1. As observed by Davidson and Szarek [DS01, Theorem II.7], one can apply
inequality (1.4) of [LT91] to show that for all k ≥ 0,

0 

A

[∥

∥

�
A − A

∥

∥

2
≥ σ

(

2
√

n + k
)]

≤ e−k2/2.

Replacing σ by its upper bound of 1 and setting ε = e−k2/2, we obtain

0 

A

[

∥

∥

�
A − A

∥

∥

2
≥ 2

√
n +

√

2 .  (1/ε)
]

≤ ε,

for all ε ≤ 1. By assumption,
∥

∥

�
A
∥

∥

2
≤ √

n; so,

0 

A

[

‖A‖2 ≥ 3
√

n +
√

2 .  (1/ε)
]

≤ ε.

From the result of Theorem 3.3, we have

0 

A

[

∥

∥

∥
A−1

∥

∥

∥

2
≥ 2.35

√
n

εσ

]

≤ ε.

Combining these two bounds, we find

0 

A

[

‖A‖2

∥

∥

∥A
−1
∥

∥

∥

2
≥ 7.05n + 2.35

√

2n .  (1/ε)

εσ

]

≤ 2ε.

So that we can express this probability in the form of
0 


A

[

‖A‖2

∥

∥A−1
∥

∥

2
≥ x

]

, for x ≥ 1, we let

x =
7.05n + 2.35

√

2n .  (1/ε)

εσ
. (3.2)

It follows Equation (3.2) and the assumption σ ≤ 1 that xε ≥ 1, implying .  (1/ε) ≤ .  x. From
Equation (3.2), we derive

2ε =
2
(

7.05n + 2.35
√

2n .  (1/ε)
)

xσ
≤

2
(

7.05n + 2.35
√

2n .  x
)

xσ
≤

14.1n
(

1 +
√

2 .  (x)/9n
)

xσ
.

Therefore, we conclude

0 
 [‖A‖2

∥

∥

∥A
−1
∥

∥

∥

2
≥ x

]

≤
14.1n

(

1 +
√

2 .  (x)/9n
)

xσ
.

We conjecture that the 1+
√

2 .  (x)/9n term should be unnecessary because those matrices for
which ‖A‖2 is large are less likely to have

∥

∥A−1
∥

∥

2
large as well.
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4 Growth Factor of Gaussian Elimination without Pivoting

We now turn to proving a bound on the growth factor. We will consider a matrix A ∈ R
n×n obtained

from a Gaussian perturbation of variance σ2 of an arbitrary matrix �
A satisfying

∥

∥

�
A
∥

∥

2
≤ 1. With

probability 1, none of the diagonal entries that occur during elimination will be 0. So, in the
spirit of Yeung and Chan [YC97], we analyze the growth factor of Gaussian elimination without
pivoting. When we specialize our smoothed analyses to the case �

A = 0, we improve the bounds of
Yeung and Chan (see Theorem 1.3) by a factor of n. Our improved bound on ρU agrees with their
experimental analyses.

4.1 Growth in U

We recall that

ρU(A) =
‖U‖∞
‖A‖∞

.

In this section, we give two bounds on ρU(A). The first will have a better dependence on σ, and
second will have a better dependence on n. It is the later bound, Theorem 4.3, that agrees with
the experiments of Yeung and Chan [YC97] when specialized to the average-case by setting �

A = 0

and σ = 1.

4.1.1 First bound

Theorem 4.1 (First bound on ρU(A)).
( � � �

A
& � �  

n×n
��� � 
�� ����� � � � * , �$ �/ ∥

∥

�
A
∥

∥

2
≤ 1 � �  �" . � �

A
& � �  � �#��� � �  � �(
 ��� 
 & � � �$�! ��* �

A
��* � � 
�� �  #���

σ2 ≤ 1 % & � �� �
0 


[ρU(A) > 1 + x] <
1√
2π

n(n + 1)

xσ
.

Proof. By Proposition 2.7.

ρU(A) =
‖U‖∞
‖A‖∞

=
���	�

i

∥

∥(Ui,:)
T
∥

∥

1

‖A‖∞
.

So, we need to bound the probability that the 1-norm of the vector defined by each row of U is
large and then apply a union bound to bound the overall probability.

Fix for now a k between 2 and n. We denote the upper triangular segment of the kth row of U

by uT = Uk,k:n, and observe that u can be obtained from the formula:

uT = aT − bTC−1D (4.1)

where
aT = Ak,k:n bT = Ak,1:k−1 C = A1:k−1,1:k−1 D = A1:k−1,k:n.
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This expression for u follows immediately from

A1:k,: =

(

C D

bT aT

)

=

(

L1:k−1,1:k−1 0

Lk,1:k−1 1

)(

U1:k−1,1:k−1 U1:k−1,k:n

0 uT

)

.

From (4.1), we derive

‖u‖1 =

∥

∥

∥

∥

a −
(

bTC−1D
)T
∥

∥

∥

∥

1

≤ ‖a‖1 +

∥

∥

∥

∥

(

bTC−1D
)T
∥

∥

∥

∥

1

≤
∥

∥

∥a
T
∥

∥

∥

∞
+

∥

∥

∥

∥

(

CT
)−1

b

∥

∥

∥

∥

1

‖D‖∞ by Propositions 2.4 and 2.8

≤ ‖A‖∞

(

1 +

∥

∥

∥

∥

(

CT
)−1

b

∥

∥

∥

∥

1

)

by Proposition 2.7

(4.2)

We now bound the probability
∥

∥

∥

(

CT
)−1

b

∥

∥

∥

1
is large. By Proposition 2.5,

∥

∥

∥

∥

(

CT
)−1

b

∥

∥

∥

∥

1

≤
√

k − 1

∥

∥

∥

∥

(

CT
)−1

b

∥

∥

∥

∥

2

.

Note that b and C are independent of each other. Therefore,

0 

b,C

[∥

∥

∥

∥

(

CT
)−1

b

∥

∥

∥

∥

1

> x

]

≤ 0 

b,C

[∥

∥

∥

∥

(

CT
)−1

b

∥

∥

∥

∥

2

> x/
√

k − 1

]

≤
√

2

π

√
k − 1

√

(k − 1)σ2 + 1

xσ
<

√

2

π

k

xσ
, (4.3)

where the second inequality follows from Lemma 4.2 below and the last inequality follows from the
assumption σ2 ≤ 1.

We now apply a union bound over the choices of k to obtain

0 

[ρU(A) > 1 + x] <

n∑

k=2

√

2

π

k

xσ
≤ 1√

2π

n(n + 1)

xσ
.

Lemma 4.2.
( � � �

C
& � �  � 
 & � � 
 � 
 , ���-��� 
�� ��� � 
�� � �$ 

R
d×d � �  #" C

& � �  � �#��� � �  � �(
 ��� 
 & � � �$�! ���*
�
C
��* � � 
�� �  #���

σ2 % ( � � �b & � � ��� . �#�  � ��� � ��
 �$ 
R

d ��� � � ����� � ∥
∥

�
b
∥

∥

2
≤ 1 � �  #" . � � b

& � �  � �#��� � �  
� �(
 ��� 
 & �	� �$�! ��* �

b
��* � � 
�� �  #���

σ2 % � * b
�  #"

C
� 
�� �$ #"#��� �� #"��� � ��*�� � � � � ��� �(
 � ��� �� 

0 

b,C

[∥

∥

∥
C−1b

∥

∥

∥

2
≥ x

]

≤
√

2

π

√
σ2d + 1

xσ

12



Proof. Let b̂ be the unit vector in the direction of b. By applying Lemma 3.2, we obtain for all b,

0 

C

[∥

∥

∥
C−1b

∥

∥

∥

2
> x
]

=
0 

C

[

∥

∥

∥
C−1b̂

∥

∥

∥

2
>

x

‖b‖2

]

≤
√

2

π

1

xσ
‖b‖2 .

