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Abstract

We introduce a simple erasure recovery algorithm for codes derived from cascades of sparse
bipartite graphs and analyze the algorithm by analyzing a corresponding discrete time random
process. As a result we obtain a simple criterion involving the fractions of nodes of different
degrees on both sides of the graph which is necessary and sufficient for the decoding process to
finish successfully with high probability. By carefully designing these graphs we can construct
for any given rate R and any given real number € a family of linear codes of rate R which can
be encoded in time proportional to In(1/€) times their block length. Furthermore, a codeword
can be recovered with high probability from a portion of its entries of length (1 + €)Rn or more.
The recovery algorithm also runs in time proportional to nln(1/€). Our algorithms have been
implemented and work well in practice; various implementation issues are discussed.
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1 Introduction

A linear error-correcting code of block length n and dimension k over a finite field F;—an [n, k|,
code for short—is a k-dimensional linear subspace of the standard vector space Fj;. The elements
of the code are called codewords. To the code C there corresponds an encoding map Enc which is
an isomorphism of the vector spaces IF’; and C. A sender, who wishes to transmit a vector of k
elements in [F; to a receiver, uses the mapping Enc to encode that vector into a codeword. The rate
k/n of the code is a measure for the amount of real information in each codeword. The minimum
distance of the code is the minimum Hamming distance between two distinct codewords. A linear
code of block length n, dimension k, and minimum distance d over F, is called an [n, k, d]4-code.
Linear codes can be used to reliably transmit information from a sender to a receiver: the sender
first encodes the desired word into a codeword and transmits the codeword over the transmission
channel. Depending on the nature of the errors imposed on the codeword through the channel, the
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receiver then applies appropriate algorithms to decode the received word. In this paper, we assume
that the receiver knows the position of each received symbol within the stream of all codeword
symbols. We adopt as our model of errors the erasure channel, introduced by Elias [4], in which
each codeword symbol is lost with a fixed constant probability p in transit independent of all the
other symbols. Elias [4] showed that the capacity of the erasure channel is 1 —p and that a random
linear code can be used to transmit over the erasure channel at any rate R < 1 — p.

It is easy to see that a code of minimum distance d is capable of recovering d — 1 or fewer
erasures. Furthermore, a closer look reveals that this task can be done in time O(n3). The code
is optimal with respect to recovering erasures if it can recover from any set of k£ coordinates of the
codeword, i.e., if d — 1 = n — k. Such codes are called MDS-codes. A standard class of MDS-codes
is given by Reed-Solomon codes [16]. The connection of these codes with polynomial arithmetic
allows for encoding and decoding in time O(nlog?nloglogn). (See, [3, Chapter 11.7] and [16,
p. 369]). However, for small values of n, quadratic time algorithms are faster than the theoretically,
asymptotically fast algorithms for the Reed-Solomon based codes, and for larger values of n the
O(log2 nloglogn) multiplicative overhead in the running time of the fast algorithms (along with
a moderate sized constant hidden by the big-Oh notation) is large. Obviously, one cannot hope
for better information recovery than that given by Reed-Solomon codes, but faster encoding and
decoding times are desirable. In this paper, we design fast linear-time algorithms for transmitting
just below channel capacity. For all ¢ > 0 we produce rate R = 1 — p(1 + €) codes along with
decoding algorithms that recover from the random loss of a p fraction of the transmitted symbols
in time proportional to n1n(1/e) with high probability, where n is the block length. They can also
be encoded in time proportional to nln(1/€). The fastest previously known encoding and decoding
algorithms [1] with such a performance guarantee have run times proportional to nln(1/€)/e.

The overall structure of our codes are related to the low density parity-check codes introduced by
Gallager [6], which have been the subject of a great deal of recent work (see for example [10, 11, 15]).
We also use some ideas related to the codes introduced in [25] for error-correction. Because we
examine the erasure setting, however, our work includes several innovations, including a simple
linear time decoding algorithm and the use of irregularity. We explain the general construction
along with the encoding and decoding algorithms fully in Section 2.

Our encoding and decoding algorithms are almost symmetrical. Both are very simple, comput-
ing exactly one exclusive-or operation for each edge in a randomly chosen bipartite graph. As in
many similar applications, the graph is chosen to be sparse, which immediately implies that the
encoding and decoding algorithms are fast. Unlike many similar applications, the graph is not reg-
ular; instead it is quite irregular with a carefully chosen degree sequence. We describe the decoding
algorithm as a process on the graph in Section 2.2. Our main tool is a model that characterizes
almost exactly the performance of the decoding algorithm as a function of the degree sequence of
the graph. In Section 3, we use this tool to model the progress of the decoding algorithm by a
set of differential equations. The solution to these equations can then be expressed as polynomi-
als in one variable with coefficients determined by the degree sequence. The positivity of one of
these polynomials on the interval (0,1] with respect to a parameter § guarantees that, with high
probability, the decoding algorithm can recover almost all the message symbols from a loss of up
to a ¢ fraction of the codeword symbols (see Proposition 2). The complete success of the decoding
algorithm can then be demonstrated by combinatorial arguments.

Our analytical tools allow us to almost exactly characterize the performance of the decoding
algorithm for any given degree sequence. Furthermore, they also help us to design good irregular
degree sequences. In Section 4 we describe, given a parameter € > 0, a degree sequence for which
the decoding is successful with high probability for an erasure fraction ¢ that is within € of 1 — R.
Although these graphs are irregular, with some nodes of degree 1/¢, the average node degree is



only In(1/€). This is one of the central results of the paper, i.e., a code with encoding and decoding
times proportional to nIn(1/€) that can recover from an erasure fraction that is within € of optimal.

In Section 5 we discuss issues concerning practical implementations of our algorithms. This
section includes methods for finding good degree sequences based on linear programming, and
timings of the implementations. In the last section we summarize the main results of this paper,
and discuss recent developments following the publication of a preliminary version [13].

2 Graph Codes

In this section we introduce a new class of codes. Special subclasses of these codes turn out to
be almost MDS in the following sense: an [n, k],-code in this subclass is capable of recovering the
message from a random set of k(1 + €) coordinate places with high probability, where € is a small
real number. A more precise statement is provided later in Section 3. The advantages of these
codes are that they have linear time encoding and decoding algorithms, and that the alphabet size
q can be arbitrary. For simplicity, in the following we assume that the symbols are bits, i.e., that
q=2.

We explain the overall construction of the codes, as well as introduce simple and efficient
encoding and recovery algorithms.

2.1 Erasure Codes via Bipartite Graphs

We define a code C(B) with k message bits and Bk redundant bits, where 0 < 3 < 1, by associating
these bits with a bipartite graph B.! Following standard terminology, we refer to the 8k redundant
bits as check bits. The graph B has k left nodes and Gk right nodes, corresponding to the message
bits and the check bits, respectively. Hence, in the following, we refer to the left nodes of a bipartite
graph as its message bits and to the right nodes as its check bits.

The encoding of C(B) is determined by setting each check bit to be the & (XOR) of its neigh-
boring message bits in B (see Figure 1(a)). Thus, the encoding time is proportional to the number
of edges in B, and our codes are systematic.?

Our main contribution is the design and analysis of the bipartite graph B so that the repetition
of the following simplistic decoding operation recovers all the missing message bits.

Algorithm 1 (Erasure decoding). Given the value of a check bit and all but one of the message
bits on which it depends, set the missing message bit to be the XOR of the check bit and its known
message bits.

See Figure 1(b) for an example of this algorithm, and Figure 2 for an example of full recovery.

We introduce methods for the design of sparse random graphs where repetition of this operation
recovers all the message bits with high probability if a random subset of (1 — €)8k of the message
bits have been lost from C(B).

