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Abstract

We present a new class of asymptotically good, linear error-correcting codes. These
codes can be both encoded and decoded in linear time. They can also be encoded by
logarithmic-depth circuits of linear size and decoded by logarithmic depth circuits of size
O(n log n). We present both randomized and explicit constructions of these codes.

Keywords: asymptotically good error-correcting code; linear-time; expander graph, su-
perconcentrators.

1. Introduction

We construct an asymptotically good family of linear error-correcting codes that can be encoded
and decoded in linear time. These codes can also be encoded by linear-size circuits of logarithmic
depth, and decoded by circuits of logarithmic depth and size O(n log n). Our construction builds
on a construction of linear-time decodable error-correcting codes by Sipser and Spielman [SS96],
which also appears in this issue. We will occasionally refer the reader to [SS96] for information
on the subtleties of linear-time computation. Except for these few references, the present paper
should be self-contained. However, as many of the constructions and proofs in the present paper
have simpler analogues in [SS96], the reader might prefer to read that paper before reading this
one.

When discussing linear time, one must be careful to specify exactly what is meant. When
we say that our algorithms run in linear time, we mean that they can easily be implemented to
run in linear time on a Pointer Machine (see [KU58] or [Sch80]) or on a RAM in the uniform
cost model (see [AHU74]). They can also be modified to run in linear time on a RAM in the
logarithmic cost model by using a technique from Section 7 of [SS96]. For a more detailed
description of the models that we consider, we refer the reader to Section 2 of [SS96].

∗Dept. of Computer Science, U. C. Berkeley, Berkeley, CA 94720. spielman@math.mit.edu. Partially
supported by an NSF Postdoc. This work was also supported by the Fannie and John Hertz Foundation, Air
Force Contract F49620-92-J-0125, DARPA N00014-92-J-1799, and NSF grant 9212184CCR. Errata to this paper
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Suggestions for how to analyze the complexity issues special to error-correcting codes ap-
peared in the work of Savage [Sav69, Sav71] and Bassalygo, Zyablov, and Pinsker [BZP77].
Bassalygo, Zyablov, and Pinsker point out that the complexity of encoding and decoding should
be divided into two parts: The first complexity is that of building the encoders and decoders.
This process may involve operations that only need to be performed once, such as computing a
check matrix from a generator matrix. The second complexity is the time it takes the encoders
and decoders to encode and decode individual transmissions. In our constructions, we devote a
polynomial amount of computation to produce encoders and decoders that run in linear time.

It is somewhat tricky to compare the complexity of our algorithms with those for other codes
because, historically, the presentation of most encoding and decoding algorithms have not used
such fine models of computation or have not dealt with asymptotic complexity. However, we
can point to constructions of Justesen [Jus76] and Sarwate [Sar77] which use efficient implemen-
tations of Polynomial GCD [AHU74] to show that certain Reed-Solomon and Goppa codes can

be encoded in O(n log n log log n) time and decoded in time O
(
n log2 n log log n

)
. While these

codes are not necessarily asymptotically good, one can concatenate them with good codes to ob-
tain asymptotically good codes with similar encoding and decoding times. Codes that have had
more efficient algorithms for one of these operations seem to have suffered in the other. Gelfand,
Dobrushin, and Pinsker [GDP73] presented randomized constructions of asymptotically good
codes that could be encoded in linear time. However, they did not suggest algorithms for decod-
ing their codes, and we suspect that a polynomial-time algorithm would be difficult to find. On
the other hand, Sipser and Spielman [SS96] presented explicit constructions of error-correcting
codes that can be decoded in linear time, but which seem to require quadratic time for encoding.
Our constructions and proofs rely heavily on ideas introduced by Sipser and Spielman, and our
encoding circuits have some resemblance to those of Gelfand, Dobrushin, and Pinsker.

An important step along the path to our error-correcting codes is the introduction of error-
reduction codes. An error-reduction code is weaker than an error-correcting code. Loosely
speaking, an error-reduction code is a systematic code with a decoder that can remove most
of the errors from the message bits of a partially corrupted word. In Section 2, we precisely
define error-reduction codes and present a novel recursion that enables us to build asymptotically
good linear-time encodable and decodable error-correcting codes from linear-time encodable and
“error-reducible” error-reduction codes. We also show that if the error-reduction codes can be
encoded and decoded efficiently in parallel, then the derived error-correcting codes can be as well.
Our recursive use of error-reduction codes is analogous to Pippenger’s use of expander graphs
in his construction of linear-size superconcentrators [Pip77]. In fact, the graphs underlying our
linear-size encoding circuits bear a strong resemblance to superconcentrators. In Section 6,
we explain why this resemblance is necessary. However, the reader should not need to know
anything about superconcentrators in order to understand the present paper.

We construct error-reduction codes by modifying the expander codes constructed by Sipser
and Spielman [SS96]. Accordingly, we build error-reduction codes from expander graphs. In
Section 3, we explain what expander graphs are and give pointers to both randomized and
explicit constructions. In Section 4, we show that very good expander graphs can be used
to construct error-reduction codes that can be encoded and error-reduced in linear time. We
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also present parallel algorithms for these operations. Unfortunately, we do not know of explicit
constructions of expander graphs of quality sufficient for this construction. However, randomly
chosen graphs will work well with high probability.

