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Abstract— We introduce a technique for accelerating the gos-
sip algorithm of Boyd et. al. (INFOCOM 2005) for distributed
averaging in a network. By employing memory in the form of
a small shift-register in the computation at each node, we can
speed up the algorithm’s convergence by a factor of 10. Our
accelerated algorithm is inspired by the observation that the
original gossip algorithm is analogous to the power method in
Numerical Analysis, which can be accelerated by a shift-register
based recurrence.

I. INTRODUCTION

Recently, there has been rapidly growing interest in gossip-
type algorithms for applications in large-scale wireless sensor
networks [1], [2], [3], [4]. Gossip algorithms in sensors
networks are special network consensus algorithms in which
all sensors are required to agree on the same value, e.g. the
average of all the sensors’ initial measurements. The average
value is of special importance since it is crucial for designing
many distributed sensor fusion algorithms [4]. The authors
of [2] study a gossip algorithm where each sensor updates
its value from time to time to a new value equal to the
average of its current value and the value of one randomly
chosen neighbor. This algorithm has a number of impor-
tant advantages. First, it is fully distributed and does not
require centralized coordination. Second, it is asynchronous
and does not require synchronized clocks at the sensors.
Third, the algorithm is easy to implement and each node
performs only a simple computation at each step. Fourth,
the algorithm is relatively fault-tolerant in the sense that it
can operate even with a high probability of link failures in
sensor networks placed in hazardous environments. In spite
of these advantages, however, one critical drawback of the
algorithm in [2] is its relatively low convergence rate, which
places an undesirably high demand on the communication
and computational resources in the network. For example, in
a random geometric graph of bounded expected degree, even
the optimized version of the gossip algorithm in [2] requires
Θ(n2) iterations for convergence to an error level ofε = n−α

for α > 0, wheren is the number of nodes in the network.
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A number of recent papers have attempted to address
the issue of slow convergence in gossip algorithms. In
[4], a consensus propagation algorithm based on belief
propagation is used to improve the convergence. In [5], a
probabilistic counting algorithm is used. These algorithms
have been analyzed for specific graphs. Their efficacy in
more general networks has not yet been fully demonstrated.
In [6], a modified gossip algorithm is proposed to accelerate
the convergence rate by exploiting each sensor’s location
information. This algorithm, however, assumes the existence
of a network localization protocol which itself demands
communication and computational resources.

In this paper, we address the issue of accelerating the
convergence process of the original gossip algorithm using
a completely different approach. The main idea is to em-
ploy morememoryin the gossip algorithm to substantially
improve the convergence rate. We assume each sensor is pro-
vided with a small shift-register storing its values in the finite
past. When a sensor updates, the values stored in its shift-
register as well as the current value of its (randomly) chosen
neighbor will be used in the computation. Our accelerated
gossip algorithm does not increase the communication cost
and only slightly increases the computation at each step. At
the same time, however, the algorithmincreases the conver-
gence rate by a factor of 10.Our accelerated algorithm is
inspired by the observation that the original gossip algorithm
is analogous to the power method in Numerical Analysis,
which can be accelerated by a shift-register based recurrence
[7].

II. A CCELERATEDGOSSIPALGORITHM

We first review the original gossip algorithm studied in [2].
Consider a senor network consisting ofn nodes, labelled 1
throughn. For eachi ∈ {1, . . . ,n}, let xi(t) denote the value
of node i at time t. Each node has an initial value at time
t = 0. At any time-stept ∈ {1,2, . . .}, each node has an equal
probability 1

n of being activated to update its value. At timet,
if node i is activated, then with probabilitypi j nodei chooses
its neighbor j to update their values together to the mean of
their current values:

{
xi(t +1) = 1

2(xi(t)+x j(t))
x j(t +1) = 1

2(xi(t)+x j(t))
(1)

The values of all the remaining nodes remain the same:

xk(t +1) = xk(t), for all k 6= i andk 6= j (2)



It is possible to put the iterative equations (1) and (2) for the
n-node system into state form. Towards this end, define the
system state as:

x(t) = [x1(t) x2(t) · · · xn(t)]′ (3)

Then the system evolves according to

x(t +1) = W(t)x(t), t = 1,2, . . . (4)

where with probability1
n pi j ,

W(t) = Wi j
∆= I − (ei −ej)(ei −ej)′

2
(5)

Hereei is the i-th n-dimensional elementary column vector,
I is the n-dimensional identity matrix, andv′ denotes the
transpose of vectorv.

