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Abstra
tWe introdu
e a simple erasure re
overy algorithm for 
odes derived from 
as
ades of sparsebipartite graphs and analyze the algorithm by analyzing a 
orresponding dis
rete time randompro
ess. As a result we obtain a simple 
riterion involving the fra
tions of nodes of di�erentdegrees on both sides of the graph whi
h is ne
essary and suÆ
ient for the de
oding pro
ess to�nish su

essfully with high probability. By 
arefully designing these graphs we 
an 
onstru
tfor any given rate R and any given real number � a family of linear 
odes of rate R whi
h 
anbe en
oded in time proportional to ln(1=�) times their blo
k length. Furthermore, a 
odeword
an be re
overed with high probability from a portion of its entries of length (1+ �)Rn or more.The re
overy algorithm also runs in time proportional to n ln(1=�). Our algorithms have beenimplemented and work well in pra
ti
e; various implementation issues are dis
ussed.Key words: low-density parity-
he
k 
odes, erasure 
hannel, large deviation analysis.

1 Introdu
tionA linear error-
orre
ting 
ode of blo
k length n and dimension k over a �nite �eld F q|an [n; k℄q-
ode for short|is a k-dimensional linear subspa
e of the standard ve
tor spa
e Fnq . The elementsof the 
ode are 
alled 
odewords. To the 
ode C there 
orresponds an en
oding map En
 whi
h isan isomorphism of the ve
tor spa
es Fkq and C. A sender, who wishes to transmit a ve
tor of kelements in Fq to a re
eiver, uses the mapping En
 to en
ode that ve
tor into a 
odeword. The ratek=n of the 
ode is a measure for the amount of real information in ea
h 
odeword. The minimumdistan
e of the 
ode is the minimum Hamming distan
e between two distin
t 
odewords. A linear
ode of blo
k length n, dimension k, and minimum distan
e d over Fq is 
alled an [n; k; d℄q-
ode.Linear 
odes 
an be used to reliably transmit information from a sender to a re
eiver: the sender�rst en
odes the desired word into a 
odeword and transmits the 
odeword over the transmission
hannel. Depending on the nature of the errors imposed on the 
odeword through the 
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re
eiver then applies appropriate algorithms to de
ode the re
eived word. In this paper, we assumethat the re
eiver knows the position of ea
h re
eived symbol within the stream of all 
odewordsymbols. We adopt as our model of errors the erasure 
hannel, introdu
ed by Elias [4℄, in whi
hea
h 
odeword symbol is lost with a �xed 
onstant probability p in transit independent of all theother symbols. Elias [4℄ showed that the 
apa
ity of the erasure 
hannel is 1�p and that a randomlinear 
ode 
an be used to transmit over the erasure 
hannel at any rate R < 1� p.It is easy to see that a 
ode of minimum distan
e d is 
apable of re
overing d � 1 or fewererasures. Furthermore, a 
loser look reveals that this task 
an be done in time O(n3). The 
odeis optimal with respe
t to re
overing erasures if it 
an re
over from any set of k 
oordinates of the
odeword, i.e., if d� 1 = n� k. Su
h 
odes are 
alled MDS-
odes. A standard 
lass of MDS-
odesis given by Reed-Solomon 
odes [16℄. The 
onne
tion of these 
odes with polynomial arithmeti
allows for en
oding and de
oding in time O(n log2 n log logn). (See, [3, Chapter 11.7℄ and [16,p. 369℄). However, for small values of n, quadrati
 time algorithms are faster than the theoreti
ally,asymptoti
ally fast algorithms for the Reed-Solomon based 
odes, and for larger values of n theO(log2 n log logn) multipli
ative overhead in the running time of the fast algorithms (along witha moderate sized 
onstant hidden by the big-Oh notation) is large. Obviously, one 
annot hopefor better information re
overy than that given by Reed-Solomon 
odes, but faster en
oding andde
oding times are desirable. In this paper, we design fast linear-time algorithms for transmittingjust below 
hannel 
apa
ity. For all � > 0 we produ
e rate R = 1 � p(1 + �) 
odes along withde
oding algorithms that re
over from the random loss of a p fra
tion of the transmitted symbolsin time proportional to n ln(1=�) with high probability, where n is the blo
k length. They 
an alsobe en
oded in time proportional to n ln(1=�). The fastest previously known en
oding and de
odingalgorithms [1℄ with su
h a performan
e guarantee have run times proportional to n ln(1=�)=�.The overall stru
ture of our 
odes are related to the low density parity-
he
k 
odes introdu
ed byGallager [6℄, whi
h have been the subje
t of a great deal of re
ent work (see for example [10, 11, 15℄).We also use some ideas related to the 
odes introdu
ed in [25℄ for error-
orre
tion. Be
ause weexamine the erasure setting, however, our work in
ludes several innovations, in
luding a simplelinear time de
oding algorithm and the use of irregularity. We explain the general 
onstru
tionalong with the en
oding and de
oding algorithms fully in Se
tion 2.Our en
oding and de
oding algorithms are almost symmetri
al. Both are very simple, 
omput-ing exa
tly one ex
lusive-or operation for ea
h edge in a randomly 
hosen bipartite graph. As inmany similar appli
ations, the graph is 
hosen to be sparse, whi
h immediately implies that theen
oding and de
oding algorithms are fast. Unlike many similar appli
ations, the graph is not reg-ular; instead it is quite irregular with a 
arefully 
hosen degree sequen
e. We des
ribe the de
odingalgorithm as a pro
ess on the graph in Se
tion 2.2. Our main tool is a model that 
hara
terizesalmost exa
tly the performan
e of the de
oding algorithm as a fun
tion of the degree sequen
e ofthe graph. In Se
tion 3, we use this tool to model the progress of the de
oding algorithm by aset of di�erential equations. The solution to these equations 
an then be expressed as polynomi-als in one variable with 
oeÆ
ients determined by the degree sequen
e. The positivity of one ofthese polynomials on the interval (0; 1℄ with respe
t to a parameter Æ guarantees that, with highprobability, the de
oding algorithm 
an re
over almost all the message symbols from a loss of upto a Æ fra
tion of the 
odeword symbols (see Proposition 2). The 
omplete su

ess of the de
odingalgorithm 
an then be demonstrated by 
ombinatorial arguments.Our analyti
al tools allow us to almost exa
tly 
hara
terize the performan
e of the de
odingalgorithm for any given degree sequen
e. Furthermore, they also help us to design good irregulardegree sequen
es. In Se
tion 4 we des
ribe, given a parameter � > 0, a degree sequen
e for whi
hthe de
oding is su

essful with high probability for an erasure fra
tion Æ that is within � of 1�R.Although these graphs are irregular, with some nodes of degree 1=�, the average node degree is
2



only ln(1=�). This is one of the 
entral results of the paper, i.e., a 
ode with en
oding and de
odingtimes proportional to n ln(1=�) that 
an re
over from an erasure fra
tion that is within � of optimal.In Se
tion 5 we dis
uss issues 
on
erning pra
ti
al implementations of our algorithms. Thisse
tion in
ludes methods for �nding good degree sequen
es based on linear programming, andtimings of the implementations. In the last se
tion we summarize the main results of this paper,and dis
uss re
ent developments following the publi
ation of a preliminary version [13℄.
2 Graph CodesIn this se
tion we introdu
e a new 
lass of 
odes. Spe
ial sub
lasses of these 
odes turn out tobe almost MDS in the following sense: an [n; k℄q-
ode in this sub
lass is 
apable of re
overing themessage from a random set of k(1 + �) 
oordinate pla
es with high probability, where � is a smallreal number. A more pre
ise statement is provided later in Se
tion 3. The advantages of these
odes are that they have linear time en
oding and de
oding algorithms, and that the alphabet sizeq 
an be arbitrary. For simpli
ity, in the following we assume that the symbols are bits, i.e., thatq = 2.We explain the overall 
onstru
tion of the 
odes, as well as introdu
e simple and eÆ
ienten
oding and re
overy algorithms.2.1 Erasure Codes via Bipartite GraphsWe de�ne a 
ode C(B) with k message bits and �k redundant bits, where 0 < � < 1, by asso
iatingthese bits with a bipartite graph B.1 Following standard terminology, we refer to the �k redundantbits as 
he
k bits. The graph B has k left nodes and �k right nodes, 
orresponding to the messagebits and the 
he
k bits, respe
tively. Hen
e, in the following, we refer to the left nodes of a bipartitegraph as its message bits and to the right nodes as its 
he
k bits.The en
oding of C(B) is determined by setting ea
h 
he
k bit to be the � (XOR) of its neigh-boring message bits in B (see Figure 1(a)). Thus, the en
oding time is proportional to the numberof edges in B, and our 
odes are systemati
.2Our main 
ontribution is the design and analysis of the bipartite graph B so that the repetitionof the following simplisti
 de
oding operation re
overs all the missing message bits.Algorithm 1 (Erasure de
oding). Given the value of a 
he
k bit and all but one of the messagebits on whi
h it depends, set the missing message bit to be the XOR of the 
he
k bit and its knownmessage bits.See Figure 1(b) for an example of this algorithm, and Figure 2 for an example of full re
overy.We introdu
e methods for the design of sparse random graphs where repetition of this operationre
overs all the message bits with high probability if a random subset of (1� �)�k of the messagebits have been lost from C(B).To produ
e 
odes that 
an 
orre
t erasures of 
he
k bits as well as message bits, we 
as
ade
odes of the form C(B): we �rst use C(B) to produ
e �k 
he
k bits for the original k message bits,we then use a similar 
ode to produ
e �2k 
he
k bits for the �k 
he
k bits of C(B), and so on1We will use the word bit in a rather loose form, mostly to denote 
oordinate positions.2Herein lies one of the di�eren
es of our 
odes 
ompared to Gallager's low-density parity-
he
k 
odes: in the latter,the 
oordinate pla
es of the 
odeword itself are identi�ed with the left nodes, and the right nodes de�ne 
onstraintson these words. I.e., Gallager allows only those words su
h that for any right node, the XOR of its adja
ent leftnodes is zero.
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Figure 1: (a) A graph de�nes a mapping from message bits to 
he
k bits. (b) Bits x1, x2, and 
1are used to solve for x3.(see Figure 3). At the last level, we may use a more 
onventional erasure 
orre
ting 
ode (e.g., aReed-Solomon 
ode, if the alphabet size is large enough).Formally, we 
onstru
t a family of 
odes C(B0); : : : ; C(Bm) from a family of graphs B0; : : : ; Bm,where Bi has �ik left nodes and �i+1k right nodes. We sele
t m so that �m+1k is roughly pk andwe end the 
as
ade with an erasure 
orre
ting 
ode C of rate 1 � � with �m+1k message bits forwhi
h we know how to re
over from the random loss of � fra
tion of its bits with high probability.We then de�ne the 
ode C(B0; B1; : : : ; Bm; C) to be a 
ode with k message bits andm+1Xi=1 �ik + �m+2k=(1� �) = k�=(1� �)

