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_ Abstract—We introduce a technique for accelerating the gos- A number of recent papers have attempted to address
sip algorithm of Boyd et. al. (INFOCOM 2005) for distributed  the issue of slow convergence in gossip algorithms. In
averaging in a network. By employing memory in the form of 41 5 consensus propagation algorithm based on belief

a small shift-register in the computation at each node, we can fi . ditoi th n 5
speed up the algorithm’s convergence by a factor of 10. Our propagation is used to improve the convergence. In [5], a

accelerated algorithm is inspired by the observation that the Probabilistic counting algorithm is used. These algorithms
original gossip algorithm is analogous to the power method in have been analyzed for specific graphs. Their efficacy in
Numerical Analysis, which can be accelerated by a shift-register more general networks has not yet been fully demonstrated.
based recurrence. In [6], a modified gossip algorithm is proposed to accelerate

I. INTRODUCTION the convergence rate by exploiting each sensor’s location

) o . .information. This algorithm, however, assumes the existence
Recently, there has been rapidly growing interestin gossigz 5 network localization protocol which itself demands

type algorithms for applications in large-scale wireless sens@g ., inication and computational resources.
networks [1], [2], [3], [4]. Gossip algorithms in sensors In this paper, we address the issue of accelerating the

networks are speC|aI_ network consensus algorithms in Wh'%nvergence process of the original gossip algorithm using
all sensors are required to.a_glree on the same value, e.g. H“Eompletely different approach. The main idea is to em-
average of all the sensors’ initial measurements. The aver I%y more memoryin the gossip algorithm to substantially

value is of special importance since it is crucial for designin prove the convergence rate. We assume each sensor is pro-
many distributed sensor fusion algorithms [4]. The authorgye y yith a small shift-register storing its values in the finite

of [2] study a gossip algorithm where each sensor updatgss; ‘\when a sensor updates, the values stored in its shift-

its value from time to time to a new value equal t0 theegisier as well as the current value of its (randomly) chosen
average of its current value and the value of one random

eighbor will be used in the computation. Our accelerated
chosen neighbor. This algorithm has a number of impor; g P

d Fi it is fully distributed and d O(t:?rlossip algorithm does not increase the communication cost
tant a vantage_s. Irst, 't. IS Tully Istri ut_e I and does noj,q only slightly increases the computation at each step. At
require centralized coordination. Second, it is asynchrono

) _ %fe same time, however, the algorithntreases the conver-
a“‘?' does not require synchrom.zed clocks at the senso nce rate by a factor of 1@ur accelerated algorithm is
Third, the algonthm IS easy to m_1p|ement and each nod spired by the observation that the original gossip algorithm
performs only a simple computation at each step. Fourths analogous to the power method in Numerical Analysis,

the algorithm is relatively fault-tolerant in the sense that i{zvhich can be accelerated by a shift-register based recurrence
can operate even with a high probability of link failures inm
7

sensor networks placed in hazardous environments. In sp

of these advantages, however, one critical drawback of the Il. ACCELERATED GOSSIPALGORITHM

algorithm in [2] is its relatively low convergence rate, which , ) . ) ) -

places an undesirably high demand on the communicationwe,f'rSt review the original gossip algorithm studied in [2].

and computational resources in the network. For example, fronsider a senor network consisting whodes, labelled 1

a random geometric graph of bounded expected degree, e\;HFPUQhr_" Fo_r each € {1,...,n}, letx (t)_ o!e_note the Vall_Je

the optimized version of the gossip algorithm in [2] requireé’]c nodei at t|.met. Each node has an initial value at time

O(r?) iterations for convergence to an error levelsof N~ t=0. A_t.an%/ tlme—_step 6,{1’ 2,...}, each node has an (_aqual

for a > 0, wheren is the number of nodes in the network. probability - of being activated to update its value. At time
if nodei is activated, then with probabilitg;; nodei chooses
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It is possible to put the iterative equations (1) and (2) for the N2 [l #edges| min degree| max degree]

n-node system into state form. Towards this end, define the 18888 :8?1 }ég:ggg 13 2(1)
system state as: 20000 | .0141 || 246,000 | 1 28
X(t) = [xa(t) *(t) -+ X)) 3) TABLE |
Then the system evolves according to
X(t+1) =W(t)x(t), t=12... (4)
where with probability2 bij We can generalize the above update rules (7) and (8) to
. , the case where each sensor is installed with 2 registers.
Wt =w; 21— (& —&)(e—ej) (5) Again suppose at tim¢ € {1,2,...,}, nodesi and j are