To produce codes that can correct erasures of check bits as well as message bits, we cascade
codes of the form C(B): we first use C(B) to produce Sk check bits for the original k& message bits,
we then use a similar code to produce 3%k check bits for the Bk check bits of C(B), and so on

We will use the word bit in a rather loose form, mostly to denote coordinate positions.

2Herein lies one of the differences of our codes compared to Gallager’s low-density parity-check codes: in the latter,
the coordinate places of the codeword itself are identified with the left nodes, and the right nodes define constraints
on these words. l.e., Gallager allows only those words such that for any right node, the XOR of its adjacent left
nodes is zero.
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Figure 1: (a) A graph defines a mapping from message bits to check bits. (b) Bits z1, z2, and ¢;
are used to solve for z3.

(see Figure 3). At the last level, we may use a more conventional erasure correcting code (e.g., a
Reed-Solomon code, if the alphabet size is large enough).

Formally, we construct a family of codes C(By), ...,C(B,,) from a family of graphs By, ..., B,
where B; has 'k left nodes and 31k right nodes. We select m so that 3™k is roughly vk and
we end the cascade with an erasure correcting code C of rate 1 — 3 with ™1k message bits for
which we know how to recover from the random loss of 3 fraction of its bits with high probability.
We then define the code C(By, Bi,...,Bm,C) to be a code with k message bits and

m+1

> Bk+B"k/(1-8) = kB/(1- B)

i=1

check bits formed by using C(Bp) to produce Bk check bits for the k message bits, using C(B;) to
form 3"k check bits for the Bk bits produced by C(B; 1), and finally using C to produce an
additional k3™*+2/(1 — 3) check bits for the ™1k bits output by C(B,,). As C(Byg, B1,...,Bmn,C)
has k message bits and k3/(1 — ) check bits, it is a code of rate 1 — 3.

Remark 1. Assuming that the code C' can be encoded and decoded in quadratic time (an assumption
which is certainly true for RS-codes), the code C(By, ..., By, C) can be encoded and decoded in time
proportional to the number of edges in all the C(B;).3

We begin by using the decoding algorithm for C' to decode erasures that occur within its
corresponding message bits. If C corrects all the erasures, then the algorithm now knows all the
check bits produced by C(B,,), which it can then use to correct erasures in the inputs to C(By,). As
the inputs to each C(B;) were the check bits of C(B;_1), we can work our way back up the recursion
until we use the check bits produced by C(By) to correct erasures in the original k message bits.
If we show that C can correct a random (3(1 — €) fraction of erasures with high probability, and
that each C(B;) can correct a random (3(1 — €) fraction of erasures of its message bits with high
probability, then we have shown that C(By, Bi,...,Bm,C) is a rate 1 — 8 code that can correct a
random [((1 — €’) fraction of erasures with high probability, for some €. Details can be found in
the proof of Theorem 2.

31f the alphabet size is too small for the corresponding Reed-Solomon code to exist, we can continue the cascade
until the graph has roughly ¥k nodes and use a random linear code with conventional erasure decoding.
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Figure 2: All stages of the recovery. (a) Original graph, (b) Graph induced by the set of lost nodes
on the left, (c)—(f) Recovery process

For the remainder of this section and much of the next section, we only concern ourselves with
finding graphs B so that the decoding algorithm can correct (1 — €) fraction of erasures in the
message bits of C(B), given all of its check bits.

2.2 The Graph Process and Degree Sequences

We now relate the decoding process of C(B) to a process on a subgraph of B, so that hereafter
we can use this simpler terminology when describing the process. This subgraph consists of all
nodes on the left that were erased but have not been decoded thus far, all the nodes on the right,
and all the edges between these nodes. Recall that the decoding process requires finding a check
bit on the right such that only one adjacent message bit is missing; this adjacent bit can then be
recovered. In terms of the subgraph, this is equivalent to finding a node of degree one on the right,
and removing it, its neighbor, and all edges adjacent to its neighbor from the subgraph. We refer
to this entire sequence of events hereafter as one step of the decoding process. We repeat this step
until there are no nodes of degree one available on the right. The entire process is successful if it
does not halt until all nodes on the left are removed, or equivalently, until all edges are removed.
It is simple to show that the result of this process is independent of the order in which nodes are
removed; subsequently, in the analysis, we may freely assume that the nodes of degree one are
chosen uniformly at random at each step.

The graphs that we use are chosen at random from a set of sparse bipartite graphs with a
carefully chosen degree sequence. In contrast with many applications of random graphs in computer
science, our graphs are not regular.

We refer to edges that are adjacent to a node of degree ¢ on the left (right) as edges of degree
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Figure 3: The code levels and directions of encoding and decoding process

i on the left (right). Each of our degree sequences is specified by a pair of vectors (A1,..., Am)
and (p1,...,Pm), where A; is the initial fraction of edges on the left of degree ¢ and p; is the initial
fraction of edges on the right of degree j. Note that we specify graphs in terms of fractions of edges,
and not nodes, of each degree, as this form turns out to be more convenient. The sequences A and
p give rise to generating polynomials A(z) = >, \;z*~! and p(z) = Y, p;z°~!. The unusual choice
of =1 rather than z* has to do with the analysis of the decoding, as described below. Using these
functions, one can succinctly describe many important parameters of the graph. For instance, it

. . 1 . . 1 . .
is easy to see that the average left degree ay of the graph is SoNTi which is @ If E is the

number of edges in the graph, then the number of left nodes of degree i is E);/i, and hence the
number of left nodes is ), \;/i. Hence, the average degree is F divided by this quantity. By a
similar reasoning, the polynomial A(z) = [; A(t)dt/a; has the property that its i-th coefficient is
the fraction of left nodes of degree i. (Analogous assertions hold of course for p(z).)

For a given pair A(z) and p(z) of degree sequences, we will be interested in constructing a
random bipartite graph with k& nodes on the left and Bk nodes on the right which has this degree
distribution. We will implicitly assume that the numbers work out, i.e., that 8k, EX;/i, and Ep; /i
are integers for all 7, and we assume that ﬁfol p(z)dz = fol A(z)dz. In this case, it is easy to see
that such graphs exist (say by induction). Later in Section 5.3 we will carry out a procedure to
uniformly sample graphs (with multi-edges) from the set of graphs with given degree sequences A
and p.

Note that, as the decoding process evolves, in the corresponding subgraph B’ of B remaining
after each step the matching remaining on B’ still corresponds to a random permutation. Hence,
conditioned on the degree sequence of the remaining subgraph after each step, the subgraph that
remains is uniform over all subgraphs with this degree sequence. The evolution of the degree
sequence is therefore a Markov process, a fact we make use of below.

In the next two sections, we develop techniques for the analysis of the process for general degree
sequences.

3 Large Deviation and Analysis of the Decoding

We analyze the decoding algorithm (Algorithm 1) by viewing it as a discrete random process. We
model the evolution of the main parameters of this system by a system of differential equations.
These parameters include the number of edges of different right and left degrees, as well as the



total number of edges and the average degrees of the bipartite graph on both sides. We need a
result which makes sure that these parameters are sharply concentrated around the solutions of
the system of equations, in the sense that the variation in the parameters are small compared with
the total number of steps. For the sake of keeping the technical discussion at an acceptable level,
we do not aim for the best possible results on the quality of the sharpness of the concentration.

In the fist part of this section, we state a general large deviation result which we will prove in
Appendix A. Similar results were obtained by Kurtz [8] who studied Markov jump processes, and
have been used previously by many researchers, see [5, 7, 17, 18, 20, 26] and the references therein.
We use a version due to Wormald [26] which has the advantage of being directly applicable to our
situation.