he
k bits formed by using C(B0) to produ
e �k 
he
k bits for the k message bits, using C(Bi) toform �i+1k 
he
k bits for the �ik bits produ
ed by C(Bi�1), and �nally using C to produ
e anadditional k�m+2=(1��) 
he
k bits for the �m+1k bits output by C(Bm). As C(B0; B1; : : : ; Bm; C)has k message bits and k�=(1� �) 
he
k bits, it is a 
ode of rate 1� �.Remark 1. Assuming that the 
ode C 
an be en
oded and de
oded in quadrati
 time (an assumptionwhi
h is 
ertainly true for RS-
odes), the 
ode C(B0; : : : ; Bm; C) 
an be en
oded and de
oded in timeproportional to the number of edges in all the C(Bi).3We begin by using the de
oding algorithm for C to de
ode erasures that o

ur within its
orresponding message bits. If C 
orre
ts all the erasures, then the algorithm now knows all the
he
k bits produ
ed by C(Bm), whi
h it 
an then use to 
orre
t erasures in the inputs to C(Bm). Asthe inputs to ea
h C(Bi) were the 
he
k bits of C(Bi�1), we 
an work our way ba
k up the re
ursionuntil we use the 
he
k bits produ
ed by C(B0) to 
orre
t erasures in the original k message bits.If we show that C 
an 
orre
t a random �(1 � �) fra
tion of erasures with high probability, andthat ea
h C(Bi) 
an 
orre
t a random �(1 � �) fra
tion of erasures of its message bits with highprobability, then we have shown that C(B0; B1; : : : ; Bm; C) is a rate 1� � 
ode that 
an 
orre
t arandom �(1 � �0) fra
tion of erasures with high probability, for some �0. Details 
an be found inthe proof of Theorem 2.3If the alphabet size is too small for the 
orresponding Reed-Solomon 
ode to exist, we 
an 
ontinue the 
as
adeuntil the graph has roughly 3pk nodes and use a random linear 
ode with 
onventional erasure de
oding.4
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Complete Recovery

Figure 2: All stages of the re
overy. (a) Original graph, (b) Graph indu
ed by the set of lost nodeson the left, (
){(f) Re
overy pro
ess
For the remainder of this se
tion and mu
h of the next se
tion, we only 
on
ern ourselves with�nding graphs B so that the de
oding algorithm 
an 
orre
t �(1 � �) fra
tion of erasures in themessage bits of C(B), given all of its 
he
k bits.2.2 The Graph Pro
ess and Degree Sequen
esWe now relate the de
oding pro
ess of C(B) to a pro
ess on a subgraph of B, so that hereafterwe 
an use this simpler terminology when des
ribing the pro
ess. This subgraph 
onsists of allnodes on the left that were erased but have not been de
oded thus far, all the nodes on the right,and all the edges between these nodes. Re
all that the de
oding pro
ess requires �nding a 
he
kbit on the right su
h that only one adja
ent message bit is missing; this adja
ent bit 
an then bere
overed. In terms of the subgraph, this is equivalent to �nding a node of degree one on the right,and removing it, its neighbor, and all edges adja
ent to its neighbor from the subgraph. We referto this entire sequen
e of events hereafter as one step of the de
oding pro
ess. We repeat this stepuntil there are no nodes of degree one available on the right. The entire pro
ess is su

essful if itdoes not halt until all nodes on the left are removed, or equivalently, until all edges are removed.It is simple to show that the result of this pro
ess is independent of the order in whi
h nodes areremoved; subsequently, in the analysis, we may freely assume that the nodes of degree one are
hosen uniformly at random at ea
h step.The graphs that we use are 
hosen at random from a set of sparse bipartite graphs with a
arefully 
hosen degree sequen
e. In 
ontrast with many appli
ations of random graphs in 
omputers
ien
e, our graphs are not regular.We refer to edges that are adja
ent to a node of degree i on the left (right) as edges of degree

5



Encoding

Decoding

Conventional

code

Figure 3: The 
ode levels and dire
tions of en
oding and de
oding pro
ess
i on the left (right). Ea
h of our degree sequen
es is spe
i�ed by a pair of ve
tors (�1; : : : ; �m)and (�1; : : : ; �m), where �i is the initial fra
tion of edges on the left of degree i and �j is the initialfra
tion of edges on the right of degree j. Note that we spe
ify graphs in terms of fra
tions of edges,and not nodes, of ea
h degree, as this form turns out to be more 
onvenient. The sequen
es � and� give rise to generating polynomials �(x) =Pi �ixi�1 and �(x) =Pi �ixi�1. The unusual 
hoi
eof xi�1 rather than xi has to do with the analysis of the de
oding, as des
ribed below. Using thesefun
tions, one 
an su

in
tly des
ribe many important parameters of the graph. For instan
e, itis easy to see that the average left degree a` of the graph is 1Pi �i=i whi
h is 1R 10 �(x)dx : If E is thenumber of edges in the graph, then the number of left nodes of degree i is E�i=i, and hen
e thenumber of left nodes is EPi �i=i. Hen
e, the average degree is E divided by this quantity. By asimilar reasoning, the polynomial �(x) = R x0 �(t)dt=a` has the property that its i-th 
oeÆ
ient isthe fra
tion of left nodes of degree i. (Analogous assertions hold of 
ourse for �(x).)For a given pair �(x) and �(x) of degree sequen
es, we will be interested in 
onstru
ting arandom bipartite graph with k nodes on the left and �k nodes on the right whi
h has this degreedistribution. We will impli
itly assume that the numbers work out, i.e., that �k, E�i=i, and E�i=iare integers for all i, and we assume that � R 10 �(x)dx = R 10 �(x)dx. In this 
ase, it is easy to seethat su
h graphs exist (say by indu
tion). Later in Se
tion 5.3 we will 
arry out a pro
edure touniformly sample graphs (with multi-edges) from the set of graphs with given degree sequen
es �and �.Note that, as the de
oding pro
ess evolves, in the 
orresponding subgraph B0 of B remainingafter ea
h step the mat
hing remaining on B0 still 
orresponds to a random permutation. Hen
e,
onditioned on the degree sequen
e of the remaining subgraph after ea
h step, the subgraph thatremains is uniform over all subgraphs with this degree sequen
e. The evolution of the degreesequen
e is therefore a Markov pro
ess, a fa
t we make use of below.In the next two se
tions, we develop te
hniques for the analysis of the pro
ess for general degreesequen
es.
3 Large Deviation and Analysis of the De
odingWe analyze the de
oding algorithm (Algorithm 1) by viewing it as a dis
rete random pro
ess. Wemodel the evolution of the main parameters of this system by a system of di�erential equations.These parameters in
lude the number of edges of di�erent right and left degrees, as well as the
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total number of edges and the average degrees of the bipartite graph on both sides. We need aresult whi
h makes sure that these parameters are sharply 
on
entrated around the solutions ofthe system of equations, in the sense that the variation in the parameters are small 
ompared withthe total number of steps. For the sake of keeping the te
hni
al dis
ussion at an a