Let µ(b) denote the density according to which b is distributed. Then, we have

0 

b,C

[∥

∥

∥
C−1b

∥

∥

∥

2
> x
]

=

∫

b∈Rd

0 

C

[∥

∥

∥
C−1b

∥

∥

∥

2
> x
]

µ(b)db

≤
∫

b∈Rd

(
√

2

π

1

xσ
‖b‖2

)

µ(b)db

=

√

2

π

1

xσ

�
b [‖b‖2] .

It is known [KJ82, p. 277] that
�

b

[

‖b‖2
2

]

≤ σ2d+
∥

∥

�
b
∥

∥

2

2
. As

�
[X] ≤

√ �
[X2] for every positive

random variable X, we have
�

b [‖b‖2] ≤
√

σ2d +
∥

∥

�
b
∥

∥

2

2
≤

√
σ2d + 1.

4.1.2 Second Bound for ρU(A)

In this section, we establish an upper bound on ρU(A) which dominates the bound in Theorem 4.1
for σ ≥ n−3/2.

If we specialize the parameters in this bound to �
A = 0 and σ2 = 1, we improve the average-case

bound proved by Yeung and Chan [YC97] (see Theorem 1.3) by a factor of n. Moreover, the
resulting bound agrees with their experimental results.

Theorem 4.3 (Second bound on ρU(A)).
( � � �

A
& � �  

n ×n
��� � 
�� � ��� � � � * , �$ �/ ∥

∥

�
A
∥

∥

2
≤ 1 � �  �"

. � � A
& � �  � �#��� � �  � �(
 ��� 
 & �	� �$�! ��* �

A
��*'� � 
�� �  #���

σ2 ≤ 1 % 
���
 n ≥ 2 �
0 


[ρU(A) > 1 + x] ≤
√

2

π

1

x

(

2

3
n3/2 +

n

σ
+

4

3

√
n

σ2

)

Proof. As in the proof of Theorem 4.1, we will separately consider the kth row of U for each
2 ≤ k ≤ n. For any such k, define u, a, b, C and D as in the proof of Theorem 4.1.

In the case when k = n, we may apply (4.3) in the proof of Theorem 4.1, to show

0 
 [ ‖u‖1

‖A‖∞
> 1 + x

]

≤
√

2

π

n

xσ
. (4.4)

We now turn to the case k ≤ n − 1. By (4.1) and Proposition 2.5, we have

‖u‖1 ≤ ‖a‖1 +

∥

∥

∥

∥

(

bTC−1D
)T
∥

∥

∥

∥

1

≤ ‖a‖1 +
√

k − 1

∥

∥

∥

∥

(

bTC−1D
)T
∥

∥

∥

∥

2

= ‖a‖1 +
√

k − 1
∥

∥

∥
bTC−1D

∥

∥

∥

2
.
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The last equation follows from Proposition 2.6. Therefore, for all k ≤ n − 1,

‖u‖1

‖A‖∞
≤

‖a‖1 +
√

k − 1
∥

∥bTC−1D
∥

∥

2

‖A‖∞
≤ 1 +

√
k − 1

∥

∥bTC−1D
∥

∥

2

‖A‖∞
(by Proposition 2.7).

≤ 1 +

√
k − 1

∥

∥bTC−1D
∥

∥

2
∥

∥

∥(An,:)
T
∥

∥

∥

1

(also by Proposition 2.7).

We now observe that for fixed b and C, (bTC−1)D is a Gaussian random row vector of variance
∥

∥bTC−1
∥

∥

2

2
σ2 centered at (bTC−1)

�
D, where �

D is the center of D. We have
∥

∥

�
D
∥

∥

2
≤
∥

∥

�
A
∥

∥

2
≤ 1, by

the assumptions of the theorem; so,
∥

∥

∥
bTC−1 �D

∥

∥

∥

2
≤
∥

∥

∥
bTC−1

∥

∥

∥

2

∥

∥

�
D
∥

∥

2
≤
∥

∥

∥
bTC−1

∥

∥

∥

2
.

Thus, if we let tT = (bTC−1D)/
∥

∥bTC−1
∥

∥

2
, then for every fixed b and C, t is a Gaussian random

column vector in R
n−k+1 of variance σ2 centered at a vector of 2-norm at most 1. We also have

0 

b,C,D

[∥

∥

∥
bTC−1D

∥

∥

∥

2
≥ x

]

=
0 


b,C,t

[∥

∥

∥
bTC−1

∥

∥

∥

2
‖t‖2 ≥ x

]

. (4.5)

It follows from Lemma 4.2 that

0 

b,C

[∥

∥

∥b
TC−1

∥

∥

∥

2
≥ x

]

≤
√

2

π

√

σ2(k − 1) + 1

xσ
.

Hence, we may apply Corollary C.5 to show

0 

b,C,t

[∥

∥

∥
bTC−1

∥

∥

∥

2
‖t‖2 ≥ x

]

≤
√

2

π

√

σ2(k − 1) + 1
√

σ2(n − k + 1) + 1

xσ

≤
√

2

π

(

1 + nσ2

2

)

xσ
. (4.6)

Note that An,: is a Gaussian perturbation of variance σ2 of a row vector in R
n. As An,: is

independent of b, C and D, we can apply (4.5), (4.6) and Lemma C.4 to show

0 





√
k − 1

∥

∥bTC−1D
∥

∥

2
∥

∥

∥(An,:)
T
∥

∥

∥

1

≥ x



 ≤
√

2

π

√
k − 1

(

1 + nσ2

2

)

xσ

�




1
∥

∥

∥(An,:)
T
∥

∥

∥

1





≤
√

2

π

√
k − 1

(

1 + nσ2

2

)

xσ

2

nσ
,

by Lemma A.4.
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Applying a union bound over the choices for k, we obtain

0 

[ρU(A) > 1 + x] ≤





n−1∑

k=2

√

2

π

√
k − 1

(

1 + nσ2

2

)

xσ

2

nσ



+

√

2

π

n

xσ

≤
√

2

π

1

x

(

2

3

√
n

(

2

σ2
+ n

)

+
n

σ

)

=

√

2

π

1

x

(

2

3
n3/2 +

n

σ
+

4

3

√
n

σ2

)

,

where the second inequality follows from

n−2∑

k=1

√
k ≤ 2

3
n3/2.

4.2 Growth in L

Let L be the lower-triangular part of the LU-factorization of A. We have

L(k+1):n,k = A
(k−1)

(k+1):n,k

/

A
(k−1)

k,k ,

where we let A(k) denote the matrix remaining after the first k columns have been eliminated. So,
A(0) = A.

Recall ρL(A) = ‖L‖∞, which is equal to the maximum absolute row sum of L (Proposition
2.7). We will show that it is unlikely that

∥

∥L(k+1):n,k

∥

∥

∞
is large by proving that it is unlikely that

∥

∥

∥A
(k−1)

(k+1):n,k

∥

∥

∥

∞
is large while

∣

∣

∣A
(k−1)

k,k

∣

∣

∣ is small.