Next we set up the appropriate system of differential equations, and solve them explicitly. This
provides us with a concrete condition on the bipartite graph for successful decoding. However, we
can only make limited use of the large deviation result, as this only guarantees continuation of the
recovery process as long as the number of edges in the induced subgraphs is a constant fraction of
the original number of edges. To prove that the process ends successfully, we need a combinatorial
argument which proves that the random graph obtained at this stage of the decoding has reasonable
expansion properties, with high probability. This expansion property suffices to show that once the
number of edges remaining becomes sufficiently small, the decoding process completes.

3.1 Large Deviation

For analyzing our erasure decoding algorithm we need to keep track of nodes of degree one on
the right side of the bipartite graph as the algorithm proceeds. As the erasures occur randomly
on the left side, it is not surprising that the analysis requires tools from probability theory. We
may regard the number of edges of different degrees on the left and the right side of the graph as
random variables that evolve over time. It is relatively easy to compute the conditional expectation
of these random variables. This is done in the next subsection. What we need is a tool that asserts
that these random variables do not deviate too much from their expected value over the lifetime
of the process. This is a typical example of a so-called large deviation result which we derive in
this subsection. We assume that the reader is familiar with basic concepts such as (super- and
sub-)martingales [19]. For this argument, we follow [26] rather closely.

The evolution of the number of edges of different degrees on the graphs considered is a typical
example of a discrete time random process. Let {2 denote a probability space and S a measurable
space. A discrete time random process over ) with state space S is a sequence @ = (Qo, Q1,--.)
of random variables @;: Q2 — S. To every w € Q corresponds a realization (Qo(w), @1(w),...) of
the process. The history of the process up to time ¢ is the sequence H; = (Qo,Q1,...,Q:). For a
real-valued measurable function y defined on S* := U;>15?, the random variable y(H;) is denoted
by Y;.

We say that a function f: R’ — R satisfies a Lipschitz condition on D C R/ if there exists a
constant L > 0 such that

f(u) = f)| <L |ui — vil,
i=1

for all u,v € D.

For a sequence of real-valued random variables X,, taking only a countable number of values,
we say that X, = O(f(m)) with probability 1, if sup{z | Pr(X,, = z) # 0} = O(f(m)). The
following theorem summarizes the large deviation result we need later. Its proof can be found in
Appendix A.
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over a probability space ) with state space S, and Ht(m) = (ng), ceey ng)) be the m-th history up
to time t. Let d be a positive integer. For 1 < i < d and all positive integers m let y(+™): St —R
be a measurable function such that |y(»™) (h)| < Cm for all h € S} and for some constant C
(independent of i, m, h). Furthermore let f1,..., f4 be functions from R4*! to R.

Theorem 1. Let (Q(m))mzl be a sequence of discrete time random processes Q™) = (Q((]m), Q;

(i) There exists a constant C' such that for all m, for allt < m, and for all i < d:

v~y < o,

where Yt(iM) = g (im) (Ht(i’m));
(ii) for all i and uniformly over all (m,t) with t < m we have

B v | ) = fi(t/m, Y™ m, Y™ m);

(iii) for each i < d the function f; is continuous and satisfies a Lipschitz condition on D, where D
is some bounded connected open set containing the intersection of {(t, z1,...,24) | t > 0} with

some open neighborhood {(0, z1, ..., z4) | Pr(YO(i’m) =zm|1l<1i<d)#0 for some m}.
Then the following holds.
(a) For (0,(1,...,Cq) € D the system of differential equations

d.
ﬁ:fi(T,Zl,...,Zd), 'l.:].,...,d,
dr

has a unique solution in D for z;: R — R passing through z;(0) = (;, 1 <i <d.

(b) There is a constant ¢ such that
Pr(Yt(i) > mz;(t/m) + em®/%) < dm?/? exp(—Ym/2),

for 0 <t < om and for each i, where z;(t) is the solution in (1) with {; = E(Yo(i))/m, and
o = o(m) is the supremum of those T to which the solution can be extended.

3.2 The Differential Equations

We begin with the initial random graph B, with k left nodes and Bk right nodes. Suppose that
the graph is given by the degree distribution pair A(z) and p(z), as explained in Section 2.2, and
suppose that the total number of edges in the graph is E. As was explained above, the average
node degree a, on the left initially satisfies azl = >, Ai/i, and similarly the average node degree
a, on the right initially satisfies a, ' = ", p;/i.

In the application of Theorem 1 each time step corresponds to recovering one node on the left
hand side. Furthermore, the parameter m corresponds to the total number E of edges. Let § be the
fraction of erasures in the message. Initially, just prior to time 0, each node on the left is removed
with probability 1 — § (because the corresponding message bit is successfully received), and thus
the initial subgraph of B contains dk nodes on the left. If the process terminates successfully, it
runs until time 0k = Ed/ay. As in the last subsection, we denote by 7 the scaled time ¢/E. Hence,
7 runs from 0 to §/ay.
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Figure 4: Description of the differential equations

Let G be the graph obtained after a random deletion of (1 — §)k nodes on the left. We let Q
be the ¢t-th edge removed in the graph G, and by G; the graph obtained after removing Q1, . .., Qt,
all left nodes they are connected to, and all edges coming out of these nodes. If the process has
already stopped at time ¢ — 1, we set Gy = G;_1 for convenience.

We denote by E(i) the number of edges of left degree i at time ¢, and by ’R,(i) the number of
edges of rlght degree i at time ¢. Let F be the total number of edges in the original graph. We let
KEZ) /E and r(l) R(Z /E represent the fraction of edges (in terms of E) of degree ¢ on the
left and rlght respectively, at time ¢. We denote by e; the fraction of the edges remaining at time
t, that is, e, =), Z(z Z (l).

First we note that |£thl ﬁ’)\ < 4 for all ¢ and ¢, so Condition (i) in Theorem 1 is satisfied.
Recall that at each step, a random node of degree one on the right is chosen, and the corresponding
node on the left and all of its adjacent edges are deleted. (If there is no such node, the process
necessarily stops.) The probability that the edge adjacent to the node of degree one on the right
has degree i on the left is EEZ)/et, and in this case we lose i edges of degree i, see Figure 4(a). Hence,
we have

O 0 gyt
E(‘Ct+1 - ‘Ct | Ht) - _e—t,
for i =1,...,d, where d is the maximum degree on the left hand side.
Abusing the notation slightly, we set
il;
fi(sagla v aed) = _?a

where e = ). ¢;, and see that Condition (ii) of Theorem 1 is satisfied for these functions. Fur-
thermore, fixing n > 0, we further see that these functions satisfy Condition (iii) in the domain D
defined by the inequalities 0 < s < d+1n, 0< ¢ <1+4n,forali=1,...,d,andn <e < d§+n.
Now Theorem 1 implies that with high probability we have Lﬁi) = Et;(t/E) + O(E®/®) uniformly
for all En <t < (6 4+ n)E, where ¢;(7) form the solution to

de(T) _ 7’L.Zi(T)
dr e(7)

(1)

fori=1,...,d.

These differential equations are solved by defining z so that dz/dr = —z/e(7). The value of
z in terms of 7 is then z := exp(— [, ds/e(s)). By substituting dz/xz for dr/e(r), Equation (1)
becomes d4;(z)/dz = il;(x)/z, and integrating yields ¢;(z) = c;z*. Note that z = 1 for ¢ = 0, and
Ei(’r = 0) = (5)\1 Hence, C; = 5)\1 and



Since £4;(x) goes to zero as T goes to d/ay, x runs over the interval (0, 1].