eptable level,we do not aim for the best possible results on the quality of the sharpness of the 
on
entration.In the �st part of this se
tion, we state a general large deviation result whi
h we will prove inAppendix A. Similar results were obtained by Kurtz [8℄ who studied Markov jump pro
esses, andhave been used previously by many resear
hers, see [5, 7, 17, 18, 20, 26℄ and the referen
es therein.We use a version due to Wormald [26℄ whi
h has the advantage of being dire
tly appli
able to oursituation.Next we set up the appropriate system of di�erential equations, and solve them expli
itly. Thisprovides us with a 
on
rete 
ondition on the bipartite graph for su

essful de
oding. However, we
an only make limited use of the large deviation result, as this only guarantees 
ontinuation of there
overy pro
ess as long as the number of edges in the indu
ed subgraphs is a 
onstant fra
tion ofthe original number of edges. To prove that the pro
ess ends su

essfully, we need a 
ombinatorialargument whi
h proves that the random graph obtained at this stage of the de
oding has reasonableexpansion properties, with high probability. This expansion property suÆ
es to show that on
e thenumber of edges remaining be
omes suÆ
iently small, the de
oding pro
ess 
ompletes.3.1 Large DeviationFor analyzing our erasure de
oding algorithm we need to keep tra
k of nodes of degree one onthe right side of the bipartite graph as the algorithm pro
eeds. As the erasures o

ur randomlyon the left side, it is not surprising that the analysis requires tools from probability theory. Wemay regard the number of edges of di�erent degrees on the left and the right side of the graph asrandom variables that evolve over time. It is relatively easy to 
ompute the 
onditional expe
tationof these random variables. This is done in the next subse
tion. What we need is a tool that assertsthat these random variables do not deviate too mu
h from their expe
ted value over the lifetimeof the pro
ess. This is a typi
al example of a so-
alled large deviation result whi
h we derive inthis subse
tion. We assume that the reader is familiar with basi
 
on
epts su
h as (super- andsub-)martingales [19℄. For this argument, we follow [26℄ rather 
losely.The evolution of the number of edges of di�erent degrees on the graphs 
onsidered is a typi
alexample of a dis
rete time random pro
ess. Let 
 denote a probability spa
e and S a measurablespa
e. A dis
rete time random pro
ess over 
 with state spa
e S is a sequen
e Q = (Q0; Q1; : : :)of random variables Qi: 
 ! S. To every ! 2 
 
orresponds a realization (Q0(!); Q1(!); : : :) ofthe pro
ess. The history of the pro
ess up to time t is the sequen
e Ht = (Q0; Q1; : : : ; Qt). For areal-valued measurable fun
tion y de�ned on S+ := [i�1Si, the random variable y(Ht) is denotedby Yt.We say that a fun
tion f :Rj ! R satis�es a Lips
hitz 
ondition on D � Rj if there exists a
onstant L > 0 su
h that jf(u)� f(v)j � L � jXi=1 jui � vij;for all u; v 2 D.For a sequen
e of real-valued random variables Xm taking only a 
ountable number of values,we say that Xm = O(f(m)) with probability 1, if supfx j Pr(Xm = x) 6= 0g = O(f(m)). Thefollowing theorem summarizes the large deviation result we need later. Its proof 
an be found inAppendix A.
7



Theorem 1. Let (Q(m))m�1 be a sequen
e of dis
rete time random pro
esses Q(m) = (Q(m)0 ; Q(m)1 ; : : :)over a probability spa
e 
 with state spa
e Sm and H(m)t := (Q(m)0 ; : : : ; Q(m)t ) be the m-th history upto time t. Let d be a positive integer. For 1 � i � d and all positive integers m let y(i;m):S+m ! Rbe a measurable fun
tion su
h that jy(i;m)(h)j < Cm for all h 2 S+m and for some 
onstant C(independent of i;m; h). Furthermore let f1; : : : ; fd be fun
tions from Rd+1 to R.(i) There exists a 
onstant C 0 su
h that for all m, for all t < m, and for all i � d:jY (i;m)t+1 � Y (i;m)t j < C 0;where Y (i;m)t := y(i;m)(H(i;m)t );(ii) for all i and uniformly over all (m; t) with t < m we haveE(Y (i;m)t+1 � Y (i;m)t j Ht) = fi(t=m; Y (1;m)t =m; : : : ; Y (d;m)t =m);(iii) for ea
h i � d the fun
tion fi is 
ontinuous and satis�es a Lips
hitz 
ondition on D, where Dis some bounded 
onne
ted open set 
ontaining the interse
tion of f(t; z1; : : : ; zd) j t � 0g withsome open neighborhood f(0; z1; : : : ; zd) j Pr(Y (i;m)0 = zim j 1 � i � d) 6= 0 for some mg.Then the following holds.(a) For (0; �1; : : : ; �d) 2 D the system of di�erential equationsdzid� = fi(�; z1; : : : ; zd); i = 1; : : : ; d;has a unique solution in D for zi:R! R passing through zi(0) = �i, 1 � i � d.(b) There is a 
onstant 
 su
h thatPr(Y (i)t > mzi(t=m) + 
m5=6) < dm2=3 exp(� 3pm=2);for 0 � t � �m and for ea
h i, where zi(t) is the solution in (1) with �i = E(Y (i)0 )=m, and� = �(m) is the supremum of those � to whi
h the solution 
an be extended.3.2 The Di�erential EquationsWe begin with the initial random graph B, with k left nodes and �k right nodes. Suppose thatthe graph is given by the degree distribution pair �(x) and �(x), as explained in Se
tion 2.2, andsuppose that the total number of edges in the graph is E. As was explained above, the averagenode degree a` on the left initially satis�es a�1` = Pi �i=i, and similarly the average node degreear on the right initially satis�es a�1r =Pi �i=i.In the appli
ation of Theorem 1 ea
h time step 
orresponds to re
overing one node on the lefthand side. Furthermore, the parameter m 
orresponds to the total number E of edges. Let Æ be thefra
tion of erasures in the message. Initially, just prior to time 0, ea
h node on the left is removedwith probability 1 � Æ (be
ause the 
orresponding message bit is su

essfully re
eived), and thusthe initial subgraph of B 
ontains Æk nodes on the left. If the pro
ess terminates su

essfully, itruns until time Æk = EÆ=a`. As in the last subse
tion, we denote by � the s
aled time t=E. Hen
e,� runs from 0 to Æ=a`.
8
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ription of the di�erential equations
Let G be the graph obtained after a random deletion of (1 � Æ)k nodes on the left. We let Qtbe the t-th edge removed in the graph G, and by Gt the graph obtained after removing Q1; : : : ; Qt,all left nodes they are 
onne
ted to, and all edges 
oming out of these nodes. If the pro
ess hasalready stopped at time t� 1, we set Gt = Gt�1 for 
onvenien
e.We denote by L(i)t the number of edges of left degree i at time t, and by R(i)t the number ofedges of right degree i at time t. Let E be the total number of edges in the original graph. We let`(i)t := L(i)t =E and r(i)t := R(i)t =E represent the fra
tion of edges (in terms of E) of degree i on theleft and right, respe
tively, at time t. We denote by et the fra
tion of the edges remaining at timet, that is, et =Pi `(i)t =Pi r(i)t .First we note that jL(i)t+1 � L(i)t j � i for all i and t, so Condition (i) in Theorem 1 is satis�ed.Re
all that at ea
h step, a random node of degree one on the right is 
hosen, and the 
orrespondingnode on the left and all of its adja
ent edges are deleted. (If there is no su
h node, the pro
essne
essarily stops.) The probability that the edge adja
ent to the node of degree one on the righthas degree i on the left is `(i)t =et, and in this 
ase we lose i edges of degree i, see Figure 4(a). Hen
e,we have E(L(i)t+1 � L(i)t j Ht) = � i`(i)tet ;for i = 1; : : : ; d, where d is the maximum degree on the left hand side.Abusing the notation slightly, we setfi(s; `1; : : : ; `d) := � i`ie ;where e = Pj `j , and see that Condition (ii) of Theorem 1 is satis�ed for these fun
tions. Fur-thermore, �xing � > 0, we further see that these fun
tions satisfy Condition (iii) in the domain Dde�ned by the inequalities 0 < s < Æ + �, 0 < `i < 1 + �, for all i = 1; : : : ; d, and � < e < Æ + �.Now Theorem 1 implies that with high probability we have L(i)t = E`i(t=E) + O(E5=6) uniformlyfor all E� � t � (Æ + �)E, where `i(�) form the solution tod`i(�)d� = � i`i(�)e(�) (1)for i = 1; : : : ; d.These di�erential equations are solved by de�ning x so that dx=d� = �x=e(�). The value ofx in terms of � is then x := exp(� R �0 ds=e(s)). By substituting dx=x for d�=e(�), Equation (1)be
omes d`i(x)=dx = i`i(x)=x, and integrating yields `i(x) = 
ixi. Note that x = 1 for t = 0, and`i(� = 0) = Æ�i. Hen
e, 
i = Æ�i and `i(x) = Æ�ixi: (2)9



