A Randomized Polynomial-Time Simplex Algorithm for
Linear Programming

*
Jonathan A. Kelner
Computer Science and Artificial Intelligence
Laboratory
Massachusetts Institute of Technology

ABSTRACT

We present the first randomized polynomial-time simplex
algorithm for linear programming. Like the other known
polynomial-time algorithms for linear programming, its run-
ning time depends polynomially on the number of bits used
to represent its input.

We begin by reducing the input linear program to a spe-
cial form in which we merely need to certify boundedness.
As boundedness does not depend upon the right-hand-side
vector, we run the shadow-vertex simplex method with a
random right-hand-side vector. Thus, we do not need to
bound the diameter of the original polytope.

Our analysis rests on a geometric statement of indepen-
dent interest: given a polytope Az < b in isotropic posi-
tion, if one makes a polynomially small perturbation to b
then the number of edges of the projection of the perturbed
polytope onto a random 2-dimensional subspace is expected
to be polynomial.

1. INTRODUCTION

Linear programming is one of the fundamental problems
of optimization. Since Dantzig [3] introduced the simplex
method for solving linear programs, linear programming has
been applied in a diverse range of fields including economics,
operations research, and combinatorial optimization. From
a theoretical standpoint, the study of linear programming
has motivated major advances in the study of polytopes,
convex geometry, combinatorics, and complexity theory.

While the simplex method was the first practically useful
approach to solving linear programs and is still one of the
most popular, it was unknown whether any variant of the
simplex method could be shown to run in polynomial time
in the worst case. In fact, most common variants have been
shown to have exponential worst-case complexity. In con-

fPartially supported by NSF grant CCR-0324914.

*Partially supported by an NSF Graduate Fellowship and
NSF grant CCR-0324914.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Daniel A. Spielmanf
Department of Computer Science
Yale University

trast, algorithms have been developed for solving linear pro-
grams that do have polynomial worst-case complexity [10,
9, 5, 1]. Most notable among these have been the ellipsoid
method [10] and various interior-point methods [9]. All pre-
vious polynomial-time algorithms for linear programming
of which we are aware differ from simplex methods in that
they are fundamentally geometric algorithms: they work ei-
ther by moving points inside the feasible set, or by enclosing
the feasible set in an ellipse. Simplex methods, on the other
hand, walk along the vertices and edges defined by the con-
straints. The question of whether such an algorithm can be
designed to run in polynomial time has been open for over
fifty years.

We recall that a linear program is a constrained optimiza-
tion problem of the form:

maximize c-x (1)

subject to Az < b, x € RY,

where ¢ € R? and b € R™ are column vectors, and A is an
n X d matrix. The vector ¢ is the objective function, and
the set P := {x | Az < b} is the set of feasible points. If
it is non-empty, P is a convex polyhedron, and each of its
extreme vertices will be determined by d constraints of the
form a; - * = b;, where {a1,...,a,} are the rows of A. It
is not difficult to show that the objective function is always
maximized at an extreme vertex, if this maximum is finite.

The first simplex methods used heuristics to guide a walk
on the graph of vertices and edges of P in search of one that
maximizes the objective function. In order to show that any
such method runs in worst-case polynomial time, one must
prove a polynomial upper bound on the diameter of polytope
graphs. Unfortunately, the existence of such a bound is a
wide-open question: the famous Hirsch Conjecture asserts
that the graph of vertices and edges of P has diameter at
most n — d, whereas the best known bound for this diameter
is superpolynomial in n and d [8].

Later simplex methods, such as the self-dual simplex method
and the criss-cross method, avoided this obstacle by consid-
ering more general graphs for which diameter bounds were
known. However, even though these graphs have polynomial
diameters, they have exponentially many vertices, and no-
body had been able to design a polynomial-time algorithm
that provably finds the optimum after following a polyno-
mial number of edges. In fact, essentially every such algo-
rithm has well-known counterexamples on which the walk
takes exponentially many steps.

In this paper, we present the first randomized polynomial-
time simplex method. Like the other known polynomial-

time algorithms for linear programming, the running time
of our algorithm depends polynomially on the bit-length of
the input. We do not prove an upper bound on the diame-
ter of polytopes. Rather we reduce the linear programming
problem to the problem of determining whether a set of lin-
ear constraints defines an unbounded polyhedron. We then
randomly perturb the right-hand sides of these constraints,
observing that this does not change the answer, and we then
use a shadow-vertex simplex method to try solve the per-
turbed problem. When the shadow-vertex method fails, it
suggests a way to alter the distributions of the perturba-
tions, after which we apply the method again. We prove
that the number of iterations of this loop is polynomial with
high probability.

It is important to note that the vertices considered during
the course of the algorithm may not all appear on a single
polytope. Rather, they may be viewed as appearing on the
convex hulls of polytopes with different b-vectors. It is well-
known that the graph of all of these “potential” vertices has
small diameter. However, there was previously no way to
guide a walk among these potential vertices to one optimiz-
ing any particular objective function. Our algorithm uses
the graphs of polytopes “near” P to impose structure on
this graph and to help to guide our walk.

Perhaps the message to take away from this is that instead
of worrying about the combinatorics of the natural polytope
P, one can reduce the linear programming problem to one
whose polytope is more tractable. The first result of our
paper, and the inspiration for the algorithm, captures this
idea by showing that if one slightly perturbs the b-vector
of a polytope in near-isotropic position, then there will be a
polynomial-step path from the vertex minimizing to the ver-
tex maximizing a random objective function. Moreover, this
path may be found by the shadow-vertex simplex method.