To discuss the evolution of the right hand side, first note that |'Rg_)1 — 'REJ)\ < d, where d is
the maximum degree on the left. This is because a left node is connected to at most d right nodes
and one of the right neighbors has been used to recover the left node. Hence, Condition (i) of the
theorem is satisfied. Note that when we remove a node of degree 7 on the left, we remove the one
edge of degree one from the right, along with the i — 1 other edges adjacent to this node. Hence
the expected number of other edges deleted is a; — 1, where a; = ) ifgl)/et. The right endpoints
of these 7 — 1 other edges on the right hand side are randomly distributed. If one of these edges
is of degree j on the right, we lose j edges of degree j, and gain j — 1 edges of degree j — 1, see
Figure 4(b). The probability that an edge has degree j on the right is just 7“5] /et. Then, for ¢ > 1,
we have )

B(RY), - R | ) = () = 7)1
(We assume that () is defined for all positive ¢, and is 0 for sufficiently large i.) The case i = 1
plays a special role, as we must take into account that at each step an edge of degree one on the
right is removed. This gives

—1
R | ) = () -2

t
€t

1
E(R{)) —

Let p be the maximum degree of a node on the right. Abusing the notation slightly, we set

pla —1)

9u(Tyr1, .o my) = =Ty S

ila—1)

gz’(T, T1y... ﬂ“y) = (Ti+1 — Ti) forl <i< I,

(-1

gl(Tarla"'vru) = (7‘2*7‘1) )

where e = Zj rj and a = Zj j¢;/e. Fixing any n > 0, we see as in the case of the left hand side
evolution, that these functions satisfy a Lipschitz condition, as long as 7 = t/E > n. Application
of Theorem 1 thus yields that almost surely, we have Rgz) — Er;(t/E) + O(E®/%) uniformly for all
nE <t < (d +n)E, where r;(7) form the solution to

dri(T) N ' ) )
2 = (i (1) — () S

fori > 1, (3)

and 4 )
0 (ra(r) - i =D (@

Our key interest is in the progression of r1(7) as a function of 7. As long as r1(7) > 0, so that
we have a node of degree one on the right, the process continues; when r;(7) = 0 the process stops.
Hence we would like 71(7) > 0 until all nodes on the left are deleted and the process terminates
successfully.

We proceed with the determination of r;(1), the expected fraction of edges of right degree one
at time 0: because each node on the left is deleted randomly just prior to time 0 with probability
1 — 4, and the graph is a random graph over those with the given degree sequence, to the nodes
on the right it is as though each edge is deleted with probability 1 — §. Hence, an edge whose

10



right incident node had degree j before the deletion stage remains in the graph and has degree ¢
afterwards with probability (z:i) §4(1 — 6)7~%. Thus,

ZORD S (i LR o)

m2j

In Appendix B we will solve the set of differential equations given by (3) and (4) with the initial
condition (5). Here is the result.

Proposition 1. For the solution to the system of differential equations given by (3) and (4) with
the initial condition (5) we have

r1(z) = 6A(z)[z — 1+ p(1 — 5A(2))], (6)
where z is defined via dz/dT = —z/e(T).
This immediately gives rise to the following result.

Proposition 2. Let B be a bipartite graph with k message bits that is chosen at random with
edge-degrees specified by A(z) and p(z). Let § be fized so that

p(1—dA(z)) >1— =, for xz € (0,1].

For all n > 0 there is some ko such that for all k > kg, if the message bits of C(B) are erased
independently with probability §, then with probability at least 1 — k*/% exp(—+v/k/2) the recovery
algorithm terminates with at most nk message bits erased.

PrROOF. Let E be the number of edges in the graph. Then E = kay, where a, is the average
degree of the nodes in the left side of the graph, which is a constant for fixed A and p. (Note
that ay = )  A\;/i.) Let p:=n/ay. By (6) and the preceding discussions, with probability at least
1 — k?/3 exp(—V/k/2) the number of nodes of degree one on the right is,

S\() [z — 14 p(1 — A(z))] + O(KY9),

for z € (n',1], where ' = exp(— fO“ ds/e(s)). By our assumption, this number is positive (for large
enough k), which proves the assertion. O

The foregoing proposition does not prove that the decoding process terminates successfully
recovering all the missing nodes on the left hand side. To do this, we need a combinatorial argument
which says that random graphs are good expanders. This means that any small enough subset of
left nodes has many right neighbors. The exact statement is given in the proof of the following
result.

Lemma 1. Let B be a bipartite graph with k left nodes chosen at random with edge-degrees specified
by A(z) and p(z), such that A(xz) has A1 = A\a = 0. Then there is some n > 0, such that, with
probability 1 — O(k*3/2), the recovery process restricted to the subgraph induced by any n-fraction
of the left nodes terminates successfully.

PrOOF. Let S be any set of nodes on the left of size at most nk, where 1 will be chosen later. Let
a be the average degree of these nodes. If the number of nodes on the right that are neighbors of
S is greater than a|S|/2, then one of these nodes has only one neighbor in |S|, and so the process
can continue. Thus, we only need to show that the initial graph is a good expander on small sets.
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Let & denote the event that a subset of size s of the nodes on the left has at most as/2 neighbors.
We first bound Pr(€&;), and then sum Pr(&;) over all values of s no larger than nk. Fix any subset

S of the left nodes of size s, and any subset T' of the right nodes of size as/2. There are (';) ways

of choosing S, and (ag ’;2) ways of choosing T'. The probability that T contains all the as neighbors

of the vertices in S is (as/28k)*. Hence, we have

e = (1) (o) (530)

Note that (}) < (ne/k)*, hence we have

a/2—1)s 2 5/2
ey < ()< ()

where c is a constant (depending on 3 and a). Since the graph does not have nodes of degree one
or two, we have that Pr(&;) = Pr(£2) = 0. Choosing 1 < 1/(2¢?) yields

nk 2\ $/2 nk 2\ $/2 2 nk
> (%) %(%) swarmrola)
k k Wk o 20 kvk

s=1 s=3

which shows that, with high probability, the original graph is an expander on small subsets. O

The above proof shows that the main contribution for the error-probability comes from nodes
of degree three on the left. For the same reason, it is easy to see that nodes of degree two will lead
to a constant error probability. We leave the details of this argument to the reader.

Altogether we obtain the main theorem of this section.

Theorem 2. Let k be an integer, and suppose that C = C(Bi, ..., By, C) is a cascade of bipartite
graphs as explained in Section 2, where By has k left nodes. Suppose that each B; is chosen at
random with edge-degrees specified by A(z) and p(x), such that A(xz) has Ay = Ay = 0, and suppose
that § is such that

p(l —6X(z)) >1—uz, (7)

for all 0 < © < 1. Then, if at most a §-fraction of the coordinates of an encoded word in C are

erased independently at random, then our erasure decoding Algorithm terminates successfully, with
probability 1 — O(k=3/%), and does so in O(k) steps.

PROOF. At each level of the cascade the number of edges equals the average degree of the nodes
on the left times the number of the nodes. The average degree is always 1/ fol A(t)dt, which is a
constant. Hence, the total number of edges in the the cascade (up to the last layer) is O(k), which
shows that the recovery process needs O(k) steps. (See Remark 1.)

Next we bound the probability that there is some j such that the fraction of left nodes lost on
the left side of the graph Bj is larger than ¢’ := d + 1/\8/E We use a version of the Chernoff bounds
given in [19, Prob. 4.7(c), pp. 98]. According to that, for any j the probability that there are
more erasures than §(k/27) + (k/27)3/4 is upper bounded by exp(—24/k/27), which is smaller than
exp(—2{4/E). The required probability is certainly at most equal to the sum of these probabilities
(union bound), which is log(k) exp(—v'k)/2. (Note that there are log(k)/2 such j’s).