Theorem 4.4 (ρL(A)).
( � � �

A
& � �  

n
, &-, ,

n
��� � 
�� � * ��
 # � �$� � ∥

∥

�
A
∥

∥

2
≤ 1 � �  #" . � � A

& � �  � �#��� � �  
� �(
 ��� 
 & �	� �$�! ��* �

A
��*�� � 
�� �  #���

σ2 ≤ 1 % � * n ≥ 2 � ��� �� �

0 

[ρL(A) > x] ≤

√

2

π

n2

x

(√
2

σ
+
√

2 .  n +
1√

2π .  n

)
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Proof. For each k between 1 and n − 1, we have

L(k+1):n,k =
A

(k−1)

(k+1):n,k

A
(k−1)

k,k

=
A(k+1):n,k − A(k+1):n,1:(k−1)A

−1
1:(k−1),1:(k−1)

A1:(k−1),k

Ak,k − Ak,1:(k−1)A
−1
1:(k−1),1:(k−1)

A1:(k−1),k

=
A(k+1):n,k − A(k+1):n,1:(k−1)v

Ak,k − Ak,1:(k−1)v
,

where we let v = A−1
1:(k−1),1:(k−1)

A1:(k−1),k. Since
∥

∥

�
A
∥

∥

2
≤ 1, and all the terms A(k+1):n,k, A(k+1):n,1:(k−1),

Ak,k, Ak,1:(k−1) and v are independent, we can apply Lemma 4.5 to show that

0 
 [∥
∥L(k+1):n,k

∥

∥

∞ > x
]

≤
√

2

π

1

x

(√
2

σ
+
√

2 .  ( ���	� (n − k, 2)) +
1√

2π .  ( ���	� (n − k, 2))

)

≤
√

2

π

1

x

(√
2

σ
+
√

2 .  n +
1√

2π .  n
,

)

where the last inequality follows the facts that
√

2z+ 1√
2πz

is an increasing function when z ≥ π−1/3,

and .  2 ≥ π−1/3.
The theorem now follows by applying a union bound over the n choices for k and observing

that ‖L‖∞ is at most n times the largest entry in L.

Lemma 4.5 (Vector Ratio).
( � �

d
�  #"

n
& � � � � � � ��� � �$ � �(/ �(
 � % ( � � a � b � x � �  #" Y

& �  � �#��� � �  
� �(
 ��� 
 & �	� �$�! � ��* �a ∈ R

1 � �b ∈ R
d � �x ∈ R

n � �  �" �
Y ∈ R

n×d � 
�� � � ��� � ��� � . , � ��* � � 
�� �  #��� σ2 � ��� � � ����� �
| �a| ≤ 1 �

∥

∥

�
b
∥

∥

2
≤ 1 � ‖ �x‖2 ≤ 1 � �  #"

∥

∥

�
Y
∥

∥

2
≤ 1 % ( � � v

& � �  � 
 & � � 
 � 
 , � ��� � ��
 �$ 
R

d % � * a � b � x � �  #" Y
� 
�� �$ #"���� �� �"#�� � �  #"

σ2 ≤ 1 � ��� �� 

0 
 [‖x + Yv‖∞
|a + bTv|

> x

]

≤
√

2

π

1

x

(√
2

σ
+
√

2 .  max(n, 2) +
1√

2π .  max(n, 2)

)

,

Proof. We begin by observing that a + bTv and each component of x + Yv is a Gaussian random
variable of variance σ2(1 + ‖v‖2

2) whose mean has absolute value at most 1 + ‖v‖2, and that all
these variables are independent. By Lemma A.3,

�
x,Y [‖x + Yv‖∞] ≤ 1 + ‖v‖2 +

(

σ

√

(1 + ‖v‖2
2)

)(

√

2 .  max(n, 2) +
1√

2π .  max(n, 2)

)

.
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On the other hand, Lemma A.2 implies

0 

a,b

[

1

|a + bTv|
> x

]

≤
√

2

π

1

xσ

√

1 + ‖v‖2
2

. (4.7)

Thus, we can apply Corollary C.4 to show

0 
 [‖x + Yv‖∞
|a + bTv|

> x

]

≤
√

2

π

1 + ‖v‖2 +

(

σ

√

1 + ‖v‖2
2

)

(

√

2 .  max(n, 2) + 1√
2π

���
max(n,2)

)

xσ

√

1 + ‖v‖2
2

=

√

2

π

1

x









1 + ‖v‖2

σ

√

1 + ‖v‖2
2

+

(

σ

√

1 + ‖v‖2
2

)

(

√

2 .  max(n, 2) + 1√
2π

���
max(n,2)

)

σ

√

1 + ‖v‖2
2









≤
√

2

π

1

x

(√
2

σ
+
√

2 .  max(n, 2) +
1√

2π .  max(n, 2)

)

,

where the last inequality follows from (1 + z)2 ≤ 2(1 + z2), ∀z ≥ 0.

5 Smoothed Analysis of Gaussian Elimination

We now combine the results from the previous sections to bound the smoothed precision needed
in the application of Gaussian elimination without pivoting to obtain solutions to linear systems
accurate to b bits.

Theorem 5.1 (Smoothed precision of Gaussian elimination).

���


n > e4 � . � � �A & � �  
n
,

&-, ,
n
��� � 
�� � * ��
 # � �$� � ∥

∥

�
A
∥

∥

2
≤ 1 � �  #" . � � A

& � �  � �#��� � �  � �(
 ��� 
 & � � �$�! ��* �
A
��* � � 
�� �  #���

σ2 ≤ 1/4 %
& � �� � ��� ��� � � ��� � ��"  �#�'& �(
 ��* & � ��� ��* �#
����(� � �$�!  #����� ����� 
 , � � � � . � � Ax = b

� �
b
& � ��� ��* � ��� � 
 � � ,

�#� �$ #/� � �#��� � �  � . � � �$ � � �$�! # � ��� � ��� ����� � � �$ �/�� � � � � � ���

b +
11

2
. ��/ 2 n + 3 . ��/ 2

(

1

σ

)

+ . ��/ 2(1 + 2
√

nσ) +
1

2
. ��/ 2 .

��/
2 n + 6.83

Proof. By Wilkinson’s theorem, we need the machine precision, εmach, to satisfy

5 · 2bnρL(A)ρU(A)κ(A)εmach ≤ 1 =⇒

2.33 + b + . ��/ 2 n + . ��/ 2(ρL(A)) +
���	�

(0, . ��/ 2(ρU(A))) + . ��/ 2(κ(A)) ≤ . ��/ 2(1/εmach).

We will apply Lemma C.6 to bound these log terms. Theorem 4.1 tells us that

0 

[ρU(A) > 1 + x] ≤ 1√

2π

n(n + 1)

xσ
.
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To put this inequality into a form to which Lemma C.6 may be applied, we set

y = x

(

1 +

√
2πσ

n(n + 1)

)

,

to obtain 0 

[ρU(A) > y] ≤

(

1√
2π

n(n + 1)

σ
+ 1

)

1

y
.

By Lemma C.6,

�
[
���	�

(0, . ��/ 2 ρU(A))] ≤ . ��/ 2

(

1√
2π

n(n + 1)

σ
+ 1

)

+ . ��/ 2 e

≤ . ��/ 2

(

n(n + 1) + σ
√

2π
)

+ . ��/ 2

(

1

σ

)

+ . ��/ 2

(

e√
2π

)

≤ . ��/ 2

(

1.02n2
)

+ . ��/ 2

(

1

σ

)

+ . ��/ 2

(

e√
2π

)

≤ 2 . ��/ 2 n + . ��/ 2

(

1

σ

)

+ 0.15,

where in the second-to-last inequality, we used the assumptions n ≥ e4 and σ ≤ 1/2. In the last
inequality, we numerically computed . ��/ 2(1.02e/

√
2π) < 0.15.

Theorem 4.4 and Lemma C.6 imply

�
[ . ��/ 2 ρL(A)] ≤ . ��/ 2

(
√

2

π
n2

(√
2

σ
+
√

2 .  n +
1√

2π .  n

))

+ . ��/ 2 e

≤ 2 . ��/ 2 n + . ��/ 2

(

1

σ
+
√
.  n

(

1 +
1

2
√

π .  n

))

+ . ��/ 2

(

2e√
π

)

= 2 . ��/ 2 n + . ��/ 2

(

1

σ

)

+ . ��/ 2

√
.  n + . ��/ 2

(

1√
.  n

+ σ

(

1 +
1

2
√

π .  n

))

+ . ��/ 2

(

2e√
π

)

using σ ≤ 1
2

and n > e4,

≤ 2 . ��/ 2 n + . ��/ 2

(

1

σ

)

+
1

2
. ��/ 2 .