We stress that while our algorithm involves a perturba-
tion, it is intrinsically different from previous papers that
have provided average-case or smoothed analyses of linear
programming. In those papers, one shows that, given some
linear program, one can probably use the simplex method
to solve a nearby but different linear program; the pertur-
bation actually modified the input. In the present paper,
our perturbation is used to inform the walk that we take
on the (feasible or infeasible) vertices of our linear program;
however, we actually solve the exact instance that we are
given. We believe that ours is the first simplex algorithm to
achieve this, and we hope that our results will be a useful
step on the path to a strongly polynomial-time algorithm
for linear programming.

We note that no effort has been made to optimize our
bounds; we shall include more precise bounds in a later ver-
sion of this paper.

2. THE SHADOW-VERTEX METHOD

Let P be a convex polyhedron, and let S be a two-dimensional

subspace. The shadow of P onto S is simply the projection
of P onto S. The shadow is a polygon, and every vertex
(edge) of the polygon is the image of some vertex (edge) of
P. One can show that the set of vertices of P that project
onto the boundary of the shadow polygon are exactly the
vertices of P that optimize objective functions in S [2, 6].
These observations are the inspiration for the shadow-
vertex simplex method, which lifts the simplicity of linear
programming in two dimensions to the general case [2, 6]. To

start, the shadow-vertex method requires as input a vertex
vo of P. It then chooses some objective function optimized
at vo, say f, sets S = span(e, f), and considers the shadow
of P onto S. If no degeneracies occur, then for each vertex y
of P that projects onto the boundary of the shadow, there is
a unique neighbor of y on P that projects onto the next ver-
tex of the shadow in clockwise-order. Thus, by tracing the
vertices of P that map to the boundary of the shadow, the
shadow-vertex method can move from the vertex it knows
that optimizes f to the vertex that optimizes ¢. The number
of steps that the method takes will be bounded by the num-
ber of edges of the shadow polygon. For future reference,
we call the shadow-vertex simplex method by

SHADOWVERTEX(@1,...,an, b, ¢, S, vo, s),

where a1,...,an, b, and ¢ specify a linear program of form (1),
S is a two-dimensional subspace containing ¢, and vg is the
start vertex, which must optimize some objective function
in S. We allow the method to run for at most s steps. If
it has not found the vertex optimizing ¢ within that time,
it should return (fail, y), where y is its current vertex. If
it has solved the linear program, it either returns (opt, x),
where z is the solution, or unbounded if it was unbounded.

In the next section, we will show that if the polytope is
in isotropic position and the distances of the facets from the
origin are randomly perturbed, then the number of edges of
the shadow onto a random S is expected to be polynomial.
The one geometric fact that we will require in our analysis
is that if an edge of P is tight for inequalities a; - © = b;,
for ¢ € I, then the edge projects to an edge in the shadow if
and only if S intersects the convex hull of {a;}, ;. Below,
we will often abuse notation by identifying an edge with the
set of constraints I for which it is tight.

3. THE SHADOW SIZE IN THE k-ROUND
CASE

DEFINITION 3.1. We say that a polytope P is k-round if
B(0,1) C P C B(0,k),
where B(0,r) is the ball of radius r centered at the origin.

In this section, we will consider a polytope P defined by
{w|Vi, alz < 1},

in the case that P is k-round. Note that the condition
B(0,1) C P implies ||a;|| < 1.

We will then consider the polytope we get by perturbing
the right-hand sides,

Q= {m|Vi, alz <1 —|—m},

where each 7; is an independent exponentially distributed
random variable with expectation A. That is,

Prir >t]=e /*

for all ¢ > 0.

We will prove that the expected number of edges of the
projection of @Q onto a random 2-plane is polynomial in n,
k and 1/)\. In particular, this will imply that for a random
objective function, the shortest path from the minimum ver-
tex to the maximum vertex is expected to have a number of
steps polynomial in n, k£ and 1/\.

Our proof will proceed by analyzing the expected length
of edges that appear on the boundary of the projection. We
shall show that the total length of all such edges is expected
to be bounded above. However, we shall also show that our
perturbation will cause the expected length of each edge
to be reasonably large. Combining these two statements
will provide a bound on the expected number of edges that
appear.

THEOREM 3.2. Let v and w be uniformly random unit
vectors, and let V' be their span. Then, the expectation over
v, w, and the r;s of the number of facets of the projection
of Q onto V is at most

127k(1 + X n(ne))Vdn
;y .

PRrROOF. We first observe that the perimeter of the shadow
of P onto V is at most 27wk. Let » = max; r;. Then, as

0c {a:|\ﬁ, aTz < 1—|—1"} —(1+7)P,

the perimeter of the shadow of @ onto V' is at most 2wk(1 +
r). As we shall show in Proposition 3.3, the expectation of r
is at most A ln(ne), so the expected perimeter of the shadow
of @ on V is at most 27k(1 + X1In(ne)).

Now, each edge of @ is determined by the subset of d — 1
of the constraints that are tight on that edge. For each
Ie (" [n] 1), let S1(V) be the event that edge I appears in the
shadow, and let ¢(I) denote the length of that edge in the
shadow. We now know

27k(1 4+ Aln(ne)

> > E[K

Ie(1)

= Y E[(I)Si(

re(f™)

V)l Pr[Si(V)].