For large enough k Condition (7) is satisfied for ¢’ instead of ¢ (by continuity). Hence, invoking
Proposition 2, for any > 0 and any of the graphs B; in the cascade our decoding algorithm 1
stops with less than nk/2’ nodes uncorrected, with probability 1 — O(exp(—k?)) for some positive

12



~v. Now Lemma 1 applies and shows that, for small enough 7, the recovery process ends successfully
with probability 1 — O((27/k)3/2). The probability that our algorithm fails on at least one of the
graphs is thus at most Zj(2j/k)3/2, where j runs from 0 to log(k)/2. This is equal to O(k~3/%),
which shows the assertion. O

For designing graphs that lead to good codes, it is thus necessary to fulfill Condition (7). It is
sometimes desirable to use the “dual condition”

A1 —p(y)) <1-uy, (8)

for y € [0,1), which is obtained from (7) by substituting y := p~!(1 —x). Note that p has an inverse
on (0,1], as it is monotonically increasing.

In the next section we use this theorem to analyze decoding properties of codes obtained from
regular graphs.

4 Capacity Achieving Codes

In this section we will construct for any erasure probability p families of codes with linear time
erasure decoding algorithms that can correct any p-fraction of erasures and whose rates come
arbitrarily close to the capacity 1 — p of the erasure channel. In other words, we construct codes
that are close to optimal in terms of their erasure recovery rate, and have linear time encoding
and decoding algorithms. We do this by finding an infinite family of solutions to the differential
equations of Section 3 in which § is close to 1 — R, where R is the rate.

Let B be a bipartite graph with k left nodes and Sk right nodes. We describe our choice for the
left and right degree sequences of B that satisfy Condition (7). Let D be a positive integer that is
used to trade off the average degree with how well the decoding process works, i.e., how close we
can make § to 8 =1 — R and still have the process finish successfully most of the time.

The left degree sequence is described by the following truncated heavy tail distribution. Let
H(D) = Zi';l 1/i be the harmonic sum truncated at D, and thus H(D) ~ In(D). Then, for all
1=2,...,D 41, the fraction of edges of degree ¢ on the left is given by

\i = 1/(H(D)(i — 1)).

The average left degree ay equals H(D)(D+1)/D. Recall that we require the average right degree,
ar, to satisfy a, = ay/3. The right degree sequence is defined by the Poisson distribution with
mean a,: for all 4 > 1 the fraction of edges of degree ¢ on the right equals

e—aaz—l

Pi:m,

where « is chosen to guarantee that the average degree on the right is a,. In other words, « satisfies
ae®/(e* — 1) = a,.

Note that we allow p; > 0 for all ¢ > 1, and hence p(z) is not truly a polynomial, but a
power series. However, truncating the power series p(z) at a sufficiently high term gives a finite
distribution of the edge degrees for which the next lemma is still valid.

We show that when § = 3(1—1/D), then Condition (7) is satisfied, i.e., p(1 —dA(z)) > 1—z on
(0, 1], where A(z) = >, \iz* ! and p(z) = Y, p;z* 1. Note that A(z) is the expansion of — In(1—z)
truncated at the Dth term, and scaled so that A(1) = 1. Further, p(z) = e®(*~1),

Lemma 2. With the above choices for p(xz) and A(x) we have p(1 — 6A(z)) > 1 — =z on (0,1] if
§ < B/(1+1/D).

13



PROOF. Since p(x) increases monotonically in z, we have
p(1— 6X(z)) > p(1+ 81In(1 — z)/H(D)) = (1 — z)¥/HD),

As ay = H(D)(1 +1/D) and a, = ay/8, we obtain ad/H(D) = (1 —e *)(1+1/D)§/8 < §(1 +
1/D)/B < 1, which shows that the right hand side of the above inequality is larger than 1 — z on
(0,1]. O

A problem is that Lemma 1 does not apply to this system because there are nodes of degree two
on the left. Indeed, simulations demonstrate that for these choices of A(z) and p(z) a small number
of nodes often do remain. To overcome this problem, we make a small change in the structure of
the graph B. Let v := 8/D?. We split the Bk right nodes of B into two distinct sets, the first
set consisting of (8 — )k nodes and the second set consisting of vk nodes. The graph B is then
formed by taking the union of two graphs, B; and Bs. Bj is formed as described up to this point
between the k left nodes and the first set of (3 — )k right nodes. By is formed between the k left
nodes and the second set of vk right nodes, where each of the k left nodes has degree three and the
3k edges are connected randomly to the vk right nodes.

Lemma 3. Let B be the bipartite graph described above. Then, with probability 1 — O(k_3/2), the
decoding process terminates successfully when started on a subgraph of B induced by 0k of the left
nodes and all Bk of the right nodes, where § = 3(1 —1/D).

PrROOF. In the analysis of the process, we may think of Bs as being held in reserve to handle
nodes not already dealt with using B;. First, using the same method as in Lemma 1 we can prove
that there is some 7 such that an set S of s < nk left nodes in the graph By expands to a set of
at least 3s/2 nodes on the right, with probability 1 — O(1/k%/2). (Note that all nodes on the left
have degree three in this graph.) Combining Proposition 2 and Lemma 2, we see that the recovery
process started on B; terminates with less than nk nodes on the left unrecovered, with probability
1 — O(exp(—k®)) for some positive a: note that the ratio of the number of left nodes to the number
of right nodes in the graph By equals 3(1 — 1/D?), hence the condition in Lemma 2 translates
to § < B(1 —1/D?)/(1 +1/D) = B(1 — 1/D), which is obviously true. By the aforementioned
expansion property of the subgraph of Bs induced by the set of unrecovered left nodes, we see that
the process terminates successfully. Il

Note that the degree of each left node in this modified construction of B is at most three bigger
than the average degree of each left node in the construction of B described at the beginning of
this section. We can use this observation and the lemma above to immediately prove the following.

Theorem 3. For any R with 0 < R < 1, any € with 0 < € < 1, and sufficiently large block length
n, there is a linear code and a decoding algorithm that, with probability 1 — O(n*3/4), is able to
correct a random (1 — R)(1 — €)-fraction of erasures in time proportional to nln(1/e).

PROOF. Set D = [1/e] to get a one level code with the properties described in Lemma 3.
Cascade versions of these codes as described in Section 2 to get the entire code. As was pointed
out above, the average degree a, of the left nodes in each of the layers is upper bounded by
3+ ZZPZI 1/i < 4 + In(1/e), which is proportional to In(1/e). Hence, the total number of edges
in the bipartite layers of the graph is proportional to nln(1/€), which proves the assertion on the
decoding time.

Using Lemma 3 and the same analysis as in the proof of Theorem 2, we can show that the code
constructed above can recover, with probability 1 — O(n’3/4), all the message bits, if a random
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Figure 5: Erasure decoding of irregular graphs: left degree versus the overhead beyond optimal
value needed to recover (rate = 1/2)

d-fraction of the codeword is missing, where § = 3(1 — 1/D). Noting that 8 = 1 — R, we obtain
the result. 0O

Figure 5 shows the running time of the encoding/recovery algorithms (as multiples of the block
length) versus the overhead needed to recover. For instance, for sufficiently large n, one can
construct in this way [n, k|4-codes that have encoding/recovery algorithms running in time ~ 7n,
which can recover a codeword from a random set of 1.002k of its coordinates.

5 Practical Considerations

The discussions in the preceding sections have been of a more theoretical, rather than a practical
nature. However, as the graph codes designed via the above mentioned theorems can be used in
practical situations, it is important to describe possible implementations. We start with modifying
our construction by allowing erasures to also occur on the right hand side. An analysis of this
type provides us with some insight in how to design cascaded versions of our codes with much
fewer levels, and faster decoding algorithms for the end level. Next, we show how to use a linear
programming approach to design bipartite graphs which give rise to very good codes. Finally, we
briefly discuss some of our implementations. A preliminary report on the results of this section
appeared in [9].