The conditions under which the system (4) converges are
given with respect to the expectation of the matrixW(t). Let

V
∆= E[Wi j ] = ∑

i, j

1
n

pi jWi j (6)

Since theWi j ’s are doubly stochastic matrices [8],V is also a
doubly stochastic matrix. The results in [2] claim that using
the gossip algorithm (1) and (2), each node’s value converges
to the average valuexave= 1

n∑i xi(0) if V has 1 as a simple
eigenvalue and all the remainingn−1 eigenvalues are strictly
less than 1 in magnitude. Furthermore, the convergence rate
is governed byV ’s second largest eigenvalue. It has also
been shown in [2] that if a node can only communicate with
a neighbor within a small ranger, then this process converges
slowly.

Since the original gossip algorithm in its state form (4)
is analogous to the power method in Numerical Analysis,
we are inspired to use memory in the form of shift-registers
to accelerate the original gossip algorithm. This is similar
to what has been done to successfully speed up the power
method in the past few decades [7]. We will not change the
pair of nodes participating in an update at timet = 1,2, . . . We
will only change how a pair of nodes update their values once
they decide to update together. For sensori, i ∈ {1, . . . ,n},
let xir denote the value stored in itsrth register. We first
consider the case where each sensor is provided with two
registers, the first of which stores the sensor’s current value
and the second of which stores the sensor’s value before the
latest update. If at timet ∈ {1,2, . . . ,}, nodesi and j are the
pair to update their current values together, then we propose
the following accelerated gossip algorithm:




xi1(t +1) = ω(1
2xi1(t)+ 1

2x j1(t))+(1−ω)xi2(t)

xi2(t +1) = xi1(t)

x j1(t +1) = ω(1
2xi1(t)+ 1

2x j1(t))+(1−ω)x j2(t)

x j2(t +1) = x j1(t)

(7)

where1≤ω < 2 is a constant. The values of the registers of
all the other nodes remain the same: for allk 6= i andk 6= j,{

xk1(t +1) = xk1(t)
xk2(t +1) = xk2(t)

(8)

n ρ # edges min degree max degree

10000 .02 124,000 1 30
10000 .04 486,000 13 81
20000 .0141 246,000 1 28

TABLE I

We can generalize the above update rules (7) and (8) to
the case where each sensor is installed withm> 2 registers.
Again suppose at timet ∈ {1,2, . . . ,}, nodes i and j are
the pair to update their current values together. Then the
accelerated gossip algorithm usingm registers at each node
is the following:




xi1(t +1) = ω1
(

1
2xi1(t)+ 1

2x j1(t)
)
+∑m

r=2wrxir (t)

xir (t +1) = xi(r−1)(t), r = 2, . . . ,m

x j1(t +1) = ω1
(

1
2xi1(t)+ 1

2x j1(t)
)
+∑m

r=2wrx jr (t)

x jr (t +1) = x j(r−1)(t), r = 2, . . . ,m

(9)

whereωr , r = 1, . . . ,m, are constants satisfying∑m
r=1 ωr = 1.

The values of the registers of all the other nodes remain the
same: for allk 6= i andk 6= j,

xkr(t +1) = xkr(t), r = 1, . . . ,m (10)

In the following section, we will evaluate the proposed
accelerated gossip algorithm by carrying out various exper-
iments on random geometric graphs, which are commonly
used to model wireless sensor networks. The experimental
results will provide compelling evidence for the superior
convergence rate performance of the accelerated gossip al-
gorithm.

In Section IV, we prove that when the accelerated algo-
rithm converges it must converge to the correct value.

III. E XPERIMENTAL RESULTS

In all of our experiments, we used random geometric
graphs generated by choosingn points at random in the unit
square, and then placing an edge between each pair of points
at distance less thanρ from each other. If the graph was
disconnected, we used the largest connected component. In
every experiment, the largest connected component missed at
most 3 vertices. Table I gives typical statistics of the graphs
we used.

We ran our experiments with four different distributions
of initial values.

1. Normal: each initial value is chosen independently at
random from the Normal distribution.

2. Normal aboutx-coord: the initial value of each point
is independently chosen from the Normal distribution
of variance1 whose mean is thex-coordinate of the
point.

3. 0/1 at x-coord: each initial value is independently
chosen to be0/1, with the probability of being1 equal
to thex-coordinate.