Below, in Lemma 3.9, we will prove that

A
6vdn'

E [((1)|S1(V)] >
From this, we conclude that

E [number of edges] = Z Pr[S:(V
1e(4™)
< 127k(1 4+ AIn(ne))vdn
— A)

as desired. [

We now prove the various lemmas used in the proof of
Theorem 3.2. Our first is a straightforward statement about
exponential random variables.

ProrosiTiON 3.3. Letri,...,r, beindependent exponen-
tially distributed random variables of expectation \. Then,

E [max ;] < Aln(ne).

ProoOF. This follows by a simple calculation, in which the

first inequality follows from a union bound:

E [maxr;] = / Pr[maxr; > t]
t=0

/too Pr [min(l, neit/k)}

=0

Alnn =9 N
—t
/ 1+/ ne
t=0 Alnn

= (Alnn)+ A
Aln(ne),

IN

as desired. [

We shall now prove the lemmas necessary for Lemma 3.9,
which bounds the expected length of an edge, given that it
appears in the shadow. Our proof of Lemma 3.9 will have
two parts. In Lemma 3.7, we will show that it is unlikely
that the edge indexed by [is short, given that it appears on
the convex hull of Q. We will then use Lemma 3.8 to show
that, given that it appears in the shadow, it is unlikely that
its projection onto the shadow plane is much shorter. To fa-
cilitate the proofs of these lemmas, we shall prove some aux-
iliary lemmas about shifted exponential random variables.

DEFINITION 3.4. We say that r is a shifted exponential
random variable with parameter X if there exists at € R such
that r = s — t, where s is an exponential random variable
with expectation .

PROPOSITION 3.5. Let r be a shifted exponential random
variable of parameter \. Then, for all g € R and € > 0,

Pr[rﬁq—i—e‘qu} <e€/A

PROOF. Asr—gq is a shifted exponential random variable,
it suffices to consider the case in which ¢ = 0. So, assume
q = 0 and r = s — t, where s is an exponential random
variable of expectation \. We now need to compute

Prs<t+els>t]. (2)

We only need to consider the case € < A, as the proposition is
trivially true otherwise. We first consider the case in which
t > 0. In this case, we have

t+€ 75/)\d8
2 =Prls<t >t = A
@=Prlotrdo 2t = oy (N

e—t/A _ e—t//\+€/)\
e—t/X

=1—e’* < ¢/,

for e/A < 1.
Finally, the case when ¢ < 0 follows from the analysis in
the case t =0. [

LEMMA 3.6. For N and P disjoint subsets of {1,...,n},
let {ri},cp and {r;};cy be independent random variables,
each of which is a shifted exponential random variable with
parameter at least \. Then

Pr | min(r; in(r;) < €| min(r; in(r;) >0
r |min(ri) + min(r;) < ¢[min(ri) + min(r;) >

< ne/2A.

PROOF. Assume without loss of generality that |P| < |N]|,
so |P| < n/2.

Set r* = minjepr; and 7~ = minjen ;. Sample r~
according to the distribution induced by the requirement
that 7+ +r~ > 0. Given the sampled value for r~, the
induced distribution on 77 is simply the base distribution
restricted to the space where r™ > —r~. So, it suffices to
bound

max Pr [r+ <e€e— rf‘rJr > —rf]

T T

= max Pr {min(ri) <e—r" | min(r;) > —rf}
r— rt+ |i€P i€P

< ; — 7~ | min(r;) > —r~
H:%X;ff{““ a2 |

ZmaxPr {ri <e—r | min(r;) > —7“7}
ier Tt er

ZmaxPr [ri <e—r"|ri>—r7]

ZGP T 7‘+

< [P(e/A);

where the last equality follows from the independence of the
ri’s, and the last inequality follows from Proposition 3.5. [

LEMMA 3.7. LetI € (d[f]l), and let A(I) be the event that
I appears on the convex hull of Q. Let 6(I) denote the length
of the edge I on Q. Then,

Pr{o(I) < d[A(1)] < 55

PRrOOF. Without loss of generality, we set I = {1,...,d — 1}.

As our proof will not depend upon the values of r1,...,74-1,
assume that they have been set arbitrarily. Now, parame-
terize the line of points satisfying

alz=1+r;, foriel,

by
I(t) := p +tq,

where p is the point on the line closest to the origin, and g
is a unit vector orthogonal to p. For each ¢ > d, let ¢; index
the point where the i*® constraint intersects the line, i.e.,

a?l(ti) =1+7r;. (3)

Now, divide the constraints indexed by ¢ ¢ I into a pos-
itive set, P = {z > d|aiTq > 0}, and a negative set N =
{i > d|aiTq < 0} . Note that each constraint in the positive
set is satisfied by {(—o0) and each constraint in the negative
set is satisfied by [(c0). The edge I appears in the convex
hull if and only if for each i € P and j € N, t; < t;. When
the edge I appears, its length is

. mi_n ti — tj.

i€eP,jeEN
Solving (3) for ¢ € P, we find ¢t; = ﬁ (1 —alp —&—ri).
Similarly, for j € N, we find t; = m (—1 —l—aij — rj).
Thus, ¢; for ¢ € P and —t; for j GJ N are both shifted
exponential random variables with parameter at least A. So,
by Lemma 3.6,

Pr | min ¢ —t; <elA(I)| <ne/2A. O
{ri|i¢I} |i€P,jEN

LEMMA 3.8. Let Q be an arbitrary polytope, and let I in-
dex an edge of Q. Let v and w be random unit vectors, and
let V' be their span. Let St(V') be the event that the edge I
appears on the convexr hull of the projection of Q onto V.
Let 61 (V) denote the angle of the edge I to V.. Then

Pr [cos(6:(V)) < e|S1(V)] < de”.