5.1 Fraction of Left Nodes Unrecovered

So far we have assumed in our analysis that in each layer of the cascade all the check bits are
received when trying to recover the message bits. The reason we made this assumption is that
in the original construction the cascading sequence of bipartite graphs is completed by adding a
standard erasure correcting code at the last level.

There are some practical problems with this. One annoyance is that it is inconvenient to
combine two different types of codes. A more serious problem is that standard erasure correcting
codes take quadratic time to encode and decode (if the alphabet size is large enough; otherwise,
cubic running time will do). Suppose the message is mapped to a codeword twice its length. In
order to have the combined code run in linear time, this implies that the last graph in the cascading
sequence has vk left nodes, where k is the number of nodes associated with the original message,
i.e., there are O(log(k)) graphs in the sequence. In the analysis, we assume that an equal fraction
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of the nodes in each level of the graph are received. However, there is variance in this fraction at
each level, with the worst expected fractional variance at the last level of 1/ vk. Thus, if a message
of length 65,536 is stretched to a codeword of length 131,072, then just because of the variance
of 1/\4/E = 0.063, we expect to have to receive 1.063 times the message length of the codeword in
order to recover the message.

A solution to this problem is to use many fewer levels of graphs in the cascade, and to avoid
using a standard erasure correcting code in the last level. That is, for the last layer, we continue
to use a randomly chosen graph. We have tried this idea, with the last graph chosen from an
appropriate distribution, and it works quite well. For example, using only three levels of graphs
we can reliably recover a message of length 65,536 from a random portion of length 67,700 (i.e.,
1.033 times the optimal of 65,536) of a block-length of 131,072.

To design the graph for this solution, we need to analyze the decoding process when a random
portion of both the message bits and the check bits are missing. The following result gives the
expected fraction of right nodes of degree one with respect to the number of edges in the graph,
and estimates the fraction of left nodes unrecovered at each step of the algorithm.

Lemma 4. The fraction r1(x) of edges of right degree one at x with respect to the number of edges
in the original graph B equals

ri(z) =0(1 =0 + (1 —6")z) [2 — 1+ p(1 — 6A(8" + (1 —&")z))] .

Furthermore, up to lower order terms, the fraction of left nodes unrecovered at time x equals

(8'+(1-8)2)
sa - [ Aly)dy.
0

We will prove this lemma later in Appendix C. We immediately obtain the condition
p(L—A+(1—-68)z)>1-2 z€(0,1] (9)

for successful decoding.

The above inequality is not possible to satisfy for all z € (0,1] if ' > 0, for any value of §: for
z = 0 the left hand side equals p(1 — dA(d")) which is strictly less than 1. There is an intuitive
reason for this: the subgraph B on which the process starts has edges of degree one on the left;
these edges can only correct the left nodes they are connected to, and cannot help any other node
on the left.

However, it turns out to be an interesting question to see what fraction of the left nodes can
be recovered when a fraction &' of the right nodes is missing. The answer to this question can be
used to design cascading codes where the decoding process moves from right to left bootstrapping
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up to recover a higher and higher fraction of nodes at each successive decoded layer of the graph
until it is able to recover all of the first (message) layer. (See Figure 6.)

Given the (\) and (p) vectors, Condition 9 can be used to compute the smallest value of z for
which the condition is still valid. The second part of Lemma 4 then gives the fraction of unrecovered
nodes on the left at this value of .

5.2 Computing Degree Sequences Using Linear Programming

In this section we describe a heuristic approach that has proven effective in practice to find a good
right degree sequence given a specific left degree sequence. The method uses linear programming
and the differential equation analysis of Section 3. Recall that a necessary condition for the process
to complete is that p(1 —dA(z)) > 1 —x on (0,1]. We first describe a heuristic for determining for
a given A\(z) representing the left degree sequence and a value for § whether there is an appropriate
p(x) representing the right degree sequence satisfying this condition. We begin by choosing a set M
of positive integers which we want to contain the degrees on the right hand side. To find appropriate
Pm, m € M, we use the condition given by Theorem 2 to generate linear constraints that the p; must
satisfy by considering different values of z. For example, by examining the condition at = = 0.5,
we obtain the constraint p(1 — dA(0.5)) > 0.5, which is linear in the coefficients of p(z).

We generate constraints by choosing for  multiples of 1/N for some integer N. We also include
the constraints p,, > 0 for all m € M. We then use linear programming to determine if suitable
pm €xist that satisfy our derived constraints. Note that we have a choice for the function we wish
to optimize; one choice that works well is to minimize the sum of p(1 —dA(z)) +z — 1 on the values
of x chosen to generate the constraints. The best value for § for given N is found by binary search.

Given the solution from the linear programming problem, we can check whether the p; computed
satisfy the condition p(1 — dA(z)) > 1 —z on (0, 1].

Due to our discretization, there are usually some conflict subintervals in which the solution does
not satisfy this inequality. Choosing large values for the tradeoff parameter NV results in smaller
conflict intervals, although it requires more time to solve the linear program. For this reason we
use small values of N during the binary search phase. Once a value for § is found, we use larger
values of N for that specific § to obtain small conflict intervals. In the last step we get rid of the
conflict intervals by appropriately decreasing the value of §. This always works since p(1 — dA(z))
is a decreasing function of §.

We ran the linear programming approach on left degree sequences of the form 3,5,9,...,2¢ +1
for codes with rates 1/2,2/3,3/4,4/5,9/10 and average left degrees 5.70,6.82,8.01. These results
are gathered in Figure 1 which shows how much of the codeword is sufficient to recover the entire
message as a fraction of the message length as the message length goes to infinity. Since these
graphs do not have nodes of degree two on the left, Theorem 2 imply that with high probability
the corresponding codes recover the entire message from the portion of the codeword indicated in
the table, provided the message length is large enough. However, as the maximum degrees in the
examples we have found are rather large (about 30000), these codes are rather impractical.

One major disadvantage of the approach given above is that we need to fix the left hand side of
the graph. To overcome this difficulty, we use the dual condition (8). We can now use this condition
and the linear programming approach to solve for the best A given p, then use the original condition
to solve for the best p given this A, and so on. We have tried this strategy and it gives good results,
although at this point we have not proved anything about its convergence to a (possibly optimal)
pair of probability distributions.

For example, we found that the following pair of degree sequence functions yield [2k, k],-codes
which are able to recover from a random set of 1.01k coordinates, with high probability; the
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Average Rate

Degree 1/2 | 2/3 | 3/4 | 4/5 | 9/10
5.70 1.036 | 1.023 | 1.016 | 1.013 | 1.006
6.82 1.024 | 1.013 | 1.010 | 1.007 | 1.004
8.01 1.014 | 1.008 | 1.007 | 1.005 | 1.002

Table 1: Close to optimal codes for different rates and average left degrees.

corresponding average degree is 12:

Mz) = 0.430034z2 + 0.2373312'2 + 0.0079792" + 0.119493z*7 4 0.052153z*® +
0.079630z'%" + 0.073380z '
p(x) = 0.713788z" + 0.122494z'° + 0.1637182'%.

Note that, in contrast to the examples above, the maximum node degrees in these graphs are
much smaller. This makes them more practical for smaller values of k, than the codes giving rise
to Table 1.