2 the pair to update their current values together. Then the

Hereeg is thei-th n-dimensional elementary column vector,accelerated gossip algorithm usingregisters at each node
| is the n-dimensional identity matrix, an¢ denotes the s the following:

transpose of vectov. 1 1 "

The conditions under which the system (4) converges are( X1(t+1) = i (3%(t) + 3Xj1(t)) + T Lo WrXir ()
given with respect to the expectation of the maixt). Let
A 1 Xir (t+1) = Xi(r—1) (1), r=2,...,m

V=EMW =5 CpiWi (6) 9)

b Xj1(t+1) = @i (3%1(t) + 3x11(1) + T Wexjr ()
Since thé\;’s are doubly stochastic matrices [8],is also a
doubly stochastic matrix. The results in [2] claim that using | Xjr (t+1) = Xj—1)(t), r=2,...,m

the gossip algorithm (1) and (2), each node’s value converge B e m _
to the average valugwe= 13;%(0) if V has 1 as a simple Wherea, r = 1,...,m, are constants satisfyingf" , & 1.

. eI . . The values of the registers of all the other nodes remain the
eigenvalue and all the remainimg- 1 eigenvalues are strictly

less than 1 in magnitude. Furthermore, the convergence rag e for allk# i andk 7 J,
is governed by'’s second largest eigenvalue. It has also Xr (t+ 1) = Xir (1), r=1,...,m (10)
been shown in [2] that if a node can only communicate with
a neighbor within a small rangethen this process converges [N the following section, we will evaluate the proposed
slowly. accelerated gossip algorithm by carrying out various exper-
Since the original gossip algorithm in its state form (4yments on random geometric graphs, which are commonly
is analogous to the power method in Numerical Ana|ysiégsed to model wireless sensor networks. The experimental
we are inspired to use memory in the form of shift-registeréesults will provide compelling evidence for the superior
to accelerate the original gossip algorithm. This is similafonvergence rate performance of the accelerated gossip al-
to what has been done to successfully speed up the povgHithm.
method in the past few decades [7]. We will not change the In Section 1V, we prove that when the accelerated algo-
pair of nodes participating in an update at titee 1,2, ... We rithm converges it must converge to the correct value.
will only change how a pair of nodes update their values once I
they decide to update together. For sensare {1,...,n},
let x; denote the value stored in itgh register. We first ~ In all of our experiments, we used random geometric
consider the case where each sensor is provided with t@6aPhs generated by choosingoints at random in the unit
registers, the first of which stores the sensor’s current valgluare, and then placing an edge between each pair of points
and the second of which stores the sensor’s value before tRedistance less thap from each other. If the graph was
latest update. If at timee {1,2,...,}, nodesi andj are the disconnected, we used the largest connected component. In
pair to update their current values together, then we propoS¥ery experiment, the largest connected component missed at
the following accelerated gossip algorithm: most 3 vertices. Table | gives typical statistics of the graphs
we used.
We ran our experiments with four different distributions
of initial values.

@) 1. Normal: each initial value is chosen independently at
random from the Normal distribution.
2. Normal aboutx-coord: the initial value of each point
is independently chosen from the Normal distribution

Xj2(t+1) = xj1(t ; ; .
(1) , () . of variancel whose mean is th&-coordinate of the
wherel < w < 2 is a constant. The values of the registers of point.

all the other nodes remain the same: forkaj i andk # j, 3. 0/1 at x-coord: each initial value is independently
X (t+1) =X (t) (®) chosen to b®/1, with the probability of beind equal
Xi2(t+ 1) = Xia(t) to the x-coordinate.

. EXPERIMENTAL RESULTS

Xil(t + 1) = w(%xil(t) + %le(t)) + (1— (J.))ij('[)
Xi2(t+1) = X1 (t)

xj1(t+1) = @(3x1(t) + 3%j1(t)) + (1 - @)xja(t)




D2 | 1.4386, -0.4386

D4 | 1.286, 0, 0, -0.286
D8 | 1.128,0,0,0,0,0,0, -0.128
X4 | 1.280, 0.08, -0.06, -0.30

TABLE I

4. x-coord: thex-coordinates of the points are used as the
initial values.