Sin
e `i(x) goes to zero as � goes to Æ=a`, x runs over the interval (0; 1℄.To dis
uss the evolution of the right hand side, �rst note that jR(j)t+1 � R(j)t j < d, where d isthe maximum degree on the left. This is be
ause a left node is 
onne
ted to at most d right nodesand one of the right neighbors has been used to re
over the left node. Hen
e, Condition (i) of thetheorem is satis�ed. Note that when we remove a node of degree i on the left, we remove the oneedge of degree one from the right, along with the i � 1 other edges adja
ent to this node. Hen
ethe expe
ted number of other edges deleted is at � 1, where at = P i`(i)t =et. The right endpointsof these i � 1 other edges on the right hand side are randomly distributed. If one of these edgesis of degree j on the right, we lose j edges of degree j, and gain j � 1 edges of degree j � 1, seeFigure 4(b). The probability that an edge has degree j on the right is just r(j)t =et. Then, for i > 1,we have E(R(i)t+1 �R(i)t j Ht) = (r(i+1)t � r(i)t ) i(at � 1)et(We assume that rt(i) is de�ned for all positive i, and is 0 for suÆ
iently large i.) The 
ase i = 1plays a spe
ial role, as we must take into a

ount that at ea
h step an edge of degree one on theright is removed. This givesE(R(1)t+1 �R(1)t j Ht) = (r(2)t � r(1)t )(at � 1)et � 1:Let � be the maximum degree of a node on the right. Abusing the notation slightly, we setg�(�; r1; : : : ; r�) := �r��(a� 1)egi(�; r1; : : : ; r�) := (ri+1 � ri) i(a� 1)e for 1 < i < �;g1(�; r1; : : : ; r�) := (r2 � r1)(a� 1)e � 1;where e = Pj rj and a :=Pj j`j=e. Fixing any � > 0, we see as in the 
ase of the left hand sideevolution, that these fun
tions satisfy a Lips
hitz 
ondition, as long as � = t=E > �. Appli
ationof Theorem 1 thus yields that almost surely, we have R(i)t = Eri(t=E) +O(E5=6) uniformly for all�E � t � (Æ + �)E, where ri(�) form the solution todri(�)dt = (ri+1(�)� ri(�)) i(a(�)� 1)e(�) for i > 1; (3)and dr1(�)d� = (r2(�)� r1(�))(a(�)� 1)e(�) � 1: (4)Our key interest is in the progression of r1(�) as a fun
tion of � . As long as r1(�) > 0, so thatwe have a node of degree one on the right, the pro
ess 
ontinues; when r1(�) = 0 the pro
ess stops.Hen
e we would like r1(�) > 0 until all nodes on the left are deleted and the pro
ess terminatessu

essfully.We pro
eed with the determination of rj(1), the expe
ted fra
tion of edges of right degree oneat time 0: be
ause ea
h node on the left is deleted randomly just prior to time 0 with probability1 � Æ, and the graph is a random graph over those with the given degree sequen
e, to the nodeson the right it is as though ea
h edge is deleted with probability 1 � Æ. Hen
e, an edge whose
10



right in
ident node had degree j before the deletion stage remains in the graph and has degree iafterwards with probability �j�1i�1�Æi(1� Æ)j�i. Thus,
rj(1) = Xm�j �m�m� 1j � 1�Æj(1� Æ)m�j: (5)

In Appendix B we will solve the set of di�erential equations given by (3) and (4) with the initial
ondition (5). Here is the result.Proposition 1. For the solution to the system of di�erential equations given by (3) and (4) withthe initial 
ondition (5) we haver1(x) = Æ�(x)[x� 1 + �(1� Æ�(x))℄; (6)where x is de�ned via dx=d� = �x=e(�).This immediately gives rise to the following result.Proposition 2. Let B be a bipartite graph with k message bits that is 
hosen at random withedge-degrees spe
i�ed by �(x) and �(x). Let Æ be �xed so that�(1� Æ�(x)) > 1� x; for x 2 (0; 1℄:For all � > 0 there is some k0 su
h that for all k � k0, if the message bits of C(B) are erasedindependently with probability Æ, then with probability at least 1 � k2=3 exp(� 3pk=2) the re
overyalgorithm terminates with at most �k message bits erased.Proof. Let E be the number of edges in the graph. Then E = ka`, where a` is the averagedegree of the nodes in the left side of the graph, whi
h is a 
onstant for �xed � and �. (Notethat a` =P�i=i.) Let � := �=a`. By (6) and the pre
eding dis
ussions, with probability at least1� k2=3 exp(� 3pk=2) the number of nodes of degree one on the right is,Æ�(x) [x� 1 + �(1� Æ�(x))℄ +O(k5=6);for x 2 (�0; 1℄, where �0 = exp(� R �0 ds=e(s)). By our assumption, this number is positive (for largeenough k), whi
h proves the assertion.The foregoing proposition does not prove that the de
oding pro
ess terminates su

essfullyre
overing all the missing nodes on the left hand side. To do this, we need a 
ombinatorial argumentwhi
h says that random graphs are good expanders. This means that any small enough subset ofleft nodes has many right neighbors. The exa
t statement is given in the proof of the followingresult.Lemma 1. Let B be a bipartite graph with k left nodes 
hosen at random with edge-degrees spe
i�edby �(x) and �(x), su
h that �(x) has �1 = �2 = 0. Then there is some � > 0, su
h that, withprobability 1 � O(k�3=2), the re
overy pro
ess restri
ted to the subgraph indu
ed by any �-fra
tionof the left nodes terminates su

essfully.Proof. Let S be any set of nodes on the left of size at most �k, where � will be 
hosen later. Leta be the average degree of these nodes. If the number of nodes on the right that are neighbors ofS is greater than ajSj=2, then one of these nodes has only one neighbor in jSj, and so the pro
ess
an 
ontinue. Thus, we only need to show that the initial graph is a good expander on small sets.11



Let Es denote the event that a subset of size s of the nodes on the left has at most as=2 neighbors.We �rst bound Pr(Es), and then sum Pr(Es) over all values of s no larger than �k. Fix any subsetS of the left nodes of size s, and any subset T of the right nodes of size as=2. There are �ks� waysof 
hoosing S, and � �kas=2� ways of 
hoosing T . The probability that T 
ontains all the as neighborsof the verti
es in S is (as=2�k)as. Hen
e, we have
Pr(Es) � �ks�� �kas=2�� as2�k�as :

Note that �nk� � (ne=k)k, hen
e we have
Pr(Es) � � sk�(a=2�1)s 
s � �s
2k �s=2 ;

where 
 is a 
onstant (depending on � and a). Sin
e the graph does not have nodes of degree oneor two, we have that Pr(E1) = Pr(E2) = 0. Choosing � � 1=(2
2) yields�kXs=1�s
2k �s=2 = �kXs=3�s
2k �s=2 � 3
2kpk + �kXs=4 12s = O� 1kpk� ;whi
h shows that, with high probability, the original graph is an expander on small subsets.The above proof shows that the main 
ontribution for the error-probability 
omes from nodesof degree three on the left. For the same reason, it is easy to see that nodes of degree two will leadto a 
onstant error probability. We leave the details of this argument to the reader.Altogether we obtain the main theorem of this se
tion.Theorem 2. Let k be an integer, and suppose that C = C(B1; : : : ; Bm; C) is a 
as
ade of bipartitegraphs as explained in Se
tion 2, where B1 has k left nodes. Suppose that ea
h Bi is 
hosen atrandom with edge-degrees spe
i�ed by �(x) and �(x), su
h that �(x) has �1 = �2 = 0, and supposethat Æ is su
h that �(1� Æ�(x)) > 1� x; (7)for all 0 < x � 1. Then, if at most a Æ-fra
tion of the 
oordinates of an en
oded word in C areerased independently at random, then our erasure de
oding Algorithm terminates su

essfully, withprobability 1�O(k�3=4), and does so in O(k) steps.Proof. At ea
h level of the 
as
ade the number of edges equals the average degree of the nodeson the left times the number of the nodes. The average degree is always 1= R 10 �(t)dt, whi
h is a
onstant. Hen
e, the total number of edges in the the 
as
ade (up to the last layer) is O(k), whi
hshows that the re
overy pro
ess needs O(k) steps. (See Remark 1.)Next we bound the probability that there is some j su
h that the fra
tion of left nodes lost onthe left side of the graph Bj is larger than Æ0 := Æ+1= 8pk. We use a version of the Cherno� boundsgiven in [19, Prob. 4.7(
), pp. 98℄. A

ording to that, for any j the probability that there aremore erasures than Æ(k=2j) + (k=2j)3=4 is upper bounded by exp(�2pk=2j), whi
h is smaller thanexp(�2 4pk). The required probability is 
ertainly at most equal to the sum of these probabilities(union bound), whi
h is log(k) exp(� 4pk)=2. (Note that there are log(k)=2 su
h j's).For large enough k Condition (7) is satis�ed for Æ0 instead of Æ (by 
ontinuity). Hen
e, invokingProposition 2, for any � > 0 and any of the graphs Bj in the 
as
ade our de
oding algorithm 1stops with less than �k=2j nodes un
orre
ted, with probability 1�O(exp(�k
)) for some positive12