Figure 1: The points z, y and gq.

PROOF. As in the proof of Lemma 3.7, parameterize the
edge by

I(t) == p +tq,

where ¢ is a unit vector. Observe that Sr(V') holds if and
only if V non-trivially intersects the cone {3, ; a:a:|a; > 0},
which we denote C. To evaluate the probability, we will
perform a change of variables that will both enable us to
easily evaluate the angle between q and V' and to determine
whether S7(V) holds. Some of the new variables that we
introduce are shown in Figure 1.

First, let W be the span of {a;|¢ € I}, and note that W
is also the subspace orthogonal to g. The angle of g to V'
is determined by the angle of q to the unit vector through
the projection of g onto V', which we will call y. Fix any
vector ¢ € C, and let & be the unique unit vector in V' that
is orthogonal to y and has positive inner product with c.
Note that x is also orthogonal to g, and so x € V. N W.
Also note that S7(V) holds if and only if € C.

Instead of expressing V' as the span of v and w, we will
express it as the span of and y, which are much more
useful vectors. In particular, we need to express v and w
in terms of & and y, which we do by introducing two more
variables, o and (3, so that

v = T cosa + ysin a, and
w = x cos [+ ysinG.

Note that number of degrees of freedom has not changed: v
and w each had d — 1 degrees of freedom, while only has
d—2 degrees of freedom since it is restricted to be orthogonal
to g, and given x, y only has d — 2 degrees of freedom since
it is restricted to be orthogonal to x.

We now make one more change of variables so that the
angle between g and y becomes a variable. To do this, we
let & = 0;(V) be the angle between y and g, and note that
once # and x have been specified, y is constrained to lie on

a d — 2 dimensional sphere. We let z denote the particular
point on that sphere.

Deshpande and Spielman [4, Full version| prove that the
Jacobian of this change of variables from «, 3, x, 6, z to v
and w is

¢(cos 0) (sin)% sin(a — 8)7 72,

where c is a constant depending only on the dimension.
Now, to compute the probability, we will fix a and 3 ar-
bitrarily and integrate over « € C.

I?/r [cos(0:(V)) < €| S (V)]

_ fv,wGS"_liVﬁC#@ and 07(V)<e Ldv dw
1dv dw

fv,wES"‘LSpan(v,w)ﬂC#@

IEGC,Z f9>arccos(e) C(COS 9) (Sin 0)d—3 dx dz do
fzeC,z,G C(COS 9) (Sin 0)d—3 dx dz df

/2 (cos 0)(sin 0)*~2 df

O=arccos(e)
;:/(?(cos 0)(sin 0)4—3 do

(Sin G)d_2 ;rr/c2cos(e)
(sin 0)‘1*2‘3/2
< 1 — (sin(arccos(e))

<1-(1-)"? < (d-2)é. O

d—2

LeMMA 3.9. For all I € ([™), Evryoor [0(1)[S1(V)] >
A
6vdn "

PRrOOF. Foreachedge I, (1) = 6(I)cos(07(V)). By Lemma 3.7,

Pr {5(1) > % ‘ A(I)} >1/2.
By Lemma 3.8,
Pr [cos(a,(V)) >1/v2d ‘ s,(V)] >1/2.

So, given that edge I appears on the shadow, £(I) > (1/v/2d) (2)

with probability at least 1/4. Thus, its expected length
when it appears is at least ﬁ. [l

4. THE SHADOW SIZE IN THE GENERAL
CASE

In this section, we present an extension of Theorem 3.2
that we will require in the analysis of our simplex algorithm.
We extend the theorem in two ways. First of all, we examine
what happens when P is not near isotropic position. In this
case, we just show that the shadow of the convex hull of
the vertices of bounded norm probably has few edges. As
such, if we take a polynomial number of steps around the
shadow, we should either come back to where we started or
find a vertex far from the origin. Secondly, we consider the
shadow onto random planes that come close to a particular
vector, rather than just onto uniformly random planes.

DEFINITION 4.1. For a unit vector w and a p > 0, we
define the p-perturbation of u to be the random unit vector
v chosen by

1. choosing a 0 € [0, 7] according to the restriction of the
exponential distribution of expectation p to the range
[0, 7], and

2. setting v to be a uniformly chosen unit vector of angle
0 to u.

THEOREM 4.2. Let a1,...,ay, be vectors of norm at most
1. Let ri,...,rn be independent exponentially distributed
random variables with expectation \. Let @Q be the polytope
given by

Q= {a:|Vi, alz <1 —i—ri}.