In Section 5, we present a construction of error-reduction codes that uses known explicit
constructions of expander graphs. We show that these error-reduction codes can be encoded
and partially error-reduced by linear-size circuits of constant depth (Lemma 18). The main
statement of this paper is Theorem 19, in which we incorporate these constructions of error-
reduction codes into the recursion of Section 2 to obtain our error-correcting codes.

We conclude the paper with some comments on how these codes might perform in practice.

2. From error reduction to error correction

Our error-correcting codes are constructed from codes that we call error-reduction codes. Loosely
speaking, error-reduction codes have the property that, if not too many of their message bits
and not too many of their check bits have been corrupted, then it is possible to remove most
of the corruption from their message bits. While these codes do not necessarily allow for full
error-correction, we can combine them in a recursive construction to obtain codes that enable
full error-correction. In this section, we formally define error-reduction codes and demonstrate
how they can be used to construct error-correcting codes.

Definition 1. A code C of length n with rn message bits and (1 − r)n check bits is an error-
reduction code of rate r, error reduction ε, and reducible distance δ if there is an algorithm1 that,
when provided with a word ~x that differs from a codeword ~w ∈ C in at most v message bits and
t check bits, where v ≤ δn and t ≤ δn, will output a word that differs from ~w in at most εt
message bits.

In Section 4, we present a simple randomized construction of a linear-time encodable error-
reduction code in which the error-reduction can be performed in linear time. In Section 5,
we present a slightly more complicated explicit construction. We now show how these con-
structions can be used to construct an infinite family of linear-time encodable and decodable
error-correcting codes:

Constructing error-correcting codes from error-reduction codes:

Let C0 be an error-correcting code of block length n0 and rate 1/4 from which a δ/4 fraction
of error can be corrected. Let Rk be a family of error-reduction codes with n02

k message bits,
n02

k−1 check bits, reducible distance δ > 0, and error-reduction 1/2, for k ≥ −1. We define the
codes Ck for k > 0 by describing how they are encoded. Ck will be a code of block length n02

k

and rate 1/4.
Ck will have n02

k−2 message bits. We call this set of message bits Mk. We produce n02
k−3 of

the check bits of Ck by encoding the n02
k−2 message bits Mk using the code Rk−2. Let Ak denote

1This definition is not concerned with the particulars of the algorithm, but rather the structure of the code
implied by the algorithm’s existence.
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Figure 1: The recursive construction of Ck.

the resulting set of n02
k−3 check bits. Another 3 · n02

k−3 check bits are produced by using the
n02

k−3 check bits in Ak as the message bits in the code Ck−1 and computing the corresponding
3 ·n02

k−3 check bits, which we will call Bk. A final n02
k−2 check bits, Ck, are produced by using

the n02
k−1 check bits in Ak ∪Bk as the message bits in the error-reduction code Rk−1. We have

produced a total of 3 · n02
k−2 check bits, so the code has total length n02

k and rate 1/4, as
promised (See Figure 1).

Lemma 2. The codes Ck are error-correcting codes of lengths n02
k and rate 1/4 from which a

δ/4 fraction of error can be corrected. The codes Ck can be encoded and decoded in linear time
if the codes Rk have linear-time encoding algorithms and linear-time error-reduction algorithms
that will

a. on input a word that differs from a codeword in v message bits and t check bits, where
v, t ≤ δn, output a word that differs from that codeword in at most max(v/2, t/2) message
bits, and

b. on input a word that differs from a codeword in v ≤ δn message bits and no check bits,
output that codeword.

Proof: The proof is by induction. Our base case is the code of length n0 and rate 1/4 from
which a δ/4 fraction of error can be corrected. Since n0 is a constant, the errors can be removed
from this code in constant time, which is certainly linear; we similarly assert that we can encode
this code in constant time.

Let c1n02
k be the time required to encode the error-reduction code Rk, and let c2n02

k be the
time required to perform its error-reduction. Let c0 be the time required to encode and decode
C0. We will show by induction that Ck can be encoded in time 3c1n02

k−1 + c0 and decoded in
time 3c2n02

k−1 + c0.
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The time required to encode Ck is the time required to encode Rk−2, plus the time to encode
Ck−1, plus the time to encode Rk−1:

c1n02
k−2 +

(
3c1n02

k−2 + c0
)

+ c1n02
k−1 = 3c1n02

k−1 + c0.

To correct errors in Ck, we work back to front. That is, we begin by using the linear-time
algorithm that satisfies condition (a) to perform error-reduction on the n02

k−1 bits in Ak ∪ Bk

using the set of n02
k−2 check bits in Ck. We then treat the set of n02

k−1 check bits in Ak ∪ Bk

as a received word of Ck−1, and apply the decoding algorithm for that code. Finally, we assume
that the values obtained for the n02

k−3 check bits in Ak are free of error and use them in the
algorithm of condition (b) to perform error-correction on the message bits Mk. The decoding
time can now be computed as the encoding time was. It remains to show that this algorithm
will correct a δ/4 fraction of error.