��/
2 n + . ��/ 2

(

1 +
1

16
√

π

)

+ . ��/ 2

(

2e√
π

)

≤ 2 . ��/ 2 n + . ��/ 2

(

1

σ

)

+
1

2
. ��/ 2 .

��/
2 n + 1.67,

as . ��/ 2(1+1/16
√

π)+ . ��/ 2(2e/
√

π) < 1.67. Theorem 3.3 and Lemma C.6, along with the observation
that . ��/ 2(2.35e) < 2.68, imply

� [ . ��/ 2

∥

∥

∥A
−1
∥

∥

∥

2

]

≤ 1

2
. ��/ 2 n + . ��/ 2

(

1

σ

)

+ 2.68.
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Finally, �
[ . ��/ 2(‖A‖2)] ≤ . ��/ 2(1 + 2

√
nσ)

follows from the well-known facts that the expectation of
∥

∥A −
�
A
∥

∥

2
is at most 2

√
nσ (c.f., [Seg00])

and that
�

[ . ��/ 2(X)] ≤ . ��/ 2

�
[X] for every positive random variable X. Thus, the expected number

of digits of precision needed is at most

b +
11

2
. ��/ 2 n + 3 . ��/ 2

(

1

σ

)

+ . ��/ 2(1 + 2
√

nσ) +
1

2
. ��/ 2 .

��/
2 n + 6.83.

The following conjecture would further improve the coefficient of . ��/ (1/σ).

Conjecture 2.
( � � �

A
& � �

n
, &-, ,

n
��� � 
�� � * ��
'# � �$� � ∥

∥

�
A
∥

∥

2
≤ 1 � �  #" . � � A

& �  � � ��� � �  � �(
 ��� 
 & � � �$�! 
��* �

A
��*�� � 
�� �  #���

σ2 ≤ 1 % & � �� 

0 

[ρL(A)ρU(A)κ(A) > x] ≤ nc1 . ��/ c2(x)

xσ
,

* ��
 � � � � ���! � ���  ���
c1

�  #"
c2 %

6 Zero-preserving perturbations of symmetric matrices with di-

agonals

Many matrices that occur in practice are symmetric and sparse. Moreover, many matrix algorithms
take advantage of this structure. Thus, it is natural to study the smoothed analysis of algorithms
under perturbations that respect symmetry and non-zero structure. In this section, we study
the condition numbers and growth factors of Gaussian elimination without pivoting of symmetric
matrices under perturbations that only alter their diagonal and non-zero entries.

Definition 6.1 (Zero-preserving perturbations).
( � � �

T
& � � ��� � 
�� � % � � "#�(+  #� ��� ��� �	
����

� 
 �	� �	
�� 
 ��� ���	
 � � 
��	��� 
���� �	� �
T
�	�
� ��
�
������ �

σ2 � � & � ��� � ��� � 
�� � T
� &#��� �$ #��" &�,�� "�"��$ �/ �$ #"���� �� �"#�� �

 � �#��� � �  
 �  #"#� � � � 
�� � & . � � ��* � � �  �
 �  �" � � 
�� �  #��� σ2 � � ��� �  #�! , . �(
 � �� � 
��$� � ��* �T %
Throughout this section, when we express a symmetric matrix A as T + D + T T , we mean that

T is lower-triangular with zeros on the diagonal and D is a diagonal matrix. By making a zero-
preserving perturbation to �

T , we preserve the symmetry of the matrix. The main results of this
section are that the smoothed condition number and growth factors of symmetric matrices under
zero-preserving perturbations to T and diagonal perturbations to D have distributions similar those
proved in Sections 3 and 4 for dense matrices under dense perturbations.
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6.1 Bounding the condition number

We begin by recalling that the singular values and vectors of symmetric matrices are the eigenvalues
and eigenvectors.

Lemma 6.2.
( � � �

A =
�
T +

�
D +

�
T T & � �  � 
 & � � 
 � 
 ,

n
, &-, ,

n
� , � � � � 
��$� ��� � 
�� � % ( � � T

& � � . �(
 � ,
�#
�� � �(
 ���$ #/"� �(
 ��� 
 & � � �$�! ���* �

T
��* � � 
�� �  #���

σ2 ��. � � GD
& � � "�� � / �! � . ��� � 
�� � ��* �$ #"#��� �� #"#�� �  � �#��� � �  
 �  #"#� � � � 
�� � & . � � ��* � � 
�� �  #��� σ2 �  #" � � �  
 ����� � � 
 ���$ �"#��� �� #"#�� � ��*

T � �  #" . � � D =
�
D + GD %

& � �� � * ��
 A = T + D + T T �
0 
 [∥

∥

∥A
−1
∥

∥

∥

2
≥ x

]

≤
√

2

π

n3/2

xσ
.

Proof. By Proposition 2.1,

0 

T ,GD

[∥

∥

∥
(T + D + T T )−1

∥

∥

∥

2
≥ x

]

≤ ���	�
T

0 

GD

[∥

∥

∥
((T +

�
D + T T ) + GD)−1

∥

∥

∥

2
≥ x

]

.

The proof now follows from Lemma 6.3, taking T +
�
D + T T as the base matrix.

Lemma 6.3.
( � � �

A
& � �  � 
 & � � 
 � 
 ,

n
, &-, ,

n
� , � � � � 
��$� ���	� 
�� � � . � � GD

& � � "�� � / �! � . ��� � 
�� � ��*
�$ #"#��� �� #"��� �  � �#��� � �  �
 �  #"#� � � � 
�� � & . � � ��*�� � 
�� �  #��� σ2 �  #" � � �  �
 � �  #" . � � A =

�
A + GD % & � �� �

0 
 [∥
∥

∥A
−1
∥

∥

∥

2
≥ x

]

≤
√

2

π

n3/2

xσ
.

Proof. Let x1, . . . , xn be the diagonal entries of GD, and let

g =
1

n

n∑

i=1

xi, and

yi = xi − g.

Then,

0 

y1,...,yn,g

[∥

∥

∥(
�
A + GD)−1

∥

∥

∥

2
≥ x

]

=
0 


y1,...,yn,g

[∥

∥

∥(
�
A + diag(y1, . . . , yn) + gI)−1

∥

∥

∥

2
≥ x

]

≤ ��� �
y1,...,yn

0 

g

[∥

∥

∥(
�
A + diag(y1, . . . , yn) + gI)−1

∥

∥

∥

2
≥ x

]

,

where the last inequality follows from Proposition 2.1. The proof now follows from Proposition 6.4
and Lemma 6.5.

Proposition 6.4.
( � �

X1, . . . , Xn
& � �$ #"#��� �� #"��� �  � �#��� � �  
 �  #"#� � � � 
�� � & . � � ��*'� � 
�� �  #��� σ2 # � ���

� � �  �
a1, . . . , an �


�� � � ��� � ��� � . , % ( � �

G =
1

n

n∑

i=1

Xi,
�  #"

Yi = Xi − G.
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& � �� � G
� � �  � �#��� � �  
 �  #"#� � � � 
�� � & . ����* � � 
�� �  #��� σ2/n

# � ��� � � �  
(1/n)

∑
ai �

�$ �"#��� �� #"#�� � ��*
Y1, . . . , Yn %
Lemma 6.5.

( � � �
A
& � �  � 
 & � � 
 � 
 ,

n
, &�, ,

n
� , � � � � 
��$� ���	� 
�� � � �  #" . � � G

& � �  � ����� � �  
 �  #"#� �
� � 
�� �	& . � ��* � � �  0

�  #" � � 
�� �  #���
σ2/n % ( � � A =

�
A + GI % & � �� �

0 

A

[∥

∥

∥A
−1
∥

∥

∥

2
≥ x

]

≤
√

2

π

n3/2

xσ
.

Proof. Let λ1, . . . , λn be the eigenvalues of �A. Then,

∥

∥

∥
(
�
A + GI)−1

∥

∥

∥

−1

2
=
� �$ 

i
|λi + G| .