Let w be an arbitrary unit vector, p < 1/\/3, and let v be a
random p perturbation of u. Let w be a uniformly chosen
random unit vector. Then, for allt > 1,

Ery....rn.0.0 [ShadowSizespan(v,w) (Q N B(0,1))]

< 427t(1 4 Alogn)Vdn
—)\p -

PrOOF. The proof of Theorem 4.2 is almost identical to
that of Theorem 3.2, except that we substitute Lemma 4.3
for Lemma 3.7, and we substitute Lemma 4.4 for Lemma 3.8.

LEMMA 4.3. For I C (") and t >0,

Pr [§(I) < e|A(T) and I N B(0,t) # 0] < %

PRrROOF. The proof is identical to the proof of Lemma 3.7,
except that in the proof of Lemma 3.6 we must condition
upon the events that

rt > —Vt—|pll and < Vi-|p].

These conditions have no impact on any part of the proof. [

LEMMA 4.4. Let Q be an arbitrary polytope, and let I in-
dex an edge of Q. Let u be any unit vector, let p < 1//d,
and let v be a random p perturbation of u. Let w be a uni-
formly chosen random unit vector, and let V = span(u,v).
Then

Pr [cos(0:(V)) < €|Sr(V)] < 3.5¢*/p>.

v,w

PrOOF. We perform the same change of variables as in
Lemma 3.8.

To bound the probability that cosf < €, we will allow
the variables x, z, a and 3 to be fixed arbitrarily, and just
consider what happens as we vary 6. To facilitate writing the
resulting probability, let i denote the density function on v.
If we fix x, z, @ and 3, then we can write v as a function of
0. Moreover, as we vary 6 by ¢, v moves through an angle
of at most ¢. So, for all ¢ < p and 6,

m(v(8)) < u(v(0 + ¢))/e. (4)

O

With this fact in mind, we compute the probability to be

fv,wES"*LVﬁC#@ and 07 (V)<e p(v) dv dw
dv dw

fv,wES"‘leﬁC?ﬁ@ ()
/2 (cos 0)(sin 0)?3(v(6)) o

O=arccos(e)
/2 (cos 0) (sin)43 (v (0)) df
/2 (cos 0)(sin 0)%~214(0) db

O=arccos(e)

T2 (cos)(sin 0)4—3(0) df

O=m/2—p

e [T/? (cos 6)(sin)43 do

O=arccos(e)

f(;r:/frm_p(cos 0)(sin)43 do

(sin G)d_2 /2

arccos(€)
. _o|T/2
(sin 6)¢ 2|7r/27p
1 — (sin(arccos(e))?2

1= (sin(p)? 2

, by (4)

1—(1—e?)d?
=T
(d—2)ée?

R TN TR A

<3.5(e/p)?. O

5. REDUCTION OF LINEAR PROGRAM-

MING TO CERTIFYING BOUNDEDNESS

We now recall an old trick [12, p. 125] for reducing the
problem of solving a linear program in form (1) to a different
form that will be more useful for our purposes. We recall
that the dual of such a linear program is given by

minimize b-y (5)

subject to ATy =c¢, y >0,

and that when the programs are both feasible and bounded,
they have the same solution. Thus, any feasible solution to
the system of constraints

Az < b, z € R?, (6)
Aly=c,y>0,
ccx=b-y

provides a solution to both the linear program and its dual.
Using standard techniques, one can reduce the solution of
a feasibility problem in this form to a feasibility problem of
the form

ATz=0 (7)
z2>0, z# 0,

where A; is a matrix constructed from A, b and ¢. When
the system (7) is non-degenerate, a solution to the system
is equivalent to a certificate that a system of form

Alw S b1 (8)

is bounded, where the choice of the vector b; does not mat-
ter as it does not affect boundedness. However, our reduc-
tion produces a system that is degenerate. This is easily
remedied, in strongly-polynomial time, by applying the e-
perturbation technique of Megiddo and Chandrasekaran [11],
which produces a non-degenerate system that is solvable if

and only if the original is, and from whose solution one can
obtain the solution to the original'. By solving this system
with a randomly chosen right-hand side vector we can solve
system (1) while avoiding the combinatorial complications
of the feasible set of (1).

In our algorithm, we will certify boundedness of (1) by
finding the vertices minimizing and maximizing some objec-
tive function. Provided that the system is non-degenerate,
which it is with high probability under our choice of right-
hand sides, this can be converted into a solution to (7).

6. OUR ALGORITHM

Our bound from Theorem 3.2 suggests a natural algo-
rithm for certifying the boundedness of a linear program of
the form given in (8): set each b; to be 14 r;, where r; is an
exponential random variable, pick a random objective func-
tion ¢ and a random two-dimensional subspace containing
it, and then use the shadow-vertex method with the given
subspace to maximize and minimize c.

In order to make this approach into a polynomial-time
algorithm, there are two difficulties that we must surmount:

1. To use the shadow-vertex method, we need to start
with some vertex that appears on the boundary of the
shadow. If we just pick an arbitrary shadow plane,
there is no obvious way to find such a vertex.

2. Theorem 3.2 bounds the expected shadow size of the
vertices of bounded norm in polytopes with perturbed
right-hand sides, whereas the polytope that we are
given may have vertices of exponentially large norm.
If we naively choose our perturbations, objective func-
tion, and shadow plane as if we were in a coordi-
nate system in which all of our vertices had bounded
norm, the distribution of vertices that appear on the
shadow may be very different, and we have no guar-
antees about the expected shadow size.