D2 1.4386, -0.4386
D4 1.286, 0, 0, -0.286
D8 1.128, 0, 0, 0, 0, 0, 0, -0.128
X4 1.280, 0.08, -0.06, -0.30

TABLE II

4. x-coord: thex-coordinates of the points are used as the
initial values.

We ran experiments with four different configurations of
shift registers. The first three, denoted D2, D4 and D8
consisted of 2, 4 and 8 registers. In these, only the first
and last register were used to compute the new value of
the first register. In the other, denoted X4, all of the registers
were used to compute the new value of the first register. The
vectors of coefficients for each were shown in Table II.

In each experiment, we measured convergence by the
average of the square of the difference between the current
value of a node andxave, the average to be computed.

In Figures 1, 2, 3 and 4 we give the results of these
experiments for the graphs generated on 10,000 nodes with
ρ = .02. In each case, we have performed 100 experiments,
and plotted the geometric mean of the data. In Figures 5, 6,
7, 8, we plot the geometric means, as well as the maxima
and minima of the data.
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Fig. 1. Geometric means of 100 trials

Figures 9, 10, 11 and 12 show how the convergence rates
change as we increase the radius of the geometric graphs
to .04. As before, each curve is the geometric mean of 100
experiments.

The curves for X4 and D8 in Figure 11 and 12 are in
fact wavy, and were tightly concentrated about the geometric
means plotted here.

We now examine how the convergence rate changes as
we increase the number of vertices. We ran the same set
of experiments on random geometric graphs with 20,000
vertices, connecting vertices within distance at most0.0141.
This choice of distance parameter makes the average-degree
of these graphs comparable to that of the graphs on 10,000
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Fig. 2. Geometric means of 100 trials
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Fig. 3. Geometric means of 100 trials
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Fig. 4. Geometric means of 100 trials
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Fig. 5. Minima, geometric means and maxima of 100 trials
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Fig. 6. Minima, geometric means and maxima of 100 trials
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Fig. 7. Minima, geometric means and maxima of 100 trials
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Fig. 8. Minima, geometric means and maxima of 100 trials
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Fig. 9. Geometric means of 100 trials
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Fig. 10. Geometric means of 100 trials
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Fig. 11. Geometric means of 100 trials
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Fig. 12. Geometric means of 100 trials

vertices and distance parameter0.02. We ran these experi-
ments for four times as many iterations as the experiments
on 10,000 vertices so that they would converge similiarly.
The results of these experiments appear in Figures 13, 14,
15 and 16.

In all the experiments in which the input was not thex-
coordinate, the original gossip algorithm converged faster
initially, with D8 trailing only slightly behind. In all cases,
the asymptotic performance of the original gossip algorithm
was dominated by the accelerated algorithms. In particular,
for all ε < 0.5, theε-averaging times, as defined by [2], was
always lower for the accelerated algorithms.

Table III gives the slopes, times109, of the lines that
best-fit the last half of each of the curves in the tables
plotted so far. Note that a larger absolute value indicates
faster convergence.

To get an idea of how the algorithm’s behavior changes
asn grows, we divide the first four lines in Table III by the
last four, obtaining Table IV.

The reader will observe that almost all the values in this
table are a little more than 4. This is consistent with the
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Fig. 13. Geometric means of 100 trials
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Fig. 14. Geometric means of 100 trials
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Fig. 15. Geometric means of 100 trials



Figure n ρ Inputs Gossip D2 D4 D8 X4

1 10,000 0.02 Normal -254.79 -317.57 -678.54 -826.54 -1712.8
2 10,000 0.02 Normal at X -71.742 -180.22 -648.88 -826.14 -1767
3 10,000 0.02 0/1 at X -70.835 -179.88 -648.79 -826.08 -1769.5
4 10,000 0.02 X coord -70.709 -179.83 -648.92 -825.85 -1769.9
9 10,000 0.04 Normal -446.97 -985.61 -3859.8 -5106.4 -5844
10 10,000 0.04 Normal at X -349.17 -895.51 -3567 -4931.6 -5838.8
11 10,000 0.04 0/1 at X -364.07 -933.39 -3725.6 -4783.6 -5769.2
12 10,000 0.04 X coord -374.56 -958.37 -3819.4 -5005.5 -5617.4
13 20,000 0.0141 Normal -62.602 -81.523 -168.53 -200.08 -391.04
14 20,000 0.0141 Normal at X -17.329 -43.734 -155.89 -191.87 -390.44
15 20,000 0.0141 0/1 at X -16.973 -42.963 -153.02 -188.15 -382.15
16 20,000 0.0141 X coord -16.771 -42.557 -151.72 -186.61 -379.09