We ran experiments with four different configurations of
shift registers. The first three, denoted D2, D4 and D8
consisted of 2, 4 and 8 registers. In these, only the first
and last register were used to compute the new value of
the first register. In the other, denoted X4, all of the registers
were used to compute the new value of the first register. The
vectors of coefficients for each were shown in Table II.

In each experiment, we measured convergence by the
average of the square of the difference between the current
value of a node and,ye, the average to be computed.

In Figures 1, 2, 3 and 4 we give the results of these
experiments for the graphs generated on 10,000 nodes with
p = .02 In each case, we have performed 100 experiments,
and plotted the geometric mean of the data. In Figures 5, 6,
7, 8, we plot the geometric means, as well as the maxima
and minima of the data.

Geometric graph 10k nodes, radius .02.

Inputs: Normal
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average squared error
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Fig. 1. Geometric means of 100 trials

Figures 9, 10, 11 and 12 show how the convergence rates
change as we increase the radius of the geometric graphs
to .04. As before, each curve is the geometric mean of 100
experiments.

The curves for X4 and D8 in Figure 11 and 12 are in
fact wavy, and were tightly concentrated about the geometric
means plotted here.

We now examine how the convergence rate changes as
we increase the number of vertices. We ran the same set
of experiments on random geometric graphs with 20,000
vertices, connecting vertices within distance at nbefi4l
This choice of distance parameter makes the average-degree
of these graphs comparable to that of the graphs on 10,000
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Fig. 2. Geometric means of 100 trials
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Fig. 3. Geometric means of 100 trials
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Fig. 4. Geometric means of 100 trials
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Fig. 6. Minima, geometric means and maxima of 100 trials
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Geometric graph 10k nodes, radius .04,
Inputs: 0/1 at x—coord
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vertices and distance parame®02. We ran these experi-
ments for four times as many iterations as the experiments
on 10,000 vertices so that they would converge similiarly.
The results of these experiments appear in Figures 13, 14,
15 and 16.

In all the experiments in which the input was not the
coordinate, the original gossip algorithm converged faster
initially, with D8 trailing only slightly behind. In all cases,
the asymptotic performance of the original gossip algorithm
was dominated by the accelerated algorithms. In particular,
for all € < 0.5, the e-averaging times, as defined by [2], was
always lower for the accelerated algorithms.

Table Ill gives the slopes, time$(®, of the lines that
best-fit the last half of each of the curves in the tables
plotted so far. Note that a larger absolute value indicates
faster convergence.

To get an idea of how the algorithm’s behavior changes
asn grows, we divide the first four lines in Table Il by the
last four, obtaining Table IV.

The reader will observe that almost all the values in this
table are a litle more than 4. This is consistent with the
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Fig. 14. Geometric means of 100 trials

Geometric graph 20k nodes, radius .0141.
Inputs: 0/1 at x—coord
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Fig. 15. Geometric means of 100 trials



[ Figure [ n [ p [ Inputs [[ Gossip | D2 | D4 | D8 [ X4 ]

1 10,000 | 0.02 Normal -254.79 | -317.57| -678.54| -826.54 | -1712.8
2 10,000 | 0.02 Normal at X || -71.742 | -180.22 | -648.88 | -826.14 | -1767

3 10,000 | 0.02 0/1 at X -70.835| -179.88 | -648.79 | -826.08 | -1769.5
4 10,000 | 0.02 X coord -70.709 | -179.83 | -648.92 | -825.85 | -1769.9
9 10,000 | 0.04 Normal -446.97 | -985.61 | -3859.8 | -5106.4 | -5844

10 10,000 | 0.04 Normal at X || -349.17 | -895.51 | -3567 -4931.6 | -5838.8
11 10,000 | 0.04 0/1 at X -364.07 | -933.39 | -3725.6 | -4783.6 | -5769.2
12 10,000 | 0.04 X coord -374.56 | -958.37 | -3819.4 | -5005.5 | -5617.4
13 20,000 | 0.0141 | Normal -62.602 | -81.523 | -168.53 | -200.08 | -391.04
14 20,000 | 0.0141 | Normal at X || -17.329 | -43.734 | -155.89 | -191.87 | -390.44
15 20,000 | 0.0141| 0/1 at X -16.973 | -42.963 | -153.02 | -188.15 | -382.15
16 20,000 | 0.0141 | X coord -16.771| -42.557| -151.72| -186.61 | -379.09

