
Error-correcting codes are the means by which we compensate for inter-
ference in communication, and are essential for the accurate transmission
and storage of digital data. All communication mechanisms and storage
devices are subject to interference, typically called “noise”, which corrupts
communicated messages and stored data. Thus, for a communication system
to faithfully transmit data, it must build redundancy into its transmissions
in such a way that even if a transmission is partially corrupted, the intended
message may be reconstructed. Error-correcting codes provide the mapping
from messages to redundant transmissions.

For example, a message is usually a string of zeros and ones. A redun-
dant encoding of a message may be obtained by appending a few parity
bits to the original message, to form a codeword. The rate of a code is the
ratio of the length of a message to the length of a codeword, and equals the
reciprocal of the redundancy. A communication medium, called a channel,
might transmit bits, and noise could flip bits from zero to one or one to
zero. For example, the Binary Symmetric Channel with crossover proba-
bility p transmits bits, and flips each bit with probability p, independently.
An error-correcting code is designed with an abstract model of the target
communication channel in mind.

Given a model of a channel, one should design a code that maximizes the
rate while minimizing some tradeoff of error-probability, delay, and the com-
putational complexity of encoding and decoding. While the goal of achieving
low probability of error in a communication system is fundamentally prob-
abilistic, major advances in the field have been made through a worst-case,
deterministic, approach. The paper of Guruswami and Rudra surveys de-
velopments in the worst-case approach to the coding problem, and explains
their own recent contributions. They build on the classical Reed-Solomon
codes.

Reed-Solomon codes employ a signaling alphabet containing more ele-
ments than just zero and one: each symbol is an element of a finite field,
such as the integers modulo a prime. In a Reed-Solomon code of rate R,
classic decoding algorithms can efficiently reconstruct a message so long as
at most a (1−R)/2 fraction of the symbols in the transmitted codeword are
corrupted. This is exactly the fraction of errors up to which the problem
is guaranteed to have a unique solution: there exist rare patterns contain-
ing just one more error for which two codewords are equally close to the
corrupted transmission.

A major advance in the decoding of Reed-Solomon codes was Sudan’s
(1997) algorithm for list decoding Reed-Solomon codes. A list-decoding de-
coder returns the list of all codewords that are within some distance of a
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corrupted transmission. While the closest codeword is usually unique, the
algorithmic task is simplified by the option of returning a list. Guruswami
and Sudan’s (1999) improvement of Sudan’s list decoder efficiently returns
the list of all codewords that differ from a corrupted transmission in at most
a 1−

√
R fraction of symbols, and the list is guaranteed to be short.

This was a big improvement over previous decoding algorithms, but
made little difference at the desirable high rates (near 1), where 1−

√
R is ap-

proximately the same as (1−R)/2. Guruswami and Rudra’s advance exploits
an idea of Parvaresh and Vardy (2005) for bundling Reed-Solomon alphabet
symbols together. This makes the signalling alphabet slightly larger, but
greatly increases the fraction of errors under which efficient list decoding is
possible. They obtain codes of rate R from which one can efficiently pro-
duce the list of all codewords that differ from a corrupted transmission in a
fraction of symbols approaching 1 − R. For high-rate codes, this is almost
twice as many errors as previous schemes could correct. Moreover, we know
that one cannot hope to do better.

While a tremendous theoretical advance, more work is required before
these codes can be used in practical communication systems. The decoding
algorithms run in polynomial time, but need to be faster before they can
be applied in practice. They also need to be extended to incorporate infor-
mation from lower levels of the communication system. Few communication
media naturally transmit finite field elements, or even zeros and ones. These
symbols are usually converted into analog waveforms. Receivers of partially
corrupted waveforms can do more than just report which valid waveform
is closest: they can return the likelihood of each valid waveform. A soft-
decision decoder incorporates this information into the decoding process.
Koetter and Vardy (2003) figured out how to incorporate such information
in the Guruswami-Sudan algorithm, and an analogous discovery may be
required before we communicate using Guruswami-Rudra codes.
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