Assume that this algorithm is provided with a word in which there are at most n02
kδ/4

errors. Then, there are at most n02
kδ/4 errors in Ck and Ak ∪Bk. Thus, after the bits in Ck are

used to perform error-reduction on the bits in Ak ∪ Bk, there will be at most n02
k−1δ/4 errors

in the bits in Ak ∪Bk. By the inductive hypothesis, the code Ck−1 can correct this many errors!
Thus, after we run the decoding algorithm for Ck−1 on the bits in Ak∪Bk, there will be no errors
left in the bits in Ak. Since there are at most n02

kδ/4 errors in the bits in Mk, when we run the
error-correction algorithm (b) on these bits using the bits in Ak, we will actually remove all the
errors from Mk. 2

Lemma 3. If the codes Rk can be encoded by linear-size circuits of constant depth and have
error-reducing circuits of linear-size and constant depth that, when given a word with v corrupt
message bits and t corrupt check bits for v, t < δn, produce a word with at most max(v/2, t/2)
corrupt message bits, then the codes Ck can be encoded by circuits of linear size and logarithmic
depth, and decoded by circuits of size O(n log n) and logarithmic depth, where n = n02

k.

Proof: The bounds on the size and depth of the encoding circuit follow immediately from
the construction of the codes Ck. The decoding is slightly more complicated. If we naively
simulate the recursive algorithm used in the proof of Lemma 2, we would obtain a circuit of
depth O

(
log2 n

)
. To obtain a circuit of depth O(log n), we will need to perform decoding on

many levels of the recursive construction simultaneously.
The beginning of the algorithm is similar to that in the proof of Lemma 2: first the check bits

in Ck are used to reduce the number of errors in Ak ∪Bk. The bits in Ak ∪Bk are then viewed
as belonging to a word received in Ck−1, divided into parts Mk−1, Ak−1, Bk−1, and Ck−1, and the
bits in Ck−1 are used to reduce the errors in Ak−1 ∪ Bk−1. This continues all the way down to
C0, which is decoded by brute force in constant time. So far, our circuit has logarithmic depth
and linear size. If we began with at most n02

kδ/4 errors, then the same analysis as was used in
the proof of Lemma 2 can be used to show that no errors remain in the bits in C0 = A1 ∪ B1

and that at most n02
iδ/4 errors remain in the bits in Mi = Ai+1.

To complete the decoding, we use the bits in Ai = Mi−1 to reduce the errors in Mi, simul-
taneously, for all levels 1 ≤ i ≤ k. We will show that, after a logarithmic number of iterations
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of this procedure, no errors will remain in the bits in Mk. In particular, after the j-th iteration,
at most n02

i−jδ/4 errors remain in the bits in Mi. This is because, at the beginning of the
j-th iteration, there are at most n02

i−j+1δ/4 errors in the n02
i−2 bits in Mi and fewer than

n02
i−j+1δ/4 errors in the bits in Ai, so the j-th iteration of error-reduction will terminate with

at most n02
i−jδ/4 errors left in Mi. The circuit required for each iteration has linear size, so

our final circuit has size O(n log n) and depth O(log n). 2

3. Expander graphs

Our error-reduction codes are derived from expander graphs, and are closely related to the
expander codes constructed by [SS96]. In this section, we will review some facts concerning
expander graphs that we need for our constructions.

Expander graphs have been the focus of much study in theoretical computer science and
combinatorics. An expander graph is a graph in which every set of vertices has an unusually
large number of neighbors. Our constructions require graphs that expand by a constant factor,
but which have only a linear number of edges. It is a remarkable fact that such graphs exist.
In fact, a simple randomized process will produce one with high probability. Deterministic,
polynomial-time constructions also exist.

Let G = (V,E) be a graph on n vertices. To describe the expansion properties of G, we say
every set of at most m vertices expands by a factor of δ if, for all sets S ⊂ V ,

|S| ≤ m ⇒
∣∣∣ {y : ∃x ∈ S such that (x, y) ∈ E}

∣∣∣ > δ |S| .

In our constructions, we will make use of unbalanced bipartite expander graphs. That is, the
vertices of the graph will be divided into two sets so that there are no edges between vertices in
the same set. We call such a graph (c, d)-regular if all the nodes in one set have degree c and all
the nodes in the other have degree d. By counting edges, we find that the number of c-regular
vertices must differ from the number of d-regular vertices by a factor of d/c. We will use graphs
in which d > c, so they will have more c-regular than d-regular vertices. We will only consider
the expansion of sets of vertices contained within the larger side of the graph. We call a graph
a (c, d, ε, δ) expander if it is a (c, d)-regular graph in which every subset of at most an ε fraction
of the c-regular vertices expands by a factor of δ.