TABLE Il
[ Figure [[ Gossip | D2 | D4 | D8 [ X4 ]

1/13 || 4.07 3.8955 | 4.0264 | 4.1311 | 4.3803
2/14 || 414 4.1209 | 4.1625| 4.3057 | 4.5256
3/15 4.1734 | 4.1869 | 4.2399 | 4.3905 | 4.6304
4116 || 4.2161 | 4.2256 | 4.277 | 4.4255| 4.6689

TABLE IV

Geometric graph 20k nodes, radius .0141. of Table V by the first obtaining Table VI.
Input: X-coord

IV. ANALYSIS

In this section, we show that if the accelerated gossip
algorithm converges, it always converge to the correct value.
One feature of the original gossip algorithm is that the sum
of all the sensors’ values is preserved during the system
evolution. The accelerated gossip algorithm has a similar

average squared error
=
o

O Gossip feature of preserving a scaled sum. We only give a proof of
. gj this conclusion for the 2-register case. The genereaggister
10" ¢ D8 case can be proved using similar ideas.
o xa To write the iterative equations (7) and (8) into their state
form, define the enlarged system state as:
10° . -
° > ' Iteration " ? X10275 zt) = [xat) xa(t) - xm(t)
x2(t) Xeot) - x2(t)]  (11)
Fig. 16. Geometric means of 100 trials
Then
Z(t+1) =T (t)z(t), t=12,... (12)

analysis of [2], which indicates that the convergence rate @fhere with probability% Pij,
the Gossip process should be proportional to the logarithm of

the second-largest eigenvalue of the matfixn the case of re) = Aj 2
the graphs on 20,000 vertices, this quantity @&k8- 109, Sksi &+ S(a+e)(a+e)
while for the graph on 10,000 vertices, this quantity was a<%.(+eje/j

3.61-10°8, and the ratio of these quantities wa®93. In (1- w)(ad + &)
general, for geometric graphs whose radii are set to keep the N 1= } (13)
average degree fixed, one would expect the logarithm of this Tic, B
eigenvalue to grow like the square of the number of vertices. Theorem 1:During the evolution of system (12), the

Table V gives, for each experiment, the approximat&caled sumy2s s xa(t)+3=2 57 Xa(t) is preserved for
iteration number at which each curve achieves the valde=1.2,..., i.e.
that the gossip algorithm achieved at the last iteration. The 1 0 _
reason these iteration numbers are only approximate is that m_zlxil(t)"" m_zlxiz(t)
the average squared error was only computed at 600 different ':n ':n
times during each simulation. 1 inl(o) + 1w leiz(o)

. . . . 2—w; 2—w;

To see exactly how much less time it took the shift-register i= i=

based algorithms to converge, we divide all of the columns t=12... (14)

n



Figure [ n [ o [ Inputs [[ Gossip [ D2 | D4 | D8 [ X4 ]