Thus,

0 

A

[∥

∥

∥A
−1
∥

∥

∥

2
≥ x

]

=
0 

G

[

� �$ 
i

|λi − G| <
1

x

]

≤
∑

i

0 

G

[

|λi − G| <
1

x

]

≤
∑

i

√

2

π

√
n

xσ
≤
√

2

π

n3/2

xσ
,

where the second-to-last inequality follows from Lemma A.2 for R
1.

As in Section 3, we can now prove:

Theorem 6.6 (Condition number of symmetric matrices).
( � � �

A =
�
T +

�
D +

�
T T & � �  

� 
 & � � 
 � 
 ,
n
, &-, ,

n
� , � � � � 
��$� ���	� 
�� ����� � � � * , �$ �/ ∥

∥

�
A
∥

∥

2
≤ √

n % ( � � σ2 ≤ 1 � . � � T
& � � . �(
 � ,��#
�� � �(
 �-�$ �/

� �(
 ��� 
 & �	� �$�! ��* �
T
��* � � 
�� �  #���

σ2 � . � � GD
& � � "#� � / �! � . ���	� 
�� � ��* �$ �"#��� �� #"#�� �  � �#��� � �  
 �  #"�� �

� � 
�� �	& . � � ��* � � 
�� �  #��� σ2 �  #" � � �  
0
����� � � 
��'�$ #"#��� �� #"#�� � ��*

T � �  �" . � � D =
�
D + GD %�& � �� � * ��


A = T + D + T T �
0 


[κ(A) ≥ x] ≤ 6

√

2

π

n7/2

xσ

(

1 +
√

2 .  (x)/9n
)

Proof. As in the proof of Theorem 3.1, we can apply the techniques used in the proof of [DS01,
Theorem II.7], to show 0 
 [∥

∥

�
A − A

∥

∥

2
≥ 2

√
n + k

]

< e−k2/2.

The rest of the proof follows the outline of the proof of Theorem 3.1, using Lemma 6.2 instead of
Theorem 3.3.

6.2 Bounding entries in U

In this section, we will prove:
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Theorem 6.7 (ρU(A) of symmetric matrices).
( � � �

A =
�
T +

�
D +

�
T T & � �  � 
 & � � 
 � 
 ,

n
, &-, ,

n� , � � � � 
��$� ��� � 
�� � � �	� � � * , �$ �/ ∥
∥

�
A
∥

∥

2
≤ 1 % ( � � σ2 ≤ 1 � . � � T

& � � .	�(
�� ,��#
�� � �(
 ���$ �/ � �(
 ��� 
 & � � �$�! ��* �
T��* � � 
�� �  #���

σ2 � . � � GD
& � � "�� � / �! � . ��� � 
�� � ��* �$ #"#��� �� #"#�� �  � �#��� � �  
 �  #"#� � � � 
�� � & . � � ��*+� � 
�� �  #���

σ2 �  #" � � �  0
����� � � 
�� �$ #"���� �� �"#�� � ��*

T � �  #" . � � D =
�
D + GD % & � �� � * ��
 A = T + D + T T �

0 

[ρU(A) > 1 + x] ≤ 2

7

√

2

π

n3

xσ

Proof. We proceed as in the proof of Theorem 4.1. For k between 2 and n, we define u, a, b and
C as in the proof of Theorem 4.1. By (4.2)

‖u‖1

‖A‖∞
≤ 1 +

∥

∥

∥

∥

(

CT
)−1

b

∥

∥

∥

∥

1

≤ 1 +
√

k − 1
∥

∥

∥b
TC−1

∥

∥

∥

2
≤ 1 +

√
k − 1 ‖b‖2

∥

∥

∥C
−1
∥

∥

∥

2
.

Hence

0 
 [ ‖u‖1

‖A‖∞
> 1 + x

]

≤ 0 
 [‖b‖2

∥

∥

∥C
−1
∥

∥

∥

2
>

x√
k − 1

]

≤ � [‖b‖2]

√

2

π

(k − 1)2

xσ
, by Lemmas 6.2 and C.4,

≤
√

1 + jσ2

√

2

π

(k − 1)2

xσ
, where j is the number of non-zeros in b,

≤
√

2

π

√
k(k − 1)2

xσ
.

Applying a union bound over k,

0 

[ρU(A) > x] ≤

√

2

π

1

xσ

n∑

k=2

√
k(k − 1)2 ≤ 2

7

√

2

π

n7/2

xσ
.

6.3 Bounding entries in L

As in Section 4.2, we derive a bound on the growth factor of L. As before, we will show that it is

unlikely that A
(k−1)

j,k is large while A
(k−1)

k,k is small. However, our techniques must differ from those
used in Section 4.2, as the proof in that section made critical use of the independence of Ak,1:(k−1)

and A1:(k−1),k.

Theorem 6.8 (ρL(A) of symmetric matrices).
( � �

σ2 ≤ 1
�  #"

n ≥ 2 % ( � � �A =
�
T +

�
D+

�
T T & � �  

� 
 & � � 
 � 
 ,
n
, &-, ,

n
��,-��� � � 
��$� ��� � 
�� ����� � � � * , �$ #/ ∥

∥

�
A
∥

∥

2
≤ 1 % ( � � T

& � � . �(
�� ,���
�� � �(
 �-�$ �/�� �(
 ��� 
 & � � �$�! 
��* �

T
��* � � 
�� �  #���

σ2 � . � � GD
& � � "�� � / �! � . ��� � 
�� � ��* �$ #"#��� �� #"#�� �  � �#��� � �  
 �  #"#� � � � 
�� � & . � � ��*
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� � 
�� �  ����
σ2 ≤ 1

�  #" � � �  
0
����� � � 
�� �$ #"#��� �� #"#�� � ��*

T � �  �" . � � D =
�
D+GD % ( � � A = T +D+T T %

& � �� �
∀x ≥

√

2

π

1

σ2
,

0 

[ρL(A) > x] ≤ 3.2n4

xσ2
.  3/2

(

e

√

π

2
xσ2

)

.

Proof. Using Lemma 6.9, we obtain for all k

0 

[∃j > k : |Lj,k| > x] ≤ 0 
 [∥

∥L(k+1):n,k

∥

∥

2
> x
]

≤ 3.2n2

xσ2
.  3/2

(

e

√

π

2
xσ2

)

.

Applying a union bound over the choices for k, we then have

0 

[∃j, k : |Lj,k| > x] ≤ 3.2n3

xσ2
.  3/2

(

e

√

π

2
xσ2

)

.

The result now follows from the fact that ‖L‖∞ is at most n times the largest entry in L.

Lemma 6.9.
*  #"��(
 ��� � ���! #"#� � �$�! � ��* & � ����
�� � � %��-�

∀x ≥
√

2

π

1

σ2
,

0 
 [∥
∥L(k+1):n,k

∥

∥

2
> x
]

≤ 3.2n2

xσ2
.  3/2

(

e

√

π

2
xσ2

)

.

Proof. We recall that

Lk+1:n,k =
Ak+1:n,k − Ak+1:n,1:k−1A

−1
1:k−1,1:k−1A1:k−1,k

Ak,k − Ak,1:k−1A
−1
1:k−1,1:k−1A1:k−1,k

Because of the symmetry of A, Ak,1:k−1 is the same as A1:k−1,k, so we can no longer use the
proof technique that worked in Section 4.2. Instead, we will bound the tails of the numerator and
denominator separately, exploiting the fact that only the denominator depends upon Ak,k.