. Now Lemma 1 applies and shows that, for small enough �, the re
overy pro
ess ends su

essfullywith probability 1 � O((2j=k)3=2). The probability that our algorithm fails on at least one of thegraphs is thus at most Pj(2j=k)3=2, where j runs from 0 to log(k)=2. This is equal to O(k�3=4),whi
h shows the assertion.For designing graphs that lead to good 
odes, it is thus ne
essary to ful�ll Condition (7). It issometimes desirable to use the \dual 
ondition"Æ�(1� �(y)) < 1� y; (8)for y 2 [0; 1), whi
h is obtained from (7) by substituting y := ��1(1�x). Note that � has an inverseon (0; 1℄, as it is monotoni
ally in
reasing.In the next se
tion we use this theorem to analyze de
oding properties of 
odes obtained fromregular graphs.
4 Capa
ity A
hieving CodesIn this se
tion we will 
onstru
t for any erasure probability p families of 
odes with linear timeerasure de
oding algorithms that 
an 
orre
t any p-fra
tion of erasures and whose rates 
omearbitrarily 
lose to the 
apa
ity 1 � p of the erasure 
hannel. In other words, we 
onstru
t 
odesthat are 
lose to optimal in terms of their erasure re
overy rate, and have linear time en
odingand de
oding algorithms. We do this by �nding an in�nite family of solutions to the di�erentialequations of Se
tion 3 in whi
h Æ is 
lose to 1�R, where R is the rate.Let B be a bipartite graph with k left nodes and �k right nodes. We des
ribe our 
hoi
e for theleft and right degree sequen
es of B that satisfy Condition (7). Let D be a positive integer that isused to trade o� the average degree with how well the de
oding pro
ess works, i.e., how 
lose we
an make Æ to � = 1�R and still have the pro
ess �nish su

essfully most of the time.The left degree sequen
e is des
ribed by the following trun
ated heavy tail distribution. LetH(D) = PDi=1 1=i be the harmoni
 sum trun
ated at D, and thus H(D) � ln(D). Then, for alli = 2; : : : ;D + 1, the fra
tion of edges of degree i on the left is given by�i := 1=(H(D)(i� 1)):The average left degree a` equals H(D)(D+1)=D. Re
all that we require the average right degree,ar, to satisfy ar = a`=�. The right degree sequen
e is de�ned by the Poisson distribution withmean ar: for all i � 1 the fra
tion of edges of degree i on the right equals�i = e���i�1(i� 1)! ;where � is 
hosen to guarantee that the average degree on the right is ar. In other words, � satis�es�e�=(e� � 1) = ar.Note that we allow �i > 0 for all i � 1, and hen
e �(x) is not truly a polynomial, but apower series. However, trun
ating the power series �(x) at a suÆ
iently high term gives a �nitedistribution of the edge degrees for whi
h the next lemma is still valid.We show that when Æ = �(1�1=D), then Condition (7) is satis�ed, i.e., �(1�Æ�(x)) > 1�x on(0; 1℄, where �(x) =Pi �ixi�1 and �(x) =Pi �ixi�1. Note that �(x) is the expansion of � ln(1�x)trun
ated at the Dth term, and s
aled so that �(1) = 1. Further, �(x) = e�(x�1).Lemma 2. With the above 
hoi
es for �(x) and �(x) we have �(1 � Æ�(x)) > 1 � x on (0; 1℄ ifÆ � �=(1 + 1=D). 13



Proof. Sin
e �(x) in
reases monotoni
ally in x, we have�(1� Æ�(x)) > �(1 + Æ ln(1� x)=H(D)) = (1� x)�Æ=H(D):As a` = H(D)(1 + 1=D) and ar = a`=�, we obtain �Æ=H(D) = (1 � e��)(1 + 1=D)Æ=� < Æ(1 +1=D)=� � 1, whi
h shows that the right hand side of the above inequality is larger than 1 � x on(0; 1℄.A problem is that Lemma 1 does not apply to this system be
ause there are nodes of degree twoon the left. Indeed, simulations demonstrate that for these 
hoi
es of �(x) and �(x) a small numberof nodes often do remain. To over
ome this problem, we make a small 
hange in the stru
ture ofthe graph B. Let 
 := �=D2. We split the �k right nodes of B into two distin
t sets, the �rstset 
onsisting of (� � 
)k nodes and the se
ond set 
onsisting of 
k nodes. The graph B is thenformed by taking the union of two graphs, B1 and B2. B1 is formed as des
ribed up to this pointbetween the k left nodes and the �rst set of (� � 
)k right nodes. B2 is formed between the k leftnodes and the se
ond set of 
k right nodes, where ea
h of the k left nodes has degree three and the3k edges are 
onne
ted randomly to the 
k right nodes.Lemma 3. Let B be the bipartite graph des
ribed above. Then, with probability 1� O(k�3=2), thede
oding pro
ess terminates su

essfully when started on a subgraph of B indu
ed by Æk of the leftnodes and all �k of the right nodes, where Æ = �(1� 1=D).Proof. In the analysis of the pro
ess, we may think of B2 as being held in reserve to handlenodes not already dealt with using B1. First, using the same method as in Lemma 1 we 
an provethat there is some � su
h that an set S of s � �k left nodes in the graph B2 expands to a set ofat least 3s=2 nodes on the right, with probability 1 � O(1=k3=2). (Note that all nodes on the lefthave degree three in this graph.) Combining Proposition 2 and Lemma 2, we see that the re
overypro
ess started on B1 terminates with less than �k nodes on the left unre
overed, with probability1�O(exp(�ka)) for some positive a: note that the ratio of the number of left nodes to the numberof right nodes in the graph B2 equals �(1 � 1=D2), hen
e the 
ondition in Lemma 2 translatesto Æ � �(1 � 1=D2)=(1 + 1=D) = �(1 � 1=D), whi
h is obviously true. By the aforementionedexpansion property of the subgraph of B2 indu
ed by the set of unre
overed left nodes, we see thatthe pro
ess terminates su

essfully.Note that the degree of ea
h left node in this modi�ed 
onstru
tion of B is at most three biggerthan the average degree of ea
h left node in the 
onstru
tion of B des
ribed at the beginning ofthis se
tion. We 
an use this observation and the lemma above to immediately prove the following.Theorem 3. For any R with 0 < R < 1, any � with 0 < � < 1, and suÆ
iently large blo
k lengthn, there is a linear 
ode and a de
oding algorithm that, with probability 1 � O(n�3=4), is able to
orre
t a random (1�R)(1� �)-fra
tion of erasures in time proportional to n ln(1=�).Proof. Set D = d1=�e to get a one level 
ode with the properties des
ribed in Lemma 3.Cas
ade versions of these 
odes as des
ribed in Se
tion 2 to get the entire 
ode. As was pointedout above, the average degree a` of the left nodes in ea
h of the layers is upper bounded by3 +PDi=1 1=i < 4 + ln(1=�), whi
h is proportional to ln(1=�). Hen
e, the total number of edgesin the bipartite layers of the graph is proportional to n ln(1=�), whi
h proves the assertion on thede
oding time.Using Lemma 3 and the same analysis as in the proof of Theorem 2, we 
an show that the 
ode
onstru
ted above 
an re
over, with probability 1 � O(n�3=4), all the message bits, if a random
14
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Æ-fra
tion of the 
odeword is missing, where Æ = �(1 � 1=D). Noting that � = 1 � R, we obtainthe result.Figure 5 shows the running time of the en
oding/re
overy algorithms (as multiples of the blo
klength) versus the overhead needed to re
over. For instan
e, for suÆ
iently large n, one 
an
onstru
t in this way [n; k℄q-
odes that have en
oding/re
overy algorithms running in time � 7n,whi
h 
an re
over a 
odeword from a random set of 1:002k of its 
oordinates.
5 Pra
ti
al ConsiderationsThe dis
ussions in the pre
eding se
tions have been of a more theoreti
al, rather than a pra
ti
alnature. However, as the graph 
odes designed via the above mentioned theorems 
an be used inpra
ti
al situations, it is important to des
ribe possible implementations. We start with modifyingour 
onstru
tion by allowing erasures to also o