TABLE III

Figure Gossip D2 D4 D8 X4

1 / 13 4.07 3.8955 4.0264 4.1311 4.3803
2 / 14 4.14 4.1209 4.1625 4.3057 4.5256
3 /15 4.1734 4.1869 4.2399 4.3905 4.6304
4 / 16 4.2161 4.2256 4.277 4.4255 4.6689

TABLE IV
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Fig. 16. Geometric means of 100 trials

analysis of [2], which indicates that the convergence rate of
the Gossip process should be proportional to the logarithm of
the second-largest eigenvalue of the matrixV. In the case of
the graphs on 20,000 vertices, this quantity was9.18·10−9,
while for the graph on 10,000 vertices, this quantity was
3.61· 10−8, and the ratio of these quantities was3.93. In
general, for geometric graphs whose radii are set to keep the
average degree fixed, one would expect the logarithm of this
eigenvalue to grow like the square of the number of vertices.

Table V gives, for each experiment, the approximate
iteration number at which each curve achieves the value
that the gossip algorithm achieved at the last iteration. The
reason these iteration numbers are only approximate is that
the average squared error was only computed at 600 different
times during each simulation.

To see exactly how much less time it took the shift-register
based algorithms to converge, we divide all of the columns

of Table V by the first obtaining Table VI.

IV. A NALYSIS

In this section, we show that if the accelerated gossip
algorithm converges, it always converge to the correct value.
One feature of the original gossip algorithm is that the sum
of all the sensors’ values is preserved during the system
evolution. The accelerated gossip algorithm has a similar
feature of preserving a scaled sum. We only give a proof of
this conclusion for the 2-register case. The generalm-register
case can be proved using similar ideas.

To write the iterative equations (7) and (8) into their state
form, define the enlarged system state as:

z(t) = [x11(t) x21(t) · · · xn1(t)
x12(t) x22(t) · · · xn2(t)]′ (11)

Then
z(t +1) = Γ(t)z(t), t = 1,2, . . . (12)

where with probability1
n pi j ,

Γ(t) = Ai j
∆=[

∑k6=i, j eke′k + ω
2 (ei +ej)(ei +ej)′

eie′i +eje′j
(1−ω)(eie′i +eje′j)

∑k6=i, j eke′k

]
(13)

Theorem 1:During the evolution of system (12), the
scaled sum 1

2−ω ∑n
i=1xi1(t)+ 1−ω

2−ω ∑n
i=1xi2(t) is preserved for

t = 1,2, . . ., i.e.

1
2−ω

n

∑
i=1

xi1(t)+
1−ω
2−ω

n

∑
i=1

xi2(t)

=
1

2−ω

n

∑
i=1

xi1(0)+
1−ω
2−ω

n

∑
i=1

xi2(0)

t = 1,2, . . . (14)



Figure n ρ Inputs Gossip D2 D4 D8 X4

1 10,000 0.02 Normal 5,988,802 2,409,518 939,812 969,806 1,529,694
2 10,000 0.02 Normal at X 5,988,802 2,369,526 729,854 729,854 649,870
3 10,000 0.02 0/1 at X 5,988,802 2,359,528 729,854 719,856 509,898
4 10,000 0.02 X coord 5,988,802 2,359,528 729,854 719,856 439,912
9 10,000 0.04 Normal 5,990,000 2,430,000 940,000 920,000 1,730,000
10 10,000 0.04 Normal at X 5,990,000 2,360,000 680,000 630,000 670,000
11 10,000 0.04 0/1 at X 5,990,000 2,360,000 670,000 620,000 460,000
12 10,000 0.04 X coord 5,990,000 2,360,000 670,000 620,000 380,000
13 20,000 0.0141 Normal 23,960,000 9,560,000 3,000,000 2,720,000 3,560,000
14 20,000 0.0141 Normal at X 23,958,802 9,439,528 2,799,860 2,559,872 1,719,914
15 20,000 0.0141 0/1 at X 23,952,812 9,397,180 2,799,160 2,559,232 1,519,544
16 20,000 0.0141 X coord 23,958,802 9,399,530 2,799,860 2,559,872 1,439,928