Consider the numerator first. Setting v = A−1
1:k−1,1:k−1A1:k−1,k, the numerator can be written

Ak+1:n,1:k

(

−v

1

)

. We will now prove that for all x ≥ 1/σ,

0 

Ak+1:n,1:k

A1:k−1,1:k

[∥

∥

∥

∥

Ak+1:n,1:k

(

−v

1

)∥

∥

∥

∥

∞
> x

]

≤
√

2

π

(

2n2(1 + σ
√

2 .  (xσ)) + n

xσ

)

. (6.1)

Let

c =
1

1 + σ
√

2 .  (xσ)
, (6.2)

which implies 1−c
cσ

=
√

2 .  (xσ). It suffices to prove (6.1) for all x for which the right-hand side is
less than 1. Given that x ≥ 1/σ, it suffices to consider x for which cx ≥ 2 and xσ ≥ 2.
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We use the parameter c to divide the probability as follows:

0 

Ak+1:n,1:k

A1:k−1,1:k

[∥

∥

∥

∥

Ak+1:n,1:k

(

−v

1

)∥

∥

∥

∥

∞
> x

]

≤ 0 

A1:(k−1),1:k

[∥

∥

∥

∥

(

−v

1

)∥

∥

∥

∥

2

> cx

]

(6.3)

+
0 


Ak+1:n,1:k

[

∥

∥

∥

∥

Ak+1:n,1:k

(

−v

1

)∥

∥

∥

∥

∞
>

1

c

∥

∥

∥

∥

(

−v

1

)∥

∥

∥

∥

2

∣

∣

∣

∣

∣

∥

∥

∥

∥

(

−v

1

)∥

∥

∥

∥

2

≤ cx

]

(6.4)

To evaluate (6.4), we note that once v is fixed, each component of Ak+1:n,1:k

(

−v

1

)

is a Gaussian

random variable of variance
∥

∥

(

−v

1

)∥

∥

2

2
σ2 and mean at most

∥

∥

�
Ak+1:n,1:k

(

−v

1

)∥

∥

2
≤
∥

∥

(

−v

1

)∥

∥

2
. So,

∥

∥

∥

∥

Ak+1:n,1:k

(

−v

1

)∥

∥

∥

∥

∞
>

1

c

∥

∥

∥

∥

(

−v

1

)∥

∥

∥

∥

2

implies one of the Gaussian random variables differs from its mean by more than (1/c− 1)/σ times
it standard deviation, and we can therefore apply Lemma A.1 and a union bound to derive

(6.4) ≤
√

2

π

ne− 1
2(1−c

cσ )
2

1−c
cσ

=

√

2

π

n

xσ
√

2 .  (xσ)
.

To bound (6.3), we note that Lemma 6.2 and Corollary C.5 imply

0 

A1:(k−1),1:k

[∥

∥

∥
A−1

1:k−1,1:k−1A1:k−1,k

∥

∥

∥

2
> y

]

≤
√

2

π

n2

yσ
,

and so

0 

A1:(k−1),1:k

[∥

∥

∥

∥

(

−v

1

)∥

∥

∥

∥

2

> cx

]

≤ 0 

A1:(k−1),1:k

[∥

∥

∥A
−1
1:k−1,1:k−1A1:k−1,k

∥

∥

∥

2
> cx − 1

]

≤
√

2

π

n2

(cx − 1)σ

=

√

2

π

n2

(cxσ(1 − 1/cx))

=

√

2

π

n2(1 + σ
√

2 .  (xσ))

xσ (1 − 1/cx)

≤
√

2

π

2n2(1 + σ
√

2 .  (xσ))

xσ
, by cx ≥ 2.
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So,

0 

Ak+1:n,1:k

A1:k−1,1:k

[∥

∥

∥

∥

Ak+1:n,1:k

(

−v

1

)∥

∥

∥

∥

∞
> x

]

≤
√

2

π

(

n

xσ
√

2 .  (xσ)
+

2n2(1 + σ
√

2 .  (xσ))

xσ

)

≤
√

2

π





2n2
(

1 + σ
√

2 .  (xσ)
)

+ n

xσ



 , (6.5)

by the assumption xσ ≥ 2, which proves (6.1).
As for the denominator, we note that Ak,k is independent of all other terms, and hence

0 
 [∣
∣

∣
Ak,k − Ak,1:k−1A

−1
1:k−1,1:k−1A1:k−1,k

∣

∣

∣
< 1/x

]

≤
√

2

π

1

xσ
, (6.6)

by Lemma A.2. Applying Corollary C.3 with

α =

√

2

π

(

2n2 + n
)

β =
4n2σ√

π
γ =

√

2

π

to combine (6.5) with (6.6), we derive the bound

2

πxσ2

(

2n2 + n +
((

2 + 4
√

2σ/3
)

n2 + n
)

.  3/2
(

√

π/2xσ2
))

≤ 2n2

πxσ2

(

3 + 4
√

2σ/3
)(

.  3/2
(

√

π/2xσ2
)

+ 1
)

≤ 3.2n2

xσ2
.  3/2

(

e
√

π/2xσ2
)

,

as σ ≤ 1.

7 Conclusions and open problems

7.1 Generality of results

In this paper, we have presented bounds on the smoothed values of the condition number and growth
factors assuming the input matrix is subjected to a slight Gaussian perturbation. We would like
to point out here that our results can be extended to some other families of perturbations.

With the exception of the proof of Theorem 3.3, the only properties of Gaussian random vectors
that we used in Sections 3 and 4 are

1. there is a constant c for which the probability that a Gaussian random vector has distance
less than ε to a hyperplane is at most cε, and
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2. it is exponentially unlikely that a Gaussian random vector lies far from its mean.

Moreover, a result similar to Theorem 3.3 but with an extra factor of d could be proved using just
fact 1.

In fact, results of a character similar to ours would still hold if the second condition were
reduced to a polynomial probability. Many other families of perturbations share these properties.
For example, similar results would hold if we let A =

�
A + U, where U is a matrix of variables

independently uniformly chosen in [−σ, σ], or if A =
�
A + S, where the columns of S are chosen

uniformly among those vectors of norm at most σ.

7.2 Counter-Examples

The results of sections 3 and 4 do not extend to zero-preserving perturbations for non-symmetric
matrices. For example, the following matrix remains ill-conditioned under zero-preserving pertur-
bations.

1 −2 0 0 0

0 1 −2 0 0

0 0 1 −2 0

0 0 0 1 −2

0 0 0 0 1

A symmetric matrix that remains ill-conditioned under zero-preserving perturbations that do not
alter the diagonal can be obtained by locating the above matrix in the upper-right quadrant, and
its transpose in the lower-left quadrant:

0 0 0 0 0 1 −2 0 0 0

0 0 0 0 0 0 1 −2 0 0

0 0 0 0 0 0 0 1 −2 0

0 0 0 0 0 0 0 0 1 −2

0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0

−2 1 0 0 0 0 0 0 0 0

0 −2 1 0 0 0 0 0 0 0

0 0 −2 1 0 0 0 0 0 0

0 0 0 −2 1 0 0 0 0 0

The following matrix maintains large growth factor under zero-preserving perturbations, re-
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gardless of whether partial pivoting or no pivoting is used.

1.1 0 0 0 0 1

−1 1.1 0 0 0 1

−1 −1 1.1 0 0 1

−1 −1 −1 1.1 0 1

−1 −1 −1 −1 1.1 1

−1 −1 −1 −1 −1 1

These examples can be easily normalized to so that their 2-norms are equal to 1.

7.3 Open Problems

Questions that naturally follow from this work are:

• What is the probability that the perturbation of an arbitrary matrix has large growth factors
under Gaussian elimination with partial pivoting?

• What is the probability that the perturbation of an arbitrary matrix has large growth factors
under Gaussian elimination with complete pivoting?

• Can zero-preserving perturbations of symmetric matrices have large growth factors under
partial pivoting or under complete pivoting?

• Can zero-preserving perturbations of arbitrary matrices have large growth factors under com-
plete pivoting?