It is well known that a randomly chosen (c, d)-regular graph will probably be a good expander:

Proposition 4. Let B be a randomly chosen (c, d)-regular bipartite graph between n c-regular
vertices and c

d
n d-regular vertices. Then, for all 0 < α < 1, with high probability, all sets of αn

c-regular vertices in B have at least

n
(
c

d
(1− (1− α)d)−

√
2cαH(α)/ log2 e

)
neighbors, where H(·) is the binary entropy function.
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Proof: See Appendix B of [SS96]. 2

The most common way to prove that a particular graph is a good expander is to examine
its second-largest eigenvalue. The largest eigenvalue of a k-regular graph is k. If the second-
largest eigenvalue is far from the first, then the graph is a good expander. The greatest possible
separation between the first and second-largest eigenvalues in a graph was achieved in explicit
constructions by Margulis [Mar88] and Lubotzky, Phillips, and Sarnak [LPS88]:

Theorem 5 (Lubotzky-Phillips-Sarnak, Margulis). For every pair of primes p, q congru-
ent to 1 modulo 4 such that p is a quadratic residue modulo q, there is a (p+ 1)-regular Cayley
graph of PSL(2, Z/qZ) with q(q2 − 1)/2 vertices such that the second-largest eigenvalue of the
graph is at most 2

√
p.

One can show that a graph with the eigenvalue separation displayed by these graphs is a
good expander by using results from [Tan84, Alo86, Kah92]. Other constructions that achieve a
similar separation have since appeared [Bie89, Mor95, Mor94]. From the fact that these graphs
are Cayley graphs, one can show that they have a simple representation:

Proposition 6. Each graph described in Theorem 5 can be constructed in time polynomial in
its number of vertices. Moreover, this polynomial-time computation can be used to construct
a description of the graph of size logarithmic in the number of vertices in the graph. There is
an algorithm that, given this description, will produce the labels of the neighbors of a node in
the graph in time polynomial in the length of the labels (i.e., polylogarithmic in the number of
vertices).

In the remainder of this paper, we can ignore the fact that these graphs are Cayley graphs,
and just concentrate on the relation between their degrees and second-largest eigenvalues. Un-
fortunately, these graphs are not unbalanced bipartite. To obtain unbalanced bipartite expander
graphs from these graphs, we use their edge-vertex incidence graphs. From a d-regular graph G
on n vertices, we derive a (2, d)-regular graph with dn/2 vertices on one side and n vertices on
the other:

Definition 7. Let G be a graph with edge set E and vertex set V . The edge-vertex incidence
graph of G is the bipartite graph with vertex set E ∪ V and edge set

{(e, v) ∈ E × V : v is an endpoint of e} .

To understand the expansion of these edge-vertex incidence graphs, we use a lemma of Alon
and Chung [AC88]:

Lemma 8 (Alon-Chung). Let G be a d-regular graph on n vertices with second-largest eigen-
value λ. Let X be a subset of the vertices of G of size γn. Then, the number of edges contained
in the subgraph induced by X in G is at most

dn

2

(
γ2 +

λ

d
γ(1− γ)

)
.
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We could use this lemma to characterize the edge-vertex incidence graphs of the graphs con-
structed in Theorem 5 as (2, d, ε, δ) expanders for some ε and δ. However, we will find it more
convenient to work directly with Lemma 8.

The graphs of Theorem 5 will suffice for our constructions in Section 5. However, a more
general class of graphs would suffice as well. The following definition captures this class of
graphs:

Definition 9. We will say that a family of graphs G is a dense family of good expander graphs
if G contains graphs Gn,d of n nodes and degree d so that

[density] for an infinite number of values of d, the family of graphs Gni,d ∈ G is infinite
and satisfies ni+1 − ni = o (ni), and

[goodness] for each of these values d, the second-largest eigenvalues of Gni,d are bounded
from above by constants λd such that limd→∞ λd/d = 0.

Pippenger [Pip93] points out that we can obtain a family of good expander graphs by ex-
ponentiating the expander graphs constructed originally by Margulis [Mar73] or Gabber and
Galil [GG81] (see also [Alo86, Proposition 2.6]). To see that the graphs of Theorem 5 are dense,
one can apply bounds on the gaps between successive primes in arithmetic progressions.

4. A simple construction

In this section, we exploit very good expander graphs to obtain a simple construction of linear-
time error-reduction codes. While we do not know of explicit constructions of graphs with
enough expansion for this construction, Proposition 4 can be used to show that a random graph
will suffice with high probability.

Let B be a (d, 2d)-regular graph between sets of n and n/2 vertices. The error-reduction code

R(B) will have n message bits {x1, . . . , xn} and n/2 check bits
{
c1, . . . , cn/2

}
, corresponding to

the d-regular and 2d-regular vertices, respectively. Let b(i, j) be the function such that, for each
check bit ci, the message bits neighboring ci are xb(i,1), . . . , xb(i,2d). The check bit ci is defined to
be the sum modulo two of its neighbors. Thus, R(B) can be easily encoded in linear time: one
need merely examine 2d message bits to compute the value of each check bit (See Figure 2).