ur on the right hand side. An analysis of thistype provides us with some insight in how to design 
as
aded versions of our 
odes with mu
hfewer levels, and faster de
oding algorithms for the end level. Next, we show how to use a linearprogramming approa
h to design bipartite graphs whi
h give rise to very good 
odes. Finally, webrie
y dis
uss some of our implementations. A preliminary report on the results of this se
tionappeared in [9℄.5.1 Fra
tion of Left Nodes Unre
overedSo far we have assumed in our analysis that in ea
h layer of the 
as
ade all the 
he
k bits arere
eived when trying to re
over the message bits. The reason we made this assumption is thatin the original 
onstru
tion the 
as
ading sequen
e of bipartite graphs is 
ompleted by adding astandard erasure 
orre
ting 
ode at the last level.There are some pra
ti
al problems with this. One annoyan
e is that it is in
onvenient to
ombine two di�erent types of 
odes. A more serious problem is that standard erasure 
orre
ting
odes take quadrati
 time to en
ode and de
ode (if the alphabet size is large enough; otherwise,
ubi
 running time will do). Suppose the message is mapped to a 
odeword twi
e its length. Inorder to have the 
ombined 
ode run in linear time, this implies that the last graph in the 
as
adingsequen
e has pk left nodes, where k is the number of nodes asso
iated with the original message,i.e., there are O(log(k)) graphs in the sequen
e. In the analysis, we assume that an equal fra
tion15
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of the nodes in ea
h level of the graph are re
eived. However, there is varian
e in this fra
tion atea
h level, with the worst expe
ted fra
tional varian
e at the last level of 1= 4pk. Thus, if a messageof length 65; 536 is stret
hed to a 
odeword of length 131; 072, then just be
ause of the varian
eof 1= 4pk = 0:063, we expe
t to have to re
eive 1.063 times the message length of the 
odeword inorder to re
over the message.A solution to this problem is to use many fewer levels of graphs in the 
as
ade, and to avoidusing a standard erasure 
orre
ting 
ode in the last level. That is, for the last layer, we 
ontinueto use a randomly 
hosen graph. We have tried this idea, with the last graph 
hosen from anappropriate distribution, and it works quite well. For example, using only three levels of graphswe 
an reliably re
over a message of length 65; 536 from a random portion of length 67; 700 (i.e.,1.033 times the optimal of 65; 536) of a blo
k-length of 131; 072.To design the graph for this solution, we need to analyze the de
oding pro
ess when a randomportion of both the message bits and the 
he
k bits are missing. The following result gives theexpe
ted fra
tion of right nodes of degree one with respe
t to the number of edges in the graph,and estimates the fra
tion of left nodes unre
overed at ea
h step of the algorithm.Lemma 4. The fra
tion r1(x) of edges of right degree one at x with respe
t to the number of edgesin the original graph B equalsr1(x) = Æ(1� Æ0)�(Æ0 + (1� Æ0)x) �x� 1 + �(1� Æ�(Æ0 + (1� Æ0)x))� :Furthermore, up to lower order terms, the fra
tion of left nodes unre
overed at time x equals

Æa` � Z (Æ0+(1�Æ0)x)0 �(y)dy:We will prove this lemma later in Appendix C. We immediately obtain the 
ondition�(1� Æ�(Æ0 + (1� Æ0)x)) > 1� x x 2 (0; 1℄ (9)for su

essful de
oding.The above inequality is not possible to satisfy for all x 2 (0; 1℄ if Æ0 > 0, for any value of Æ: forx = 0 the left hand side equals �(1 � Æ�(Æ0)) whi
h is stri
tly less than 1. There is an intuitivereason for this: the subgraph ~B on whi
h the pro
ess starts has edges of degree one on the left;these edges 
an only 
orre
t the left nodes they are 
onne
ted to, and 
annot help any other nodeon the left.However, it turns out to be an interesting question to see what fra
tion of the left nodes 
anbe re
overed when a fra
tion Æ0 of the right nodes is missing. The answer to this question 
an beused to design 
as
ading 
odes where the de
oding pro
ess moves from right to left bootstrapping16



up to re
over a higher and higher fra
tion of nodes at ea
h su

essive de
oded layer of the graphuntil it is able to re
over all of the �rst (message) layer. (See Figure 6.)Given the (�) and (�) ve
tors, Condition 9 
an be used to 
ompute the smallest value of x forwhi
h the 
ondition is still valid. The se
ond part of Lemma 4 then gives the fra
tion of unre
overednodes on the left at this value of x.5.2 Computing Degree Sequen
es Using Linear ProgrammingIn this se
tion we des
ribe a heuristi
 approa
h that has proven e�e
tive in pra
ti
e to �nd a goodright degree sequen
e given a spe
i�
 left degree sequen
e. The method uses linear programmingand the di�erential equation analysis of Se
tion 3. Re
all that a ne
essary 
ondition for the pro
essto 
omplete is that �(1� Æ�(x)) > 1� x on (0; 1℄. We �rst des
ribe a heuristi
 for determining fora given �(x) representing the left degree sequen
e and a value for Æ whether there is an appropriate�(x) representing the right degree sequen
e satisfying this 
ondition. We begin by 
hoosing a setMof positive integers whi
h we want to 
ontain the degrees on the right hand side. To �nd appropriate�m,m 2M , we use the 
ondition given by Theorem 2 to generate linear 
onstraints that the �i mustsatisfy by 
onsidering di�erent values of x. For example, by examining the 
ondition at x = 0:5,we obtain the 
onstraint �(1� Æ�(0:5)) > 0:5, whi
h is linear in the 
oeÆ
ients of �(x).We generate 
onstraints by 
hoosing for x multiples of 1=N for some integer N . We also in
ludethe 
onstraints �m � 0 for all m 2 M . We then use linear programming to determine if suitable�m exist that satisfy our derived 
onstraints. Note that we have a 
hoi
e for the fun
tion we wishto optimize; one 
hoi
e that works well is to minimize the sum of �(1� Æ�(x))+x�1 on the valuesof x 
hosen to generate the 
onstraints. The best value for Æ for given N is found by binary sear
h.Given the solution from the linear programming problem, we 
an 
he
k whether the �i 
omputedsatisfy the 
ondition �(1� Æ�(x)) > 1� x on (0; 1℄.Due to our dis
retization, there are usually some 
on
i
t subintervals in whi
h the solution doesnot satisfy this inequality. Choosing large values for the tradeo� parameter N results in smaller
on
i
t intervals, although it requires more time to solve the linear program. For this reason weuse small values of N during the binary sear
h phase. On
e a value for Æ is found, we use largervalues of N for that spe
i�
 Æ to obtain small 
on
i
t intervals. In the last step we get rid of the
on
i
t intervals by appropriately de
reasing the value of Æ. This always works sin
e �(1� Æ�(x))is a de
reasing fun
tion of Æ.We ran the linear programming approa
h on left degree sequen
es of the form 3; 5; 9; : : : ; 2i+1for 
odes with rates 1=2; 2=3; 3=4; 4=5; 9=10 and average left degrees 5:70; 6:82; 8:01. These resultsare gathered in Figure 1 whi
h shows how mu
h of the 
odeword is suÆ
ient to re
over the entiremessage as a fra
tion of the message length as the message length goes to in�nity. Sin
e thesegraphs do not have nodes of degree two on the left, Theorem 2 imply that with high probabilitythe 
orresponding 
odes re
over the entire message from the portion of the 
odeword indi
ated inthe table, provided the message length is large enough. However, as the maximum degrees in theexamples we have found are rather large (about 30000), these 
odes are rather impra
ti
al.One major disadvantage of the approa
h given above is that we need to �x the left hand side ofthe graph. To over
ome this diÆ
ulty, we use the dual 
ondition (8). We 
an now use this 
onditionand the linear programming approa
h to solve for the best � given �, then use the original 
onditionto solve for the best � given this �, and so on. We have tried this strategy and it gives good results,although at this point we have not proved anything about its 
onvergen
e to a (possibly optimal)pair of probability distributions.For example, we found that the following pair of degree sequen
e fun
tions yield [2k; k℄q-
odeswhi
h are able to re
over from a random set of 1:01k 
oordinates, with high probability; the
17



Average RateDegree 1=2 2=3 3=4 4=5 9=105.70 1.036 1.023 1.016 1.013 1.0066.82 1.024 1.013 1.010 1.007 1.0048.01 1.014 1.008 1.007 1.005 1.002
Table 1: Close to optimal 
odes for di�erent rates and average left degrees.