For the first question, we point out that experimental data of Trefethen and Bau [TB97, p. 168]
suggest that the probability that the perturbation of an arbitrary matrix has large growth factor
under partial pivoting may be exponentially smaller than without pivoting. This leads us to
conjecture:

Conjecture 3.
( � � �

A
& � �  

n
, &�, ,

n
��� � 
�� � * ��
 # � �$� � ∥

∥

�
A
∥

∥

2
≤ 1 � �  #" . � � A

& � �  � �#��� � �  � �(
 ,
��� 
 & �	� �$�! ��* �

A
��*)� � 
�� �  #���

σ2 ≤ 1 % ( � �
U

& � ��� � � � � �(
 , � 
�� �  �/ � . � 
 ��� � 
�� � � &#��� �$ #��" * 
�� � ��� �
(+*-, * � � � ��
��/. � � �$�! ��*

A
# � ��� � � 
 � � � . �#��� � � �$ �/ %-& � �(
�� � � � � � � &�� � . �#� � ���! � ���  ��� k1 � k2

�  �"
α
* ��
 # � �$� �

0 

[‖U‖ � ��� /‖A‖ � ��� > x + 1] ≤ nk1e−αxk2σ

Finally, we ask whether similar analyses can be performed for other algorithms of Numerical
Analysis. One might start by extending Smale’s program by analyzing the smoothed values of
other condition numbers.
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7.4 Recent Progress

Since the announcement of our result, Wschebor [Wsc04] improved the smoothed bound on the
condition number.

Theorem 7.1 (Wschebor).
( � � �

A
& � �  

n × n
��� � 
�� ���  #" . � � A

& � �  � �#��� � �  � �(
 ��� 
 & � � �$�! ��*
�
A
��*�� � 
�� �  #���

σ2 ≤ 1 % & � �� �

0 

[κ(A) ≥ x] ≤ n

x





1

4
√

2πn
+ 7

(

5 +
4
∥

∥

�
A
∥

∥

2

2
(1 + . ��/ n)

σ2n

)1/2




When
∥

∥

�
A
∥

∥

2
≤ √

n, his result implies

0 

[κ(A) ≥ x] ≤ O

(

n . ��/ n

xσ

)

.

We conjecture

Conjecture 4.
( � � �

A
& � �  

n × n
���	� 
�� �%��� � � � * , �$ #/ ∥

∥

�
A
∥

∥

2
≤ √

n � �  #" . � � A
& � �  � �#��� � �  

� �(
 ��� 
 & �	� �$�! ��* �
A
��*�� � 
�� �  #���

σ2 ≤ 1 % & � �� �
0 


[κ(A) ≥ x] ≤ O
( n

xσ

)

.
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A Gaussian random variables

Lemma A.1.
( � �

X
& � � �  #��� � 
�� � � �  � ����� � �  
 �  #"#� � � � 
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Proof. We have

0 

[X ≥ k] =

1√
2π

∫∞

k

e− 1
2
x2

dx
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2
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k
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Lemma A.2.
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Lemma A.3.
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Proof. For any a ≥ 1,
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a

e− 1
2
t2

d

(

1

2
t2

)

= a +
2n√
2π

1

a2
e− 1

2
a2

.
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Setting a =
√

2 .  ( ���	� (n, 2)), which is greater than 1 for all n ≥ 1, we obtain the following upper
bound on the expectation:

√

2 .  ( ���	� (n, 2)) +
2n√
2π

1

2 .  ( ���	� (n, 2))

1
��� �

(n, 2)
≤
√

2 .  ( ���	� (n, 2)) +
1√

2π .  ( ���	� (n, 2))
.

Lemma A.4 (Expectation of reciprocal of the 1-norm of a Gaussian vector).
( � � �a & �

�  � 
 & � � 
 � 
 , ��� . ���  � ��� � ��
 �$ R
n * ��


n ≥ 2 % ( � � a
& � �  � �#��� � �  � �(
 ��� 
 & � � �$�! ��* �a ��*+� � 
�� �  ����

σ2 %
& � �� 

�
[

1

‖a‖1

]

≤ 2

nσ

Proof. Let a = (a1, . . . , an). It is clear that the expectation of 1/ ‖a‖1 is maximized if �a = 0, so
we will make this assumption. Without loss of generality, we also assume σ2 = 1. For general σ,
we can simply scale the bound by the factor 1/σ.

Recall that the Laplace transform of a positive random variable X is defined by

L[X](t) =
�

X

[

e−tX
]

and the expectation of the reciprocal of a random variable is simply the integral of its Laplace
transform.

Let X be the absolute value of a standard normal random variable. The Laplace transform of X

is given by

L[X](t) =

√

2

π

∫∞

0

e−txe− 1
2
x2

dx

=

√

2

π
e

1
2
t2

∫∞

0

e− 1
2
(x+t)2

dx

=

√

2

π
e

1
2
t2

∫∞

t

e− 1
2
x2

dx

= e
1
2
t2 �(
�* � ( t√

2

)

.

Taking second derivatives, and applying the inequality (c.f. [AS64, 26.2.13])

1√
2π

∫∞

t

e− 1
2
x2

dx ≥ e− 1
2
x2

√
2π

1

x + 1/x
,

we find that e
1
2
t2 �(
�* � ( t√

2

)

is convex.
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We now set a constant c = 2.4 and set α to satisfy

1 −

√

c/π

α
= e

1
2
(c/π) �(
�* �

(

√

c/π√
2

)

.

Numerically, we find that α ≈ 1.9857 < 2.

As e
1
2
t2 �(
�* � ( t√

2

)

is convex, we have the upper bound

e
1
2
t2 �(
�* � ( t√

2

)

≤ 1 −
t

α
, for 0 ≤ t ≤

√

c/π.

For t >
√

c/π, we apply the upper bound

e
1
2
t2 �(
�* � ( t√

2

)

≤
√

2

π

1

t
,

which follows from Lemma A.1.
We now have

�
[

1

‖a‖1

]

=

∫∞

0

(

e
1
2
t2 �(
�* �

(t/
√

2)
)n

dt

≤
∫√c/π

0

(

1 −
t

α

)n

dt +

∫∞

√
c/π

(
√

2

π

1

t

)n

dt

≤ α

n + 1
+

√

2

π

(2/c)(n−1)/2

n − 1

<
2

n + 1
+

√

2

π

(2/c)(n−1)/2

n − 1

≤ 2

n − 1
,

for n ≥ 2. To verify this last equality, one can multiply through by (n + 1)(n − 1) to obtain

√

2

π
(n + 1)(2/c)(n−1)/2 ≤ 4,

which one can verify by taking the derivitive of the left-hand side to find the point where it is
maximized, n = (2 + .  (5/6))/ .  (6/5).
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B Random point on a sphere

Lemma B.1.
( � �

d ≥ 2
�  #" . � � (u1, . . . , ud)

& � �'�  #� � � ��� � ��
 � � � � �� �  #� * ��
 � . ,�� � 
 �  #"#� � �$ 
R

d %
& � �� � * ��
 c ≤ 1 �

0 
 [
|u1| ≥

√

c

d

]

≥ 0 
 [
|G| ≥

√
c
]

,

# � �(
 �
G
� � �  � �#��� � �  
 �  #"#� � � � 
�� � & . �'��*'� � 
�� �  #��� 1

�  #" � � �  
0 %

Proof. We may obtain a random unit vector by choosing d independent Gaussian random variables
of variance 1 and mean 0, x1, . . . , xd, and setting

ui =
xi

√

x2
1 + · · · + x2

d

.

We have

0 
 [
u2

1 ≥ c

d

]

=
0 
 [ x2

1

x2
1 + · · · + x2

d

≥ c

d

]

=
0 
 [ (d − 1)x2

1

x2
2 + · · · + x2

d

≥ (d − 1)c

d − c

]

≥ 0 
 [ (d − 1)x2
1

x2
2 + · · · + x2

d

≥ c

]

, since c ≤ 1.