We will now show that if B is a sufficiently good expander graph, then R(B) is a good error-
reduction code. To explain the error-reduction algorithm that we will use, we will say that a
check bit ci is satisfied by message bits x1, . . . , xn if ci is the sum modulo two of xb(i,1), . . . , xb(i,2d).
Otherwise, we say that ci is unsatisfied.

To discuss our error-reduction algorithms, we imagine that a codeword ~w of R(B) has been
transmitted and that a word that is close to ~w has been received. We then call corrupt those
message and check bits in which the received word differs from ~w. The idea behind the error-
reduction algorithm is simple: if we find a message bit such that most of its neighbors are
unsatisfied and we flip2 the value of that bit, then we will have reduced the number of unsatisfied

2If the bit was 0, make it 1. If it was 1, make it 0.
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Figure 2: A circuit that encodes R(B).

check bits. If we iterate this process, we probably also reduce the number of corrupt message
bits.

The reader familiar with [SS96] will see a strong resemblance between expander codes and
these error-reduction codes. Where expander codes have constraints, these codes have check
bits. If none of the check bits is corrupt, one can remove errors from the message bits using
the expander code decoding algorithms of [SS96]. We will show that if only a few of the check
bits are corrupt, then the decoding algorithms of [SS96] will remove most of the errors from the
message bits.

Simple sequential error-reduction algorithm:

• If there is a message bit that has more unsatisfied than satisfied neighbors, then
flip the value of that message bit.

• Repeat until no such message bit remains.

Lemma 10. Let B be a (d, 2d, α, 3
4
d + 2) expander. If the simple sequential error-reduction

algorithm for R(B) is given a word ~x that differs from a codeword ~w of R(B) in v ≤ αn/2
message bits and t ≤ αn/2 check bits, then the algorithm will output a word that differs from ~w
in at most t/2 of its message bits.

Proof: We call corrupt any bit that differs from its corresponding bit in ~w. Let V be the set
of corrupt message bits and let T be the set of corrupt check bits. Let v = |V | and t = |T |.

Let u be the number of unsatisfied check bits and let s the number of satisfied check bits
with neighbors in V . We will view the pair (u, v) as the state of the algorithm. We will first
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show that if αn ≥ v ≥ t/2, then there is some message bit with more unsatisfied than satisfied
neighbors. The expansion of the graph implies that

u+ s > (3d/4 + 2) v. (1)

Each check bit with an input in V accounts for at least one edge leaving V . A check bit can
be unsatisfied either because it has at least one neighbor in V or because it is corrupt. Similarly,
a satisfied check bit that is a neighbor of V is either corrupt, or it has at least two neighbors in
V . By counting the dv wires leaving V , we obtain

dv + t ≥ u+ 2s (2)

Combining inequalities (1) and (2), we find s < (d/4− 2) v + t, and

u > (d/2 + 4) v − t. (3)

When αn ≥ v ≥ t/2, we have u > dv/2 + t, so there must be some message bit such that most
of its neighbors are unsatisfied. This means that the algorithm will have a message bit to flip.
Thus, when the algorithm terminates, either v < t/2, or at some point along the way v = αn.

To show that the algorithm must terminate with v < t/2, we show that v must always be
less than αn. We assume that when the algorithm begins v ≤ αn/2 and therefore u ≤ dv + t ≤
dαn/2+αn/2. As the algorithm proceeds, u must steadily decrease. However, if the algorithm is
ever in a state (u, v) in which v = αn, then inequality (3) would imply that u > dαn/2+7αn/2,
which would be a contradiction.

Thus, the algorithm must always maintain the condition that v < αn, which implies that
the algorithm will not terminate until it is in a state in which v < t/2. 2

Proposition 11. The simple sequential error-reduction algorithm can be implemented to run
in linear time.

Proof: The basic idea behind the proof is that, because the degrees of the graph are constant,
the algorithm only needs to perform a constant amount of work for each message bit that is
flipped. Because the number of unsatisfied check bits decreases each time a message bit is flipped,
there will only be a linear number of flips. For a more complete proof of this proposition, see
the proof of Lemma 9 in [SS96]. 2

It is also possible to perform error-reduction on these codes in parallel. The algorithm
proceeds in rounds, each of which is the natural generalization of the sequential algorithm:

Simple error-reduction round:

• For each message bit, count the number of unsatisfied check bits among its
neighbors.

• Flip each message bit such that most of its neighbors are unsatisfied.
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Proposition 12. A simple error-reduction round can be performed by a linear-size circuit of
constant depth.

Lemma 13. Let B be a (d, 2d, α, 3
4
d+4) expander. Assume that a simple error-reduction round

for R(B) is given an input ~x that differs from a codeword ~w of R(B) in v ≤ αn/2 message
bits and t ≤ αn/2 check bits. Then, the round will output a word with the same check bits that
differs from ~w in at most

v(d− 4)/d (4)

message bits, if v ≥ t/2. If v ≤ t/2, then the round will output a word in which at most t/2
message bits differ from those in ~w.