orresponding average degree is 12:
�(x) = 0:430034x2 + 0:237331x12 + 0:007979x13 + 0:119493x47 + 0:052153x48 +0:079630x161 + 0:073380x162�(x) = 0:713788x9 + 0:122494x10 + 0:163718x199:Note that, in 
ontrast to the examples above, the maximum node degrees in these graphs aremu
h smaller. This makes them more pra
ti
al for smaller values of k, than the 
odes giving riseto Table 1.5.3 Implementations and TimingsIn this subse
tion we report on some of the implementations of our 
odes. In all these examplesa message 
onsisting of 640000 pa
kets was en
oded into a ve
tor of 1280000 pa
kets, and ea
hpa
ket 
onsisted of 256 bytes. The 
as
ade 
onsisted of three layers: a �rst layer 
onsisting of640K nodes on the left, and 320 K nodes on the right, a se
ond layer 
onsisting of 320K nodeson the left and 160K nodes on the right, and a third layer 
onsisting of 160K nodes on the leftand on the right. The edge distributions of the graphs used in the �rst and the se
ond layer werethe heavy tail/Poisson distribution dis
ussed in Se
tion 4. The edge distribution in the third layerwas di�erent, and used some of the analysis of Se
tion 5.1: the edge distribution on the left was a\double heavy tail" distribution, given by �(x) := ~�(x2), where ~� is the edge distribution fun
tionof the heavy tail distribution.To 
hose an appropriate random bipartite graph B with E edges, k nodes on the left, and �knodes on the right, the program started with a bipartite graph B0 with E nodes on both the left andright hand sides, with ea
h node of B0 representing an edge slot. Ea
h node on the left hand sideof B0 was asso
iated with a node on the left side of B, so that the distribution of degrees is givenby (�1; : : : ; �m), and similarly for the right. The program then 
hoose a random mat
hing (i.e., arandom permutation) between the two sets of E nodes on B0. This indu
ed a random bipartitegraph on B (perhaps with multi-edges) in the obvious manner with the desired degree stru
ture.In experiments it turned out that the existen
e of multi-edges is not a serious problem. This 
anbe explained by the observation that one 
an analyze the pro
ess for random multigraphs insteadof random graphs and that this analysis turns out to yield essentially the same results as the one
arried out in Se
tion 3.A s
hemati
 des
ription of the 
ode is given in Figure 7. The average degree of the nodes in thisgraph was 8. The de
oding algorithm was exe
uted 1000 times, ea
h time with a di�erent randomloss pattern. Figure 8 shows length overhead statisti
s: the horizontal axis represents � and theverti
al axis represents the per
entage of times where (1 + �) times the length of the message wasneeded to 
ompletely re
over the message, based on the 1000 trials. In 
omplian
e with the results

18
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of Se
tion 3 we see that the parameters are sharply 
on
entrated around their mean value.On a DEC-alpha ma
hine with 300MHz and 64MB RAM the en
oding took 0.58 CPU-se
onds,and the de
oding took 0.94 se
onds, on average. This 
orresponds to a throughput of roughly 280Mbit/se
.On a Pentium Pro at 200 MHz and 64MB RAM, the en
oding took 0.58 se
onds, while thede
oding took 1.73 se
onds, on average. This 
orresponds to a throughput of roughly 150 Mbit/se
.It should be noted that most of the time in our algorithm is spent in pointer 
hasing. The 
odeused was a straightforward C-implementation. Use of more sophisti
ated data-types, and moreintelligent pre-fet
hing strategies would probably speed up the 
ode 
onsiderably.
6 Con
lusionWe have introdu
ed in this paper a 
lass of error-
orre
ting 
odes, based on a 
as
ade of bipartitegraphs. Although the idea of using sparse bipartite graphs for 
onstru
ting 
odes is not new [6, 25℄,the 
onstru
tion of the graphs in ea
h of the layers is novel. We obtained the 
onstru
tion byanalyzing a simple de
oding algorithm. The analysis used results asserting the sharp 
on
entrationof parameters in a dis
rete random pro
ess around their means. Using this, we established a simple
ondition that the degree sequen
es of the left and right hand sides of the bipartite graphs had tosatisfy in order for the pro
ess to �nish su

essfully. We designed a family of 
apa
ity-a
hieving
odes on the erasure 
hannel with linear time en
oding and de
oding algorithms. We should pointout that our model of 
omputation, as it stands, is that of a random a

ess ma
hine with unit
ost. However, our 
onstru
tion 
an be modi�ed using pre-fet
hing strategies to yield linear timealgorithms for random a

ess ma
hines with logarithmi
 
ost. The modi�
ation is quite similar tothat given in [24℄.
7 Further DevelopmentsThe appearan
e of the �rst version of this paper as an extended abstra
t in [13℄ inspired newdevelopments whi
h we would like to brie
y 
omment on in this se
tion. First, the analysis of thispaper was simpli�ed in [9℄ by using proper martingale arguments. Nevertheless, sin
e we feel thatthe approa
h outlined in this paper (in parti
ular, Theorem 1) may have other appli
ations, weopted for leaving the analysis in its original form. One of the main results of this paper is thefa
t that properly 
hosen irregular graphs perform a lot better than regular graphs, and that theonly parameters that determine the asymptoti
 performan
e are the fra
tions of nodes of variousdegrees. This observation together with the new analysis were 
ombined in [10℄ to study irregularlow-density parity-
he
k 
odes on the binary symmetri
 
hannel, with simple hard-de
ision de
odingalgorithms going ba
k to Gallager [6℄ . 4 This paper appears to have been in
uential. First, theidea of using irregular 
odes was taken up and extended by other resear
hers (see, e.g., [14℄).Se
ond, the main \
on
entration theorem" of [10℄ was extended to a large 
lass of 
hannel modelsin a landmark paper by Ri
hardson and Urbanke [22℄, whi
h �rst appeared in 1998. Based on theirapproa
h, they developed the \density evolution" algorithm, a numeri
al pro
edure to approximatethe threshold of noise below whi
h the belief propagation algorithm 5 is asymptoti
ally su

essful.Several months later, their method was further extended in [21℄ in whi
h sequen
es of 
odes were
onstru
ted for whi
h the belief propagation algorithm had a performan
e extremely 
lose to theShannon 
apa
ity, beating Turbo 
odes [2℄ by a wide margin for modest blo
k-lengths.4An updated version of this paper appears in this issue [12℄.5Our erasure de
oder turns out to be the belief propagation algorithm for the erasure 
hannel [21℄.
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Another main result of this paper was to show that there are families of degree sequen
es su
hthat the 
orresponding graphs asymptoti
ally meet the 
apa
ity of the erasure 
hannel (using oursimple erasure de
oding algorithm). Another family of su
h degree sequen
es was exhibited in [23℄.So far, these have been the only known 
apa
ity-a
hieving families of degree sequen
es, and anotherexample of a 
ommuni
ation 
hannel for whi
h 
apa
ity-a
hieving sequen
es exist for all rates isyet to be found.
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A Proof of Theorem 1Re
all that a sequen
e of random variablesX0;X1; : : : is 
alled a martingale ifE[Xi j X0; : : : ;Xi�1℄ =Xi�1 for all i � 1. The sequen
e is 
alled a sub-martingale (super-martingale) ifE[Xi j X0; : : : ;Xi�1℄ �Xi�1 (E[Xi j X0; : : : ;Xi�1℄ � Xi�1). For the proof of our 
on
entration result we need the followingwell-known result, often 
alled Azuma's inequality [26, Lemma 1℄.Theorem 4. Let X0;X1; : : : be a supermartingale with respe
t to a sequen
e of �-algebras Fi withF0 = f;;
g, and suppose that X0 = 0 and jXk+1 � Xkj � 
 for some 
onstant 
 and for i � 0.Then for all � > 0 we have Pr(Xk � �
) � exp(��2=2k):
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Proof of Theorem 1: : We modify the proof in [26℄ slightly to obtain the error bounds asserted inthe theorem. First, note that by a standard result in the theory of �rst order di�erential equations,there is a unique solution in (a).As in [26℄ we simplify the notation by 
onsidering d = 1 and referring to y(1;m), z1, and f1 asy, z, and f , and so on. The proof for general d is similar.Let w := dm2=3e, and assume that 0 � t � m � w. We �rst demonstrate 
on
entration ofYt+w�Yt. Noti
e that the Lips
hitz 
ondition on f and Condition (ii) imply that for all 0 � k < wE(Yt+k+1 � Yt+k j Ht+k) = f� t+ km ; Yt+km � � f� tm; Ytm�+ 
 2k + 1mfor some 
onstant 
.For �xed t, de�ne the random variable Xk := Yt+k � Yt � kf(t=m; Yt=m)� 
k2=m. Note that
Xk+1 �Xk = Yt+k+1 � Yt+k � f tm; Ytm!� 
 2k + 1m :

This shows that the Xk form a supermartingale with respe
t to Ht; : : : ;Ht+w, as 0 � E(Xk+1 �XkjHt+k) = E(Xk+1jHt+k) �Xk. Furthermore, the above equality shows that jXk+1 �Xkj � C2for some 
onstant C2. We 
an now apply the inequality of Theorem 4. As X0 = 0, we obtainPr(Xw � �C2) � exp(� �22w ), for any 0 < �. (The parameter � will be 
hosen later.) The lowertail 
an be bounded in exa
tly the same way, using a submartingale. This gives for any 
onstantB (to be 
hosen later)
Pr ����� Yt+w � Yt � wf tm; Ytm! ������ (
 +B)w2m + �C2! � exp�� �22w�: (10)