We now note that

td

�����

=

√

(d − 1)x1
√

x2
2 + · · · + x2

d

is a random variable distributed according to the t-distribution with d− 1 degrees of freedom. The
lemma now follows from the fact (c.f. [JKB95, Chapter 28, Section 2] or [AS64, 26.7.5]) that, for
c > 0, 0 
 [

td >
√

c
]

≥ 0 
 [
G >

√
c
]

,

and that the distributions of td and G are symmetric about the origin.

C Combination Lemmas

Lemma C.1.
( � �

A
�  #"

B
& � � # � � � � � � ��� � 
 �  #"#� � � � 
�� � & . � � % � �����#� �

� % 0 
 [A ≥ x] ≤ f(x) %
� % 0 
 [B ≥ x|A] ≤ g(x) %
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# � �(
 �
g
� � � �! #� � �! ��$� � . . , "#���(
�� � � �$ �/ �  �" . � � x→∞ g(x) = 0 % & � �� �

0 

[AB ≥ x] ≤

∫∞

0

f
(x

t

)

(−g ′(t))dt

Proof. Let µA denote the probability measure associated with A. We have

0 

[AB ≥ x] =

∫∞

0

0 

B

[B ≥ x/s|A] dµA(s)

≤
∫∞

0

g
(x

s

)

dµA(s),

integrating by parts,

=

∫∞

0

0 

[A ≥ s]

d

ds
g
(x

s

)

ds

≤
∫∞

0

f(s)
d

ds
g
(x

s

)

ds,

setting t = x/s

=

∫∞

0

f
(x

t

)

(−g ′(t))dt.

Corollary C.2 (linear-linear).
( � �

A
�  #"

B
& � � # � � � � � � ��� � 
 �  #"#� � � � 
�� � & . � � % � �����#� �

� % 0 
 [A ≥ x] ≤ α
x
�  #"

� % 0 
 [B ≥ x|A] ≤ β
x

* ��
 � � � �
α,β > 0 % & � �� �

0 

[AB ≥ x] ≤ αβ

x

(

1 +
���	�

(

0, .  
(

x

αβ

)))

Proof. As the probability of an event can be at most 1,

0 

[A ≥ x] ≤ � �$ (α

x
, 1
) ��� �

= f(x), and

0 

[B ≥ x] ≤ � �$ 

(

β

x
, 1

) �����

= g(x).

Applying Lemma C.1 while observing
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• g ′(t) = 0 for t ∈ [0, β], and

• f(x/t) = 1 for t ≥ x/α,

we obtain

0 

[AB ≥ x] ≤

∫β

0

αt

x
· 0 dt +

���	�
(

0,

∫x/α

β

αt

x

β

t2
dt

)

+

∫∞

x/α

β

t2
dt

=
��� �

(

0,
αβ

x

∫x/α

β

dt

t

)

+
αβ

x

=
αβ

x

(

1 +
���	�

(

0, .  
(

x

αβ

)))

,

where the ���	� appears in case x/α < β.

Corollary C.3.
( � �

A
�  �"

B
& � � # � � � � � � ��� � 
 �  #"#� � � � 
�� � & . � � % � *

� % ∀x ≥ 1/σ � 0 
 [A ≥ x] ≤ � �$ (
1, α+β

√ ���
xσ

σx

) �  #"

� % 0 
 [B ≥ x|A] ≤ γ
xσ

* ��
 � � � �
α ≥ 1

�  #"
β, γ, σ > 0 � ��� �� �

∀x ≥ γ/σ2,
0 


[AB ≥ x] ≤ αγ

xσ2

(

1 +

(

2β

3α
+ 1

)

ln3/2

(

xσ2

γ

))

.

Proof. Define f and g by

f(x)
�����

=

{
1 for x ≤ α

σ
α+β

√ ���
xσ

xσ
for x > α

σ

g(x)
�����

=

{
1 for x ≤ γ

σ
γ
xσ

for x > γ
σ

Applying Lemma C.1 while observing

• g ′(t) = 0 for t ∈
[

0, γ
σ

]

, and

• f(x/t) = 1 for t ≥ xσ/α,

36



we obtain

0 

[AB ≥ x] ≤

∫xσ/α

γ/σ

α + β
√

.  (xσ/t)

xσ/t

γ

t2σ
dt +

∫∞

xσ/α

γ

σt2
dt

=

∫xσ/α

γ/σ

α + β
√

.  (xσ/t)

xσ2

γ

t
dt +

αγ

xσ2

(substituting s =
√

.  (xσ/t), t = xσe−s2
, which is defined as x ≥ γ/σ2, )

=

∫√ ���
α

√ ���
(xσ2/γ)

α + βs

xσ2

γ

xσe−s2
xσ(−2se−s2

)ds +
αγ

xσ2

=
γ

xσ2

∫√ ���
(xσ2/γ)

√ ���
α

2s(α + βs)ds +
αγ

xσ2

=
αγ

xσ2

(

1 + .  
(

xσ2

αγ

)

+
2β

3α

(

.  3/2

(

xσ2

γ

)

− .  3/2 α

))

≤ αγ

xσ2

(

1 +

(

2β

3α
+ 1

)

ln3/2

(

xσ2

γ

))

,

as α ≥ 1.

Lemma C.4 (linear-bounded expectation).
( � �

A � B �  #"
C
& � � � � � � ��� � 
 �  #"#� � � � 
�� � & . � � ��� � ������ �

0 

[A ≥ x] ≤ α

x
,

* ��
 � � � �
α > 0 � �  #"

∀A,
0 


[B ≥ x|A] ≤ 0 

[C ≥ x] .

& � �� � 0 

[AB ≥ x] ≤ α

x

�
[C] .

Proof. Let g(x) be the distribution function of C. By Lemma C.1, we have

0 

[AB ≥ x] ≤

∫∞

0

(

αt

x

)

(−(1 − g) ′(t)) dt

=
α

x

∫∞

0

t(g ′(t)) dt

=
α

x

�
[C] .
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Corollary C.5 (linear-chi).
( � �

A
�'& �!� � � � � ��� �'
 �  #"#� � � � 
�� � & . � ��� � � ����� �

0 

[A ≥ x] ≤ α

x
.

* ��
 � � � �
α > 0 % ( � � b

& � �
d
, "�� � �� � �$�! � .  � �#��� � �  
 �  #"#� � � ��� � ��
 � � � ��� � & . , "#��� �� #"#�$ �/ � � �! 

A ���*'� � 
�� �  #��� � � � � � �
σ2 ���� � �(
���" � � � � ��� � ��
 ��*� ���
 � � � � � � �

t � �  #" . � � B = ‖b‖2 % & �
�� �

0 

[AB ≥ x] ≤ α

√
σ2d + t2

x

Proof. As
�

[B] ≤
√ �

[B2], and it is known [KJ82, p. 277] that the expected value of B2—the non-

central χ2-distribution with non-centrality parameter
∥

∥

�
b
∥

∥

2

2
—is σ2d +

∥

∥

�
b
∥

∥

2

2
, the corollary follows

from Lemma C.4.

Lemma C.6 (Linear to log).
( � �

A
& � � � � � � � � ��� � 
 �  #"#� � � � 
�� � & . � % � * ��� �(
 � � � � � ��� �  A0 ≥ 1�  #" �  

α ≥ 1
��� � ������� � * ��
 � . . x ≥ A0 �

0 

A

[A ≥ x] ≤ α

x
.

& � �� � �
A [
���	�

(0, .  A)] ≤ .  ���	� (A0, α) + 1.

Proof.

�
A [
���	�

(0, .  A)] =

∫∞

x=0

0 

A

[
��� �

(0, .  A) ≥ x] dx

≤
∫ ��� � ��� (A0,α)

x=0

1 dx +

∫∞

x=
��� � ��� (A0,α)

0 

A

[ .  A ≥ x] dx

≤
∫ ��� � ��� (A0,α)

x=0

dx +

∫∞

x=
��� � ��� (A0,α)

αe−xdx

≤ .  ���	� (A0, α) + 1.
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