Proof: Let V denote the set of corrupt message bits, T the set of corrupt check bits, F the
set of corrupt message bits that fail to flip during the round, and C the set of message bits
that were originally clean, but which are flipped so as to become corrupt during the round.
The message bits that are corrupt in the output of the round are those in C ∪ F . For a set of
message bits, S, let N(S) denote the set of check bits that have neighbors in S. Set δ so that
δd|V | = |N(V )|.

We first show by contradiction that |V ∪ C| < αn. If |V ∪ C| ≥ αn, then pick a subset C ′

of C such that |V ∪ C ′| = αn. At least d/2 of the edges leaving each message bit in C must
either connect to check bits that have inputs from V or that are corrupt. So, V ∪C ′ has at most
δd|V |+ (d/2) |C ′|+ |T | neighbors. On the other hand, V ∪C ′ must expand by a factor of more
than (3d/4 + 4), so we obtain the inequality

(3d/4 + 4)αn < |N(V ∪ C ′)| ≤ δd|V |+ (d/2)(αn− |V |) + |T |,

which implies (d/4 + 4)αn < (δ− 1/2)d|V |+ |T |. Because we assume |T | ≤ αn/2, and δ must
be less than 1, this contradicts our assumption that |V | ≤ αn/2. Thus, |V ∪ C| < αn, and we
can assert

(3d/4 + 4) |V ∪ C| < |N(V ∪ C)| ≤ δd|V |+ (d/2) |C|+ |T |. (5)

We next bound δd|V | in terms of |F |. Every message bit in F is a neighbor of at least as
many satisfied as unsatisfied check bits. At most |T | of these satisfied check bits are satisfied
because they have been corrupted. So, at least (d/2)|F | − |T | of the edges leaving F end in a
check bit that contains an input from another element of V . Thus, the set V can have at most

δd|V | ≤ d|V | − (d/4)|F |+ |T |/2

neighbors. Plugging this bound into inequality (5), we find

(3d/4 + 4)(|V |+ |C|) < d|V | − (d/4) |F |+ (d/2) |C|+ (3/2)|T | ⇒
(d/4 + 4) |C|+ (d/4) |F | < (d/4− 4)|V |+ (3/2)|T | ⇒

|C ∪ F | < (d−16)|V |+6|T |
d

|V |.
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Note that d must be greater than 16 because the graph has expansion at least (3/4)d+4, and the
expansion of a graph cannot be greater than its degree. We can now verify that if |V | ≥ |T |/2,

then |C ∪ F | < d−4
d
|V |, and if |V | < |T |/2, then |C ∪ F | < d/2−2

d
|T | < |T |/2. 2

By iterating simple parallel error-reduction rounds, we obtain the simple parallel error-
reduction algorithm:

Simple parallel error-reduction algorithm:

• Iterate logd/(d−4) 2 simple parallel error-reduction rounds.

Corollary 14. Let B be a (d, 2d, α, 3
4
d+4) expander. Assume the simple parallel error-reduction

algorithm for R(B) is given a word ~x that differs from a codeword ~w of R(B) in v ≤ αn/2
message bits and t ≤ αn/2 check bits. Then, the simple parallel error-reduction algorithm will
output a word that differs from ~w in at most max(v/2, t/2) of its message bits. Moreover, this
algorithm can be implemented as a circuit of constant depth and linear size.

By combining Corollary 14 with Lemma 3 and Lemma 10 with Lemma 2, we can show that,
from a family of very good expander graphs, one can obtain linear-time encodable and decodable
error-correcting codes. However, we repeat that the only way we know to obtain such graphs in
polynomial time is through a randomized construction.

Theorem 15. From a family of (d, 2d, α, 3d/4 + 4) expander graphs between sets of 2kn0 and
2k−1n0 vertices, for all k ≥ −1, one can construct an infinite family of error-correcting codes
that have linear-time encoding algorithms and linear-time decoding algorithms that will correct
an α/8 fraction of error. Moreover, their encoding can be performed by linear-size circuits
of logarithmic depth and their decoding can be performed by logarithmic depth circuits of size
O(n log n).

Proof: Apply Lemma 2 to Proposition 11 and Lemma 10, and Lemma 3 to Corollary 14.
2

5. Explicit Constructions

To produce explicit constructions of error-reduction codes, we will use explicit constructions of
expander graphs. Our construction is a generalization of that in Section 4.

Definition 16. Let B be a (c, d)-regular bipartite graph between sets of n and (c/d)n vertices
and let S be an error-correcting code with d message bits and k check bits. R(B,S) is a code
with n message bits and (c/d)nk check bits. Each of the nodes in the set of n vertices is identified
with one of the message bits {x1, . . . , xn}, and each of the nodes in the other set is identified
with a set of k check bits called a cluster. Let b(i, j) be the function such that, for each cluster
Ci, the message bits neighboring Ci are xb(i,1), . . . , xb(i,d). The check bits in cluster Ci are set to
be the check bits of the codeword of S that has message bits (xb(i,1), . . . , xb(i,d)).