TABLE V

Figure n ρ Inputs Gossip D2 D4 D8 X4

1 10,000 0.02 Normal 1 0.40234 0.15693 0.16194 0.25543
2 10,000 0.02 Normal at X 1 0.39566 0.12187 0.12187 0.10851
3 10,000 0.02 0/1 at X 1 0.39399 0.12187 0.1202 0.085142
4 10,000 0.02 X coord 1 0.39399 0.12187 0.1202 0.073456
9 10,000 0.04 Normal 1 0.40568 0.15693 0.15359 0.28881
10 10,000 0.04 Normal at X 1 0.39399 0.11352 0.10518 0.11185
11 10,000 0.04 0/1 at X 1 0.39399 0.11185 0.10351 0.076795
12 10,000 0.04 X coord 1 0.39399 0.11185 0.10351 0.063439
13 20,000 0.0141 Normal 1 0.399 0.12521 0.11352 0.14858
14 20,000 0.0141 Normal at X 1 0.39399 0.11686 0.10684 0.071786
15 20,000 0.0141 0/1 at X 1 0.39232 0.11686 0.10684 0.063439
16 20,000 0.0141 X coord 1 0.39232 0.11686 0.10684 0.0601

TABLE VI

To prove Theorem 1, we need the following result:

Lemma 1:Let 1 be the n-dimensional all ones column
vector. Then[ 1

2−ω 1′ 1−ω
2−ω 1′] is a left eigenvector associated

with eigenvalue 1 of the matrixAi j defined in (13) for all
i, j ∈ {1, . . . ,n} and i 6= j.

Proof of Lemma 1: Let v = [ 1
2−ω 1′ 1−ω

2−ω 1′]Ai j . Thenv is a
2n-dimensional row vector. One can check that for alli, j ∈
{1, . . . ,n} and i 6= j,
(a) The ith entry ofv is 1

2−ω (ω
2 + ω

2 )+ 1−ω
2−ω = 1

2−ω ;
(b) The jth entry ofv is 1

2−ω (ω
2 + ω

2 )+ 1−ω
2−ω = 1

2−ω ;
(c) For1≤ k≤ n, k 6= i andk 6= j, thekth entry ofv is = 1

2−ω ;
(d) The (n+ i)th entry ofv is 1

2−ω (1−ω) = 1−ω
2−ω ;

(e) The(n+ j)th entry ofv is 1
2−ω (1−ω) = 1−ω

2−ω ;
(f) For 1≤ k≤ n, k 6= i andk 6= j, the (n+k)th entry ofv is
1−ω
2−ω ;
Combining (a)-(f), we havev= [ 1

2−ω 1′ 1−ω
2−ω 1′] which implies

the conclusion. ¤
Proof of Theorem 1: We can rewrite the scaled sum into a
vector product as follows:

1
2−ω

n

∑
i=1

xi1(t)+
1−ω
2−ω

n

∑
i=1

xi2(t)

=
[

1
2−ω

1′
1−ω
2−ω

1′
]

z(t)

(by the definition ofz(t))

=
[

1
2−ω

1′
1−ω
2−ω

1′
]

Γ(t−1)z(t−1)

(by equation (12))

=
[

1
2−ω

1′
1−ω
2−ω

1′
]

z(t−1)

(by Lemma 1)

= · · ·
=

[
1

2−ω
1′

1−ω
2−ω

1′
]

z(0)

(by repeated use of Lemma 1)

=
1

2−ω

n

∑
i=1

xi1(0)+
1−ω
2−ω

n

∑
i=1

xi2(0)

¤
The direct consequence of the preservation of the scaled

sum is that each node’s value will converge to the desired
value 1

n ∑n
i=1xi1(0) if all nodes’ values asymptotically con-

verge to the same one and each node’s two registers are
initialized so thatxi1(0) = xi2(0) for all i = 1, . . . ,n.

V. CONCLUSION AND FUTURE WORK

From the experiments presented here, it is clear that gossip
algorithms for averaging can be greatly accelerated by the
use of shift registers. We believe that it is possible to design
coefficient vectors that give even better performance. Open
questions suggested by this paper include:

1. Is it possible to synthetically analyze the performance of
these accelerated algorithms, as [2] did for their gossip
algorithm?

2. Just how much speed-up can one achieve through the
use of shift-registers?

3. Through the use of shift registers, is it possible to
make algorithms whose convergence time on geometric



graphs is proportional to the diameter of these graphs,
rather than to the number of nodes in these graphs?
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