5.3 Implementations and Timings

In this subsection we report on some of the implementations of our codes. In all these examples
a message consisting of 640000 packets was encoded into a vector of 1280000 packets, and each
packet consisted of 256 bytes. The cascade consisted of three layers: a first layer consisting of
640K nodes on the left, and 320 K nodes on the right, a second layer consisting of 320K nodes
on the left and 160K nodes on the right, and a third layer consisting of 160K nodes on the left
and on the right. The edge distributions of the graphs used in the first and the second layer were
the heavy tail/Poisson distribution discussed in Section 4. The edge distribution in the third layer
was different, and used some of the analysis of Section 5.1: the edge distribution on the left was a
“double heavy tail” distribution, given by A(z) := A(z?), where X is the edge distribution function
of the heavy tail distribution.

To chose an appropriate random bipartite graph B with E edges, k nodes on the left, and Gk
nodes on the right, the program started with a bipartite graph B’ with E nodes on both the left and
right hand sides, with each node of B’ representing an edge slot. Each node on the left hand side
of B’ was associated with a node on the left side of B, so that the distribution of degrees is given
by (A1,...,Am), and similarly for the right. The program then choose a random matching (i.e., a
random permutation) between the two sets of E nodes on B’. This induced a random bipartite
graph on B (perhaps with multi-edges) in the obvious manner with the desired degree structure.
In experiments it turned out that the existence of multi-edges is not a serious problem. This can
be explained by the observation that one can analyze the process for random multigraphs instead
of random graphs and that this analysis turns out to yield essentially the same results as the one
carried out in Section 3.

A schematic description of the code is given in Figure 7. The average degree of the nodes in this
graph was 8. The decoding algorithm was executed 1000 times, each time with a different random
loss pattern. Figure 8 shows length overhead statistics: the horizontal axis represents p and the
vertical axis represents the percentage of times where (1 + u) times the length of the message was
needed to completely recover the message, based on the 1000 trials. In compliance with the results
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of Section 3 we see that the parameters are sharply concentrated around their mean value.

On a DEC-alpha machine with 300MHz and 64MB RAM the encoding took 0.58 CPU-seconds,
and the decoding took 0.94 seconds, on average. This corresponds to a throughput of roughly 280
Mbit /sec.

On a Pentium Pro at 200 MHz and 64MB RAM, the encoding took 0.58 seconds, while the
decoding took 1.73 seconds, on average. This corresponds to a throughput of roughly 150 Mbit /sec.

It should be noted that most of the time in our algorithm is spent in pointer chasing. The code
used was a straightforward C-implementation. Use of more sophisticated data-types, and more
intelligent pre-fetching strategies would probably speed up the code considerably.

6 Conclusion

We have introduced in this paper a class of error-correcting codes, based on a cascade of bipartite
graphs. Although the idea of using sparse bipartite graphs for constructing codes is not new [6, 25],
the construction of the graphs in each of the layers is novel. We obtained the construction by
analyzing a simple decoding algorithm. The analysis used results asserting the sharp concentration
of parameters in a discrete random process around their means. Using this, we established a simple
condition that the degree sequences of the left and right hand sides of the bipartite graphs had to
satisfy in order for the process to finish successfully. We designed a family of capacity-achieving
codes on the erasure channel with linear time encoding and decoding algorithms. We should point
out that our model of computation, as it stands, is that of a random access machine with unit
cost. However, our construction can be modified using pre-fetching strategies to yield linear time
algorithms for random access machines with logarithmic cost. The modification is quite similar to
that given in [24].

7 Further Developments

The appearance of the first version of this paper as an extended abstract in [13] inspired new
developments which we would like to briefly comment on in this section. First, the analysis of this
paper was simplified in [9] by using proper martingale arguments. Nevertheless, since we feel that
the approach outlined in this paper (in particular, Theorem 1) may have other applications, we
opted for leaving the analysis in its original form. One of the main results of this paper is the
fact that properly chosen irregular graphs perform a lot better than regular graphs, and that the
only parameters that determine the asymptotic performance are the fractions of nodes of various
degrees. This observation together with the new analysis were combined in [10] to study irregular
low-density parity-check codes on the binary symmetric channel, with simple hard-decision decoding
algorithms going back to Gallager [6] . * This paper appears to have been influential. First, the
idea of using irregular codes was taken up and extended by other researchers (see, e.g., [14]).
Second, the main “concentration theorem” of [10] was extended to a large class of channel models
in a landmark paper by Richardson and Urbanke [22], which first appeared in 1998. Based on their
approach, they developed the “density evolution” algorithm, a numerical procedure to approximate
the threshold of noise below which the belief propagation algorithm ° is asymptotically successful.
Several months later, their method was further extended in [21] in which sequences of codes were
constructed for which the belief propagation algorithm had a performance extremely close to the
Shannon capacity, beating Turbo codes [2] by a wide margin for modest block-lengths.

4An updated version of this paper appears in this issue [12].
®Qur erasure decoder turns out to be the belief propagation algorithm for the erasure channel [21].
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Another main result of this paper was to show that there are families of degree sequences such
that the corresponding graphs asymptotically meet the capacity of the erasure channel (using our
simple erasure decoding algorithm). Another family of such degree sequences was exhibited in [23].
So far, these have been the only known capacity-achieving families of degree sequences, and another
example of a communication channel for which capacity-achieving sequences exist for all rates is
yet to be found.
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A Proof of Theorem 1

Recall that a sequence of random variables X, X1, ... is called a martingale if E[X; | Xo,..., X;_1] =
X1 foralli > 1. The sequence is called a sub-martingale (super-martingale) if E[X; | Xo,...,X;-1] >
Xi—1 (B[X; | Xo,...,Xi—1] < X;_1). For the proof of our concentration result we need the following
well-known result, often called Azuma’s inequality [26, Lemma 1].

Theorem 4. Let Xy, X1,... be a supermartingale with respect to a sequence of o-algebras F; with
Fo = {0,9Q}, and suppose that Xy = 0 and | X1 — Xi| < ¢ for some constant ¢ and for i > 0.
Then for all @ > 0 we have

Pr(X; > ac) < exp(—a?/2k).
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Proof of Theorem 1: : We modify the proof in [26] slightly to obtain the error bounds asserted in
the theorem. First, note that by a standard result in the theory of first order differential equations,
there is a unique solution in (a).

As in [26] we simplify the notation by considering d = 1 and referring to y(b™) | 21 and f; as
Yy, z, and f, and so on. The proof for general d is similar.

Let w := [m?/3], and assume that 0 < t < m — w. We first demonstrate concentration of
Yitw —Y:. Notice that the Lipschitz condition on f and Condition (ii) imply that for all 0 < k& < w

t+k Y t Y, 2k +1
E(Yerkrr — Yorr | Her) = f<—, ”’“) < f<—,—t> =

m m m m

for some constant .
For fixed ¢, define the random variable X := Y;,x — Y; — kf(t/m, Y;/m) — vk?/m. Note that

m m m

t Y; 2k +1
Xpp1 — X = Yt+k+1Yt+kf<—,—t>’Y .

This shows that the X form a supermartingale with respect to Hy,..., Hy1y, as 0 > E(Xgq —
Xi|Hevk) = E(Xgy1|Herx) — Xg. Furthermore, the above equality shows that | X1 — Xg| < Cs
for some constant C3. We can now apply the inequality of Theorem 4. As Xy = 0, we obtain
Pr(X, > aCy) < exp(—%), for any 0 < a. (The parameter o will be chosen later.) The lower
tail can be bounded in exactly the same way, using a submartingale. This gives for any constant
B (to be chosen later)

Y,
Pr( mw—n—wf<t t)

m’'m
Now let kg := fw, where £ =0,1,...,4y and ¢y = |min{m/w,om/w}|. Let

«

> (v+B)%2 +a02) < exp(—%)- (10)

T . (yw? + amCs)((1 + Bw/m)t — 1)
£ Bw '

We prove by induction on £ that
o2
7y = Pr(Yi, — 2(ke/m)m| > Ty) < eexp<—2—).
w

The assertion is obvious for the induction starting at £ = 0, as z(0) = E(Yp)/m. Define

Al = Yk4+1 - Ykl - wf(kg/m, Yke/m),
Ay = Y, —mz(ke/m),
Az = mz(kep1/m) — mz(ke/m) — wf(ke/m, Yy, /m).