12



In this section, we will show that if B is the edge-vertex incidence graph of a good expander
graph, such as one of those produced in Theorem 5, and if S is a good error-correcting code,
then R(B,S) is a good error-reduction code. We first note that such codes can be encoded in
linear time:

Proposition 17. For a fixed code S, the family of codes R(B,S) can be encoded in linear time
on a sequential machine or by a linear-size circuit of constant depth.

Our parallel algorithms for error-reducing these codes will proceed in rounds. Our sequential
algorithms will be simulations of the parallel algorithms.

Parallel error-reduction round for R(B,S):
(where ε is the minimum relative distance of S)

• In parallel, for each cluster, if the the check bits in that cluster and the asso-
ciated message bits are within relative distance ε/6 of a codeword, then send a
“flip” signal to every message bit that differs from the corresponding bit in the
codeword.

• In parallel, every message bit that receives at least one “flip” signal flips its
value.

The reader familiar with [SS96] will observe a strong resemblance between its explicit con-
struction of expander codes and this construction of error-reduction codes. Where the expander
codes have constraints, these codes have clusters of check bits. If there are no errors in these
check bits, then the expander code decoding algorithms can be used to correct errors in the
message bits. The lower threshold for sending a “flip” signal in the parallel error-reduction
rounds seems necessary to deal with corrupt check bits.

Lemma 18. Let S be a linear code of rate r, block length d, and minimum relative distance ε,
and let B be the edge-vertex incidence graph of a d-regular graph on n vertices with second-largest
eigenvalue λ. Then, R(B,S) is a code with dn/2 message bits and dn(1− r)/r check bits. If a
parallel error-reduction round for R(B,S) is given an input that differs from a codeword ~w of
R(B,S) in at most αdn/2 message bits and at most βdn/2 check bits, Then, the error-reduction
round will output a word that differs from ~w in at most

(2α + β)

(
1

5
+

9(2α + β)

ε2
+

3λ

εd

)
dn

2

message bits.

Proof: Let G be the d-regular graph from which B is derived. Since S has rate r, each of
the n clusters of R(B,S) will contain d(1 − r)/r check bits; so, R(B,S) will have a total of
dn(1− r)/r check bits.
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Let V be the set of message bits in which the input differs from ~w. A message bit will be
corrupt at the end of the decoding round if it receives a “flip” signal, but is not in V , or if it
is in V , but it does not receive a “flip” signal. Thus, we will say that a cluster is confused if it
sends a “flip” signal to a message bit that is not corrupt, and we will call a cluster unhelpful if
it contains a message bit of V , but it fails to send a “flip” signal to that message bit.

In order for a cluster to be confused, it must have at least 5εd/6 corrupt message and check
bits. As each message bit is an input to two clusters, there can be at most

(2α + β)dn
2

5εd/6

confused clusters. Each of these can send at most εd/6 “flip” signals, so at most

(2α + β)dn
2

5εd/6
· εd

6
=

(2α + β)dn
2

5

message bits not in V can receive “flip” signals.
Similarly, there can be at most

(2α + β)dn
2

εd/6

unhelpful clusters. Applying Lemma 8, we see that there are at most

dn

2

(6α + 3β

ε

)2

+
λ

d

(
6α + 3β

ε

)
message bits both of whose neighbors are unhelpful clusters.

Thus, at most

dn

2

2α + β

5
+

(
6α + 3β

ε

)2

+

(
6α + 3β

ε

)
λ

d


=

dn

2
(2α + β)

(
1

5
+

9(2α + β)

ε2
+

3λ

εd

)
message bits will be corrupt at the end of the error-reduction round. 2

We will show that for each sufficiently small ε, there is a value of λ/d such that the error-
reduction round decreases the number of corrupt message bits for some α and β.

To construct our asymptotically good family of error-correcting codes, we will construct error-
reduction codes from the edge-vertex incidence graphs of a family of good expander graphs and
a good code known to exist by the Gilbert-Varshamov bound (see [MS77]). We then show that
parallel error-reduction rounds can be used to perform error reduction on these codes.

Theorem 19. There exists a polynomial-time constructible family of error correcting codes of
rate 1/4 that have linear-time encoding algorithms and linear-time decoding algorithms that can
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correct any γ < ε24/5/2160 fraction of error, where ε4/5 is the lesser solution to 4/5 = 1−H(ε4/5)
and H(·) is the binary entropy function. The encoding can be performed by linear-size circuits
of logarithmic depth and decoding can be performed by circuits of size O(n log n) and logarithmic
depth.

Proof: We will build the error-correcting codes by constructing a family of error-reduction
codes of error reduction 1/2 and reducible distance 4γ to which we can apply Lemmas 2 and 3.
These error-reduction codes will be of the formR(B,S) where S is a particular good code known
to exist by the Gilbert-Varshamov bound (see [MS77]) and the graphs B are the edge-vertex
incidence graphs of a dense family of good expander graphs.

Choose an ε < ε4/5 such that γ < ε2/2160. From the Gilbert-Varshamov bound, we know
that for all sufficiently large block lengths, d, there exist codes of minimum relative distance ε
and rate r = 1−H(ε). We will use one such code in our construction. Since ε < ε4/5, we have
r > 4/5. We now find a suitable block length, d.