1 10,000 0.02 | Normal 5,088,802 | 2,409,518] 939,812 | 969,806 | 1,529,694
2 10,000 | 0.02 | Normal at X || 5,988,802 | 2,369,526| 729,854 | 729,854 | 649,870
3 10,000 | 0.02 | 0/1 at X 5,988,802 | 2,359,528| 729,854 | 719,856 | 509,898
4 10,000 | 0.02 | X coord 5,088,802 | 2,359,528| 729,854 | 719,856 | 439,912
9 10,000 | 0.04 | Normal 5,990,000 | 2,430,000 940,000 | 920,000 | 1,730,000
10 10,000 | 0.04 | Normal at X || 5,990,000 | 2,360,000| 680,000 | 630,000 | 670,000
11 10,000 | 0.04 | 0/1 at X 5,990,000 | 2,360,000 670,000 | 620,000 | 460,000
12 10,000 | 0.04 | X coord 5,090,000 | 2,360,000 670,000 | 620,000 | 380,000
13 20,000 | 0.0141 | Normal 23,960,000| 9,560,000| 3,000,000 2,720,000 3,560,000
14 20,000 | 0.0141 | Normal at X || 23,958,802| 9,439,528 2,799,860 | 2,559,872| 1,719,914
15 20,000 | 0.0141 | 0/1 at X 23,952,812| 9,397,180| 2,799,160 2,559,232 | 1,519,544
16 20,000 | 0.0141 | X coord 23,958,802| 9,399,530| 2,799,860 2,559,872 1,439,928
TABLE V
[ Figure [ n [ p [ Inputs [[ Gossip[ D2 | D4 | D8 [ X4 |
1 10,000 | 0.02 | Normal 1 0.40234] 0.15693] 0.16194 | 0.25543
2 10,000 | 0.02 | Normalat X | 1 0.39566 | 0.12187 | 0.12187 | 0.10851
3 10,000 | 0.02 | 0/1 at X 1 0.39399 | 0.12187 | 0.1202 | 0.085142
4 10,000 | 0.02 | X coord 1 0.39399 | 0.12187 | 0.1202 | 0.073456
9 10,000 | 0.04 | Normal 1 0.40568 | 0.15693 | 0.15359 | 0.28881
10 10,000 | 0.04 | Normalat X | 1 0.39399 | 0.11352| 0.10518 | 0.11185
11 10,000 | 0.04 | 0/1 at X 1 0.39399 | 0.11185| 0.10351 | 0.076795
12 10,000 | 0.04 | X coord 1 0.39399 | 0.11185| 0.10351 | 0.063439
13 20,000 | 0.0141 | Normal 1 0.399 | 0.12521] 0.11352| 0.14858
14 20,000 | 0.0141 | Normal at X || 1 0.39399 | 0.11686 | 0.10684 | 0.071786
15 20,000 | 0.0141 | 0/1 at X 1 0.39232 | 0.11686| 0.10684 | 0.063439
16 20,000 | 0.0141 | X coord 1 0.39232 | 0.11686| 0.10684 | 0.0601
TABLE VI
To prove Theorem 1, we need the following result: — iy 1_7‘*’1/ Z(t—1)
Lemma 1:Let 1 be then-dimensional all ones column 2-w  2-w by L 1
vector. Thenz1-1" =217 is a left eigenvector associated (by Lemma 1)
with eigenvalue 1 of the matrixy; defined in (13) for all = - i
i,je{l,...,n} andi # j. _ 1 1-w, 20)
Proof of Lemma 1: Let v=[51-1 :=91|A;. Thenvis a [2-w  2-w |
2n-dimensional row vector. One can check that foriajle (by repeated use of Lemmg 1
{1,...,n} andi # |, 1 2 1-w &

‘H
I

(a) Theith entry ofv is 51~ —(2+9 )+27w
(b) The jth entry ofv i |s 5= w( + @ )+

5 o i;Xil(o) + o i;XiZ(O)

p
= - 1 O

(Z) FC:1< k<?} ki anfdk;é ) thekth 1 f vis =275 The direct consequence of the preservation of the scaled
(d) The (n+i)th entry ofv is (1 w) 2l W’ sum is that each node’s value will converge to the desired
(e) The(n+ j)th entry ofv is 5 (1 W) = 573 Va|ue%zi”:1Xu(0) if all nodes’ values asymptotically con-
Qf_or 1<k<n k#i a”dk?él ‘the (n-+k)th entry ofv is verge to the same one and each node’s two registers are

2w initialized so thatx1(0) = x2(0) for alli=1,...,n
Combining (a)-(f), we have = [51-1' =91'] which implies
the conclusion. O V. CONCLUSION AND FUTURE WORK
Proof of Theorem 1: We can rewrite the scaled sum into a From the experiments presented here, it is clear that gossip
vector product as follows: algorithms for averaging can be greatly accelerated by the
use of shift registers. We believe that it is possible to design
1 0 1—w D coefficient vectors that give even better performance. Open
5w Xil(t)"‘m_ZXiZ(t) guestions suggested by this paper include:
1 = 1w = 1. Isit possible to synthetically analyze the performance of
= [1’ 1’} Z(t) these accelerated algorithms, as [2] did for their gossip
2-w 2-w . algorithm?
(by the definition ofz(t)) 2. Just how much speed-up can one achieve through the
_ [11/ 1—001/} M(t—1)z(t — 1) use of shift-registers? _ o _
2—-w 2—-w 3. Through the use of shift registers, is it possible to

(by equation (12)) make algorithms whose convergence time on geometric
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graphs is proportional to the diameter of these graphs,
rather than to the number of nodes in these graphs?
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