Now let k` := `w, where ` = 0; 1; : : : ; `0 and `0 = bminfm=w; �m=wg
. Let
T` := (
w2 + �mC2)((1 +Bw=m)` � 1)Bw :We prove by indu
tion on ` that�` := Pr(jYk` � z(k`=m)mj � T`) � ` exp�� �22w�:The assertion is obvious for the indu
tion starting at ` = 0, as z(0) = E(Y0)=m. De�neA1 := Yk`+1 � Yk` � wf(k`=m; Yk`=m);A2 := Yk` �mz(k`=m);A3 := mz(k`+1=m)�mz(k`=m)� wf(k`=m; Yk`=m):Note that jYk`+1 �mz(k`+1=m)j = jA1 +A2 � A3j � jA1j+ jA2j+ jA3j:The indu
tive hypothesis gives that jA2j < T` with probability at least 1�` exp(��2=2w). Further,by 10 we have jA1j < 
w2=m+ �C2 with probability at least 1 � exp(��2=2w). To bound A3 wepro
eed as follows. By the mean value theorem we have that z(k`+1=m) � z(k`=m) = wz0(�)=m,where z0 is the derivative of z and � is some real number with k`=m � � � k`+1=m. Note that zsatis�es the di�erential equation in (1), hen
e z0(�) = f(�; z(�)), and by the Lips
hitz 
ondition23



on f we obtain jA3j � Lw(jk`=m� �j+ jYk`=m� z(�)j). By the 
ontinuity of z and the indu
tivehypothesis, we see that for suitable 
hoi
e of the 
onstant B we have
jA3j � B w2m + wT`m !;

for large enough m. Altogether we obtainjA1j+ jA2j+ jA3j � T`+1with probability at least 1 � ` exp(��2=2w) � exp(��2=2w) = 1 � (` + 1) exp(��2=2w). Now we
hoose � = pm. Then T` � Tm=w � (exp(B)� 1)((
 +B)m4=3+m3=2C2)=(Bm2=3) = O(m5=6) forall `. Hen
e, we see that (2) is satis�ed at t = k` with probability at least 1�m2=3 exp(� 3pm=2).Furthermore, as jYt�Yk` j � C 0m2=3 for all k` � t � k`+1, we 
ontend that Yt = mz(t=m)+O(m5=6)for all t in the spe
i�ed range, with probability at least 1�m2=3 exp(� 3pm=2).We remark that one 
an have better 
hoi
es for � and w in the above proof whi
h make theerror terms smaller, at the expense of making the error probability slightly larger.
B Proof of Proposition 1We will prove Proposition 1 in this appendix. We start with the substitution x := exp(� R �0 ds=e(s)).This means that dx=x = �d�=e(�), and this transforms for i > 1 Equation (3) into

r0i(x) = i(�ri+1(x) + ri(x))a(x)� 1x ;where prime stands for derivative with respe
t to the variable x, and a(x) is the average degree ofthe graph at time x. Note that a(x) equalsP i`i(x)=e(x), whi
h in terms of the fun
tion �(x) 
anbe written as 1 + x�0(x)=�(x). Hen
e, we obtain for i > 1
r0i(x) = i(�ri+1(x) + ri(x))�0(x)�(x) :As is veri�ed easily, the expli
it solution is given byri(x) = �(x)i��iZ x0 ri+1(y)�(y)�i�0(y)�(y) dy + 
i� (11)for some 
onstants 
i to be determined from the initial 
onditions for ri. These equations 
anbe solved re
ursively, starting with the highest nonzero ri, say r�. In this 
ase, we have r0�(x) =�r�(x)�0(x)=�(x), whi
h gives r�(x) = 
��(x)� for some 
onstant 
�. Using indu
tion, it is theneasy to prove that ri(x) =Xj�i(�1)i+j�j � 1i� 1�
j�(x)j : (12)

Further, sin
e �(1) = 1, one veri�es by indu
tion that

i =Xj�i �j � 1i� 1�rj(1):
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Plugging (5) into the last equation we see that

i =Xm�i�m� 1i� 1 ��mÆi:

(Use �m�1j�1 ��j�1i�1� = �m�1i�1 ��m�jj�i �.) Hen
e, we obtain for i > 1 from (12)
ri(x) = Xm�j�i(�1)i+j�j � 1i� 1��m� 1j � 1��m(Æ�(x))j: (13)

To obtain the formula for r1(x), we note that r1(x) = e(x)�Pi>1 ri(x). The sum of the right handside of 13 over all i � 1 equalsXm�j(�1)j�1�m� 1j � 1��m(Æ�(x))jXi�j (�1)i�1�j � 1i� 1� = Æ�(x):
(The inner sum equals 1 if j = 1, and is zero otherwise.) Hen
e, we have

r1(x) = e(x)� Æ�(x) + Æ�(x)Xm �m Xj�m(�1)j�1�m� 1j � 1�(Æ�(x))j�1= xÆ�(x)� Æ�(x) + Æ�(x)Xm �m(1� Æ�(x))m�1
= Æ�(x)hx� 1 + �(1� Æ�(x))i:This 
ompletes the proof.

C Proof of Lemma 4Again, we begin with the initial random graph B, with k left nodes and �k right nodes, and 
ontinueto work with the generating fun
tions �(x) and �(x) from Se
tion 3. Suppose that ea
h node onthe right is removed with probability Æ0, while nodes on the left are removed with probability Æ.The new pro
ess 
an now be studied as a pro
ess with erasures on the left only, whi
h runs on thesubgraph ~B of the initial 
onsisting of the (1� Æ0)�n undeleted nodes on the right. Let ~�i be thefra
tion of edges of degree i in ~B with respe
t to the total number of edges in ~B. De�ne ~� similarly.Obviously, ~�i = �i, as the number of edges of degree i and the number of total edges in ~B are a(1� Æ0)-fa
tor of those of B. As for ~�i, it is easily seen that~�i =Xj�i �j�j � 1i� 1�(1� Æ0)i(Æ0)j�i:
This is done as follows: an edge of degree j is with probability 1 � Æ0 
onne
ted to an undeletednode on the right. The probability that j � i of the remaining j � 1 edges is 
onne
ted to one ofthe deleted nodes on the right is exa
tly a (1� Æ0)-fra
tion of the above sum.The above formula shows that ~�(x) = �(Æ0 + (1 � Æ0)x). Invoking Theorem 1 we see that theexpe
ted number of edges of right degree one at time x (with respe
t to the total number of edgesin ~B) equals Æ�(Æ0 + (1� Æ0)x) �x� 1 + �(1� Æ�(Æ0 + (1� Æ0)x))� :
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Sin
e the number of edges in ~B is (1� Æ0) times the number of edges in B, the assertion on r1(x)follows.To prove the se
ond part of the proposition, we retain the notation established earlier, e.g., e(x)is the fra
tion of the original edges remaining at x. Let E be the number of edges in the originalgraph, N be the number of left nodes in the original graph, and thus the average left node degreeis a` = E=N . We de�ne b(x) to be the average node degree among nodes on the left that have atleast one edge at x.We de�ne fi to be the fra
tion of left nodes of degree i in the original graph, and thus fi =a` � �i=i. We de�ne f(x) to be the expe
ted fra
tion of original left nodes still not re
overed atx. We de�ne ~f to be the fra
tion of left nodes that have all their neighbors among the original Æ0fra
tion of missing right nodes. We de�ne f̂(x) to be the expe
ted fra
tion of left nodes that haveat least one neighbor not among the original Æ0 fra
tion of missing right nodes and that are stillnot re
overed at x.One 
an verify that f(x) = Æ ~f + f̂(x), and that ~f = Pi fi(Æ0)i. Thus, our goal is to dedu
e a
losed form expression for f̂(x). The number of unre
overed left nodes with at least one neighborat x is equal to the number of edges remaining at x divided by b(x). The number of edges at x ise(x)E, and thus, f̂(x) = e(x)Eb(x)N = a` � e(x)=b(x):We now turn to b(x). It 
an be veri�ed thatb(x) = e(x)R x0 e(y)=ydy :From this it follows that f̂(x) = a` � R x0 e(y)=ydy: Re
all that e(y) = Æ(1� Æ0)y�(Æ0+(1� Æ0)y), andthus e(y)=y = Æ(1� Æ0)�(Æ0 + (1� Æ0)y). Further, re
all that �(z) =Pi �izi�1. Thus,Z x0 �(Æ0 + (1� Æ0)y)dy = Xi �ii � (Æ0 + (1� Æ0)y)i1� Æ0 �����x0 :Thus, Z xy e(y)=ydy = ÆXi �ii � (Æ0 + (1� Æ0)y)i �����x0= Æa` Xi fi � (Æ0 + (1� Æ0)y)i �����x0 :This implies f̂(x) = ÆhXi fi � (Æ0 + (1� Æ0)x)i � ~fi:
Finally, f(x) = f̂(x) + Æ ~f = ÆPi fi � (Æ0 + (1 � Æ0)x)i. By using Theorem 1, this shows that thefra
tion of nodes unre
overed at time x is, up to small order terms, equal to

Æa` � Z (Æ0+(1�Æ0)x)0 �(y)dy;and 
ompletes the proof.
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