We address the first difficulty by constructing an artificial
vertex at which to start our simplex algorithm. To address
the second difficulty, we start out by choosing our random
variables from the naive distributions. If this doesn’t work,
we iteratively use information about how it failed to improve
the probability distributions from which we sample and try
again.

6.1 Constructing a Starting Vertex

In order to use the shadow-vertex method on a polytope
P, we need a shadow plane S and a vertex v that appears
on the boundary of the shadow. One way to obtain such a
pair is to pick any vertex v, randomly choose (from some
probability distribution) an objective function ¢ optimized
by v, let u be a uniformly random unit vector, and set
S = span(c, u).

However, to apply the bound on the shadow size given by
Theorem 4.2, we need to choose ¢ to be a p-perturbation
of some vector. For such a ¢ to be likely to be optimized

'If one views the problem as asking if the origin is contained
inside the convex hull of the rows of A;, then the pertur-
bation pushes the origin slightly towards the average of the
rows. The magnitude of the perturbation is small enough
that it cannot make an infeasible system feasible, but it only
increases the size of the input by a polynomial factor in n
and d.

by v, we need v to optimize a reasonably large ball of ob-
jective functions. To guarantee that we can find such a v,
we create one. That is, we add constraints to our polytope
to explicitly construct an artificial vertex with the desired
properties. (This is similar to the “Phase I” approaches that
have appeared in some other simplex algorithms.)

Suppose for now that the polytope {x|Az < 1} is k-round.
Construct a modified polytope P’ by adding d new con-
straints, {EZT:(: <l,i=1,.. .,d}, where

w; = —(Z e]-) + \/Eei/3k2,

J

and w; = w;/(2||w;||). Let xzo be the vertex at which

wi,...,wq are all tight. Furthermore, let ¢ be a p-perturbation

of the vector 1/v/d, with p = 1/6dk?, and let &, be the ver-
tex at which ¢ is maximized. We can prove:

LEMMA 6.1. The following three properties hold with high
probability. Furthermore, they remain true with probability
1—(d+ 2)e™™ if we perturb all of the right-hand sides of
the constraints in P’ by an exponential random variable of
expectation A = 1/n.

!
1. The vertex o appears on P’,
2. —c 1s mazximized at o, and

8. None of the constraints wi,...,wq is tight at 1.

PRroOF. Follows from Lemma 7.1 and bounds on tails of
exponential random variables. [

Set
k:=16d+1 and s:=4-107 d%n.

Let S = span(e, u), where v is a uniform random unit vec-
tor. If P is k-round, then by Lemma 6.1 and Theorem 3.2
we can run the shadow vertex method on P’ with shadow
plane S and starting at vertex xo, and we will find the ver-
tex 1 that maximizes ¢ within s steps, with probability at
least 1/2. Since none of the w; are tight at x1, 1 will also
be the vertex of the original polytope P that maximizes c.
This gives us the vertex x; of P that maximizes ¢. We
can now run the shadow vertex method again on P using
the same shadow plane. This time, we start at 1 and find
the vertex that maximizes —c. We are again guaranteed to
have an expected polynomial-sized shadow, so this will again
succeed with high probability. This will give us a pair of
vertices that optimize ¢ and — ¢, from which we can compute
our desired certificate of boundedness. It just remains to
deal with polytopes that are not near isotropic position.

6.2 Polytopes Far from Isotropic Position

We first observe that for every polytope there exists an
affine change of coordinates (i.e., a translation composed
with a change of basis) that makes it k-round. An affine
change of coordinates does not change the combinatorial
structure of a polytope, so this means that there exists some
probability distribution on b and S for which the shadow
has polynomial expected size. We would like to sample b
and S from these probability distributions and then pull
the result back along the change of coordinates. Unfortu-
nately, we don’t know an affine transformation that makes
our polytope k-round, so we are unable to sample from these
distributions.

Algorithm 6.1: CHECKBOUNDEDNESS(@1, ..., an)

Require each a; has norm at most 1.
Set k=16d+ 1, A =1/n, p = 1/6dk?
s=4-107 dg/Qn, and w; as described in text;
Initialize @ :=1d,, r := 0;
Repeat until you return an answer
Construct constraints for starting corner:
anti = QTw;/(1 —w; - (Qr)) fori=1,...,d;
bi:=(1+8)14alr)fori=1,...n+d, (1)
[B; exponential random vars with expectation \;
Set starting corner xo := point where al zo = b;
fori=n+1,...,n+d;
If o violates a xo < b; for any 4, go back to (1)
and generate new random variables;
¢:= QT~, with v a p-perturbation of 1/\/3;
Shadow plane S := span(c, Q7 u),
with » a uniformly random unit vector;
Run SHADOWVERTEX((@1,...,@n+d), b, ¢, S, o, s) :
If returns unbounded then
return (unbounded);
If returns (fail, y,) then
set y := y, and go to (3);
If returns (opt, vo) then
set v := vo and continue to (2);
Run SHADOWVERTEX((@1,...,a5),b,¢,S,v,s): (2)
If returns unbounded then
return (unbounded);
If returns (fail, y,) then
set y := y, and go to (3);
If returns (opt, vo) then
set v’ := v and return (v, v’);
Update @ and 7: (3)
If ||Q(y + 7)|| < 2k then
don’t change Q or r
else
Set M := the matrix that scales down
Q(y + 7) by factor of 8 and scales
vectors in orthogonal complement up
by factor of 1 — 1/d;
Q:=MQ;
rim 1+ 7Q(y + 1)1y + 7

Instead, we shall start out as we would in the k-round case,
adding in artificial constraints w1, ..., wq, and choosing an
objective function and shadow plane as in Section 6.1. By
Theorem 4.2, running the shadow-vertex method for s steps
will yield one of two results with probability at least 1/2:

1. It will find the optimal vertex x1, or
2. It will find a vertex y of norm at least 2k.

In the first case, we can proceed just as in the k-round case
and run the shadow-vertex method a second time to opti-
mize — ¢, for which we will have the same two cases.