Note that
Yipn —mz(kep1/m)| = |Ar + Az — A3| < |Aq] + [A2| + | 43).

The inductive hypothesis gives that |A3| < T, with probability at least 1 —£exp(—a?/2w). Further,
by 10 we have |A4;| < yw?/m + aC> with probability at least 1 — exp(—a?/2w). To bound Az we
proceed as follows. By the mean value theorem we have that z(ksy1/m) — 2(k¢/m) = w2z'(€)/m,
where 2’ is the derivative of z and ¢ is some real number with ky/m < & < ky,1/m. Note that z
satisfies the differential equation in (1), hence 2'(¢) = f(&,2(£)), and by the Lipschitz condition
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on f we obtain |A3| < Lw(|kg/m — &| + |Yi,/m — 2(§)|). By the continuity of z and the inductive
hypothesis, we see that for suitable choice of the constant B we have

T
|A3|<B(—+u>,
m

for large enough m. Altogether we obtain
[Ar] + [A2| + |As] < Tisa

with probability at least 1 — £exp(—a?/2w) — exp(—a?/2w) = 1 — (£ + 1) exp(—a?/2w). Now we
choose a = y/m. Then T} < T,,,/,, < (exp(B) —1)((y + B)ym*/® + m3/2C2)/(Bm2/3) O(m®/) for

all £. Hence, we see that (2) is satisfied at ¢ = k, with probability at least 1 — m?/3 exp(—¢/m/2).
Furthermore, as |V; — Yx,| < C'm?/3 for all ky < t < kg, 1, we contend that V; = mz(t/m) + O (m?/6)
for all ¢ in the specified range, with probability at least 1 — m?/3 exp(—&m/2). O

We remark that one can have better choices for @ and w in the above proof which make the
error terms smaller, at the expense of making the error probability slightly larger.

B Proof of Proposition 1

We will prove Proposition 1 in this appendix. We start with the substitution z := exp(— [ ds/e(s)).
This means that dz/z = —d7/e(7), and this transforms for ¢ > 1 Equation (3) into

3

(@) = il-rina(@) + i) 2=

where prime stands for derivative with respect to the variable z, and a(x) is the average degree of
the graph at time z. Note that a(z) equals ) i/;(x)/e(x), which in terms of the function A(z) can
be written as 1+ zA'(z)/A(z). Hence, we obtain for ¢ > 1

ri(@) = i(=riy1(z) 4+ ri(z)) M)

As is verified easily, the explicit solution is given by

—i X(y)
Ay)

for some constants ¢; to be determined from the initial conditions for r;. These equations can
be solved recursively, starting with the highest nonzero r;, say r,. In this case, we have rL(ac) =
pru(z)N (z)/A(z), which gives r,(z) = cyA(z)H for some constant c¢,. Using induction, it is then

easy to prove that
iri (71 ;
rie) = 0 (1 ente)' (12)

j2i

@) =AY (=i [ ra@) Sy + o) ()

Further, since A\(1) = 1, one verifies by induction that

(e

7>t
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Plugging (5) into the last equation we see that

(Use (?:11) (1:%) = (T:ll)( l) ) Hence, we obtain for i > 1 from (12)

ri(e)= Y (-1 (J B i) (?f)pm(ww))ﬁ- (13)

m>j>i

To obtain the formula for 71 (z), we note that r1(z) = e(z) — >, 7:(z). The sum of the right hand
side of 13 over all ¢ > 1 equals

o=yt <T;__11>pm(6A(m))" S (1) <Z B D )

m2j i<y

(The inner sum equals 1 if j = 1, and is zero otherwise.) Hence, we have

ri(z) = e(x) — 0A(z) + oA(z mez “(._1)(5/\(9:))1'1

j<m

= z6\(z) — oA\ (z) + A (z mel—é)\ N™

— o\(z) [:v 14 p(1— 5A(a;))] O

This completes the proof.

C Proof of Lemma 4

Again, we begin with the initial random graph B, with k left nodes and 8k right nodes, and continue
to work with the generating functions A(z) and p(z) from Section 3. Suppose that each node on
the right is removed with probability §’, while nodes on the left are removed with probability 4.
The new process can now be studied as a process with erasures on the left only, which runs on the
subgraph B of the initial consisting of the (1 — ¢')B3n undeleted nodes on the right. Let A be the
fraction of edges of degree 7 in B with respect to the total number of edges in B. Define similarly.
Obviously, p; = p;, as the number of edges of degree i and the number of total edges in B are a
(1 — &")-factor of those of B. As for );, it is easily seen that

5= (17 sy

j2i

This is done as follows: an edge of degree j is with probability 1 — §’ connected to an undeleted
node on the right. The probability that 5 — ¢ of the remaining j7 — 1 edges is connected to one of
the deleted nodes on the right is exactly a (1 — ¢')-fraction of the above sum.

The above formula shows that A(z) = A(8' + (1 — &')z). Invoking Theorem 1 we see that the
expected number of edges of right degree one at time z (with respect to the total number of edges
in B) equals

A+ (1—=0")z) [z — 1+ p(1 — A& + (1 —4")2))].
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Since the number of edges in B is (1 — §') times the number of edges in B, the assertion on r1(z)
follows.

To prove the second part of the proposition, we retain the notation established earlier, e.g., e(z)
is the fraction of the original edges remaining at z. Let FE be the number of edges in the original
graph, N be the number of left nodes in the original graph, and thus the average left node degree
is ag = E/N. We define b(z) to be the average node degree among nodes on the left that have at
least one edge at =x.

We define f; to be the fraction of left nodes of degree 7 in the original graph, and thus f; =
ag - \i/i. We define f(z) to be the expected fraction of original left nodes still not recovered at
z. We define f to be the fraction of left nodes that have all their neighbors among the original &’
fraction of missing right nodes. We define f(z) to be the expected fraction of left nodes that have
at least one neighbor not among the original ¢’ fraction of missing right nodes and that are still
not recovered at z.

One can verify that f(z ) = 6f + f(z), and that f = 3, fi(6')". Thus, our goal is to deduce a
closed form expression for f (z). The number of unrecovered left nodes with at least one neighbor
at z is equal to the number of edges remaining at = divided by b(z). The number of edges at z is
e(z)E, and thus,

@) = 5% = ac- e(a) o).

We now turn to b(z). It can be verified that

_e(z)
He) = [T e(y)/ydy’

From this it follows that f(z) = a- [’ e(y)/ydy. Recall that e(y) = 6(1 — &' )yA(d' + (1 - §')y), and
thus e(y)/y = §(1 — §")A(' + ( —dy). Further, recall that A(z) = >, A\;z" 1. Thus,

1

[ -y = Y EEO D
0

%

Thus,
/m e(y)/ydy = (52 % (0" + (1 - 8")y)’
= %Zf (8" + (1 =8y

This implies
=3[ s 0 ey .

Finally, f(z) = f(z) + 6f = 83 fi- (8 + (1 — &")z)'. By using Theorem 1, this shows that the
fraction of nodes unrecovered at time x is, up to small order terms, equal to

(&' +(1—8")z)
Say - / A(y)dy,
0

and completes the proof.
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