In the second case, we have not found the optimal ver-
tex, but we have with high probability learned a point of
large norm inside our polytope. We can use this point to
change the probability distributions from which we draw
our random variables and then start over. This changes our
randomized pivot rule on the graph of potential vertices of
our polytope, hopefully putting more probability mass on

short paths from the starting vertex to the optimum. We
shall show that, with high probability, we need only repeat
this process a polynomial number of times before we find
a right-hand side and shadow plane for which the shadow-
vertex method finds the optimum.

Our analysis rest upon the following geometric lemma,
proved in Section 7:

LEMMA 6.2. Let B C R? be the unit ball, let P be a point
at distance S from the origin, and let C = conv(B, P) be
their convex hull. If S > 16d+ 1, then C' contains an ellipse
of volume at least twice that of B, having d—1 semi-azes® of
length 1—1/d and one semi-azis of length at least 8 centered

at the point of distance 7 from the origin in the direction of
P.

We remark that the number of times that we have to
change probability distributions depends on the bit-length
of the inputs, and that this is the only part of our algo-
rithm in which this is a factor. Otherwise, the execution of
our algorithm is totally independent of the bit-length of the
inputs.

THEOREM 6.3. If each entry of the vectors a; is specified
using L bits, then CHECKBOUNDEDNESS() either produces a
certificate that its input is bounded or that it is unbounded
within O(n®L) iterations, with high probability.

Proor. It will be helpful to think of the input to

CHECKBOUNDEDNESS() as being the polytope {a: lalz < 1Vi}

instead of just the vectors ai,...,a,. We can then talk
about running this algorithm on an arbitrary polytope
{:1: lafz < 7 Vz’} by rewriting this polytope as
{z| (/)" < 1Vi}.

With this notation, it is easy to check that running an
iteration of the Repeat loop on a polytope P with @ = Q,
and r = 7(is equivalent to running the same code on the
polytope Qo (P + ro) with @ =1Id and = = 0. The update
step at the end of the algorithm can therefore be thought of
as applying an affine change of coordinates to the input and
then restarting the algorithm.

If @ = 1Id, and r = 0, the argument from Section 6.1
proves that the first iteration of the Repeat loop will either
prove boundedness, prove unboundedness, or find a point
with norm at least k with probability at least 1/2. In either
of the first two cases, the algorithm will have succeeded, so
it suffices to consider the third.

If a point y is in the polytope P’ = {z| Az < b}, the
point y/2 will be in the polytope P = {z| Az <1} with
probability at least 1 — ne™ ™. This guarantees that P con-
tains a point of norm at least k. Since P contains the unit
ball, Lemma 6.2 implies that P contains an ellipse of volume
at least twice that of the unit ball. The update step of our
algorithm identifies such an ellipse and scales and translates
so that it becomes the unit ball, and it then restarts with
this new polytope as its input. This new polytope has at
most half the volume of the original polytope.

All the vertices of the original polyhedron are contained in

a ball of radius 20("2L), where L is the maximum bit-length

2If an ellipsoid F is given as the set E = {x |2TQ 'z < 1},
where @ is a symmetric, positive definite matrix, then the
semi-azes of E have lengths equal to the the eigenvalues of

Q. For example, the semi-axes of the sphere are all of length
1.

of any number in the input, and so their convex hull has
volume at most 20" %) times that of the unit ball [7]. Each
iteration of the algorithm that finds a point of norm at least
k decreases the volume of P by a factor of at least 2. All
of the polytopes that we construct contain the unit ball, so
this can occur at most O(n®L) times. This guarantees that
the Repeat loop finds an answer after a O(n®L) iterations
with high probability, as desired. [

While the algorithm requires samples from the exponen-
tial distribution and uniform random points on the unit
sphere, it is not difficult to show that it suffices to use stan-
dard discretizations of these distributions of bit-length poly-
nomial in n and d.

7. GEOMETRICLEMMASFORALGORITHM’S
CORRECTNESS

LEMMA 7.1. Let P be a k-round polytope, let ¢ and q be
unit vectors, and let

v = argmaxc- T
zeP

be the vertex of P at which ¢ - x is mazimized. If ¢-q <
—(2k* —1)/2k?, then v-q < 0.

PRrROOF. We first note that
2k -1 1
k2 k2

so ||g + ¢|| < 1/k. The fact that P is contained in B(0, k)
implies that ||v|| < k, and the fact that P contains the unit
ball implies that

llall* + lell* +2(c-q) < 2 -

lla + ll®

v-c=maxc-x > 1.
zeP

We therefore have
g v=——c-v+(g+c)-v<—-1+]|lg+|||v]] <0,
as desired. [

We now prove some geometric facts that will be necessary
for the analysis of our algorithm. We first prove a two-
dimensional geometric lemma. We then use this to prove a
higher-dimensional analogue, which is the version that we
shall actually use to analyze our algorithm.

7.1 2-Dimensional Geometry Lemma

In this section, we prove a lemma about the two-dimensional
objects shown in Figure 2. In this picture, C' is the center
of a circle C of radius 1. P is a point somewhere along the
positive x-axis, and we have drawn the two lines tangent to
the circle through P, the top one of which we have labeled L.
E is the center of an axis-parallel ellipse E with horizontal
semi-axis M > 1 and vertical semi-axis m < 1. The ellipse
is chosen to be a maximal ellipse contained in the convex
hull of the circle and P. Furthermore, let S be the distance
from C to P, and let Q = (1 — m?)/2.

LEMMA 7.2. With the definitions above,

M=Q(S—1)+1.

Q=(1-m?)/2

Figure 2: The geometric objects considered in Lemma 7.2

ProOF. Without loss of generality, let E be the origin.
The circle and ellipse are mutually tangent at their leftmost
points on the z-axis, so C is at (—M +1,0), and P is there-
fore at (S — M +1,0). Let

1 1
é<§7 1_§>7

and let L be the line given by

= {@wie- @y - S5,

We claim that L has the following three properties, as
shown in Figure 2:

1. L passes through P.

2. L is tangent to C.

3. If we take the major semi-axis M of the ellipse E to
be Q(S — 1) + 1, then L is tangent to E.

Establishing these properties would immediately imply
Lemma 7.2, so it suffices to check them one by one.

1. This follows by direct computation—we simply note
that the point P = (S — M +1,0) satisfies the equation
for L.

2. It suffices to show that the distance from the point C
to the line L is exactly 1. Since £ is the unit normal
to L, it suffices to check that

S—M+1 -M+1
=T) _ 1T
eo- (S L

which again follows by direct computation.

3. Let

L= ls) =gy !

3 1 521

N <S—M+1’S—M+1)’
so that L = {(z,y) | L - (z,y) = 1}. When expressed
in this form, L will be tangent to E if and only if
L2M? + £§m2 = 1. This can be verified by plugging
in M =Q(S—1)+1and Q = (1 — m?)/2, and then
expanding the left-hand side of the equation. [

7.2 High-Dimensional Geometry Lemma

LEMMA 7.3. Let B C R? be the unit ball, let P be a point
at distance S from the origin, and let C = conv(B, P) be
their convex hull. For any m < 1, C contains an ellipsoid
with (d — 1) semi-azes of length m and one semi-axis of
length (1 —m?) (S —1)/2+ 1.

PRrOOF. Without loss of generality, take P = (5,0,...,0).
Consider an axis-parallel ellipsoid F with the axes described
in the above theorem, with its distinct axis parallel to ey,
and translated so that it is tangent to B at (—1,0,...,0).

We assert that E is contained in C. It suffices to check
the containment when we intersect with an arbitrary 2-
dimensional subspace containing 0 and P. In this case, we
have exactly the setup of Lemma 7.2, and our result follows
immediately. [

PROOF PROOF OF LEMMA 6.2. If we set m = 1 — 1/d,
then Lemma 7.3 guarantees that the length of the longer
semi-axis of the ellipse will be at least

(i)) e

So, the ratio of the volume of the unit ball to the ellipse is

at least
1\ 41
1-= 8
1)

=2. O

V/vol(B)

v
=00 —/

Y

8. REFERENCES

[1] D. Bertsimas and S. Vempala. Solving convex
programs by random walks. J. ACM, 51(4):540-556,
2004.

[2] K. H. Borgwardt. The Simplex Method: a probabilistic
analysis. Number 1 in Algorithms and Combinatorics.
Springer-Verlag, 1980.

[3] G. B. Dantzig. Maximization of linear function of
variables subject to linear inequalities. In T. C.
Koopmans, editor, Activity Analysis of Production and
Allocation, pages 339-347. 1951.

[4] A. Deshpande and D. A. Spielman. Improved
smoothed analysis of the shadow vertex simplex
method. preliminary version appeared in FOCS ’05,
2005.

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

J. Dunagan and S. Vempala. A simple
polynomial-time rescaling algorithm for solving linear
programs. In Proceedings of the thirty-sizth annual
ACM Symposium on Theory of Computing
(STOC-04), pages 315-320, New York, June 13-15
2004. ACM Press.

S. Gass and T. Saaty. The computational algorithm
for the parametric objective function. Naval Research
Logistics Quarterly, 2:39-45, 1955.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric
Algorithms and Combinatorial Optimization.
Springer-Verlag, 1991.

G. Kalai and D. J. Kleitman. A quasi-polynomial
bound for the diameter of graphs of polyhedra.
Bulletin Amer. Math. Soc., 26:315-316, 1992.

N. Karmarkar. A new polynomial time algorithm for
linear programming. Combinatorica, 4:373—-395, 1984.
L. G. Khachiyan. A polynomial algorithm in linear
programming. Doklady Akademia Nauk SSSR, pages
1093-1096, 1979.

N. Megiddo and R. Chandrasekaran. On the
epsilon-perturbation method for avoiding degeneracy.
Operations Research Letters, 8:305-308, 1989.

A. Schrijver. Theory of Linear and Integer
Programming. John Wiley & Sons, 1986.