Let G = {Gni,d} be a polynomial-time constructible dense family of good expander graphs
(we know such a family exists by Theorem 5 and Proposition 6) and let λd be the upper bound
on the second-largest eigenvalues of its graphs of degree d. Because we wish to apply Lemma 18
with α, β ≤ 4γ < ε2/540, we choose a d so that(

1

5
+

9(2α + β)

ε2
+

3λd
εd

)
< 1/4

and there exists a code S of block length d, rate r, and minimum relative distance ε. Such a d
exists because

1/5 + 9(2α + β)/ε2 < 1/4,

for α, β < ε2/540. We fix this d and the code S for the rest of the proof.
Let Bni,d be the edge-vertex incidence graph of Gni,d. Our family of error-reduction codes

consists of the codes R(Bni,d,S). The i-th code in this family has dni/2 message bits and
dni(1− r)/r check bits. However, to apply Lemmas 2 and 3, we need codes with 2kn0 message
bits and 2k−1n0 check bits for all k ≥ −1 and some sufficiently large n0. Because the family of
graphs G is dense, and (1 − r)/r < 1/4, there exists an n0 such that for all k ≥ −1 there is a
graph Gni,d in the family such that

dni/2 > 2kn0 and 2k−1n0 > dni(1− r)/r.

Thus, we can use the error-reduction code R(Bni,d,S) to obtain a suitable error-reduction code
with 2kn0 message bits and 2k−1n0 check bits by eliminating some of its message bits by fixing
them to zero and adding some dummy check bits. Using the Gilbert-Varshamov bound, we
can find a code C0 of block length n0, rate 1/4 and minimum relative distance ε, because
1/4 < 1−H(ε) (this minimum relative distance ε for C0 is much more than we actually need for
our construction).

It remains to show that the error-reduction codes can remove the required fraction of error.
Let

µ =

(
1

5
+

9 · 12γ

ε2
+

3λd
εd

)
< 1/4.
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By Lemma 18, if a parallel error-reduction round is given as input a word that differs from
a codeword in v ≤ 4γ(dn/2) message bits and t ≤ 4γ(dn/2) check bits, then the output of
the round will differ from that codeword in at most (2v + t)µ message bits. If v ≥ t/2, then
(2v + t)µ ≤ 4µv. So, the iteration of log(1/4µ) 2 parallel error-reduction rounds will output a
word that differs from the codeword in at most max(v/2, t/2) message bits. Since the iteration
of log(1/4µ) 2 parallel error-reduction rounds can be computed by a linear-size circuit of constant
depth, we can now apply Lemma 3 to prove the parallel portion of the theorem.

To obtain our sequential algorithms, we first note that the (log1/(4a) 2)-fold iteration of the
parallel error-reduction rounds can be performed sequentially in linear time. Thus, we can
satisfy condition (a) of Lemma 2. To satisfy condition (b), we need to be slightly trickier. If
there are no corrupt check bits, then it is clear that the application of a logarithmic number of
parallel error-reduction rounds will correct all the errors in the message bits. However, a direct
simulation would take O(n log n) time. To obtain a linear-time simulation, we observe that the
number of corrupt message bits decreases by a constant factor with each iteration. Thus, the
number of unsatisfied clusters will also decrease by a constant factor with each iteration, so only
a linear amount of work is required to simulate the iteration of a logarithmic number of parallel
error-reduction rounds. For a more detailed analysis of such a simulation, we direct the reader
to the end of the proof of Theorem 19 of [SS96].

2

Remark 20. Some may consider the use of the Gilbert-Varshamov bound in the preceding ar-
gument to be “non-constructive”. To us, a constant amount of non-constructivity is negligible.
However, we point out that one could replace this argument by using any known asymptotically
good code, or just fixing d and picking an appropriate error-correcting code (say, from the back
of [MS77]).

Remark 21. One can combine Lemma 18 and Theorem 19 to construct an asymptotically good
family of linear-time encodable and decodable error-correcting codes of any fixed rate. To con-
struct codes of rate r, first build a family of error-reduction codes of the form R(B,S) where S
is a code of rate 8r/(1+7r). The codes in this family with m message bits will have m(1−r)/4r
check bits. These check bits can be used as the message bits in one of the codes constructed in
Theorem 19. After encoding these check bits with such a code, we obtain m(1− r)/r check bits
for our m message bits, yielding a code of rate r. We can decode such a code by first correcting
errors in the part corresponding to the codes of Theorem 19. Having removed all errors from the
check bits of the error-reduction code used to encode the m message bits, we can use Lemma 18
to see that the iteration of a logarithmic number of parallel error-reduction rounds will correct
the errors in the m message bits. As explained in the proof of Theorem 19, the action of the
parallel error-reduction rounds can be simulated in linear time on a sequential machine.
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6. The superconcentrator connection

It is not an accident that our linear-size encoding circuits look like superconcentrators. They
have to. This fact was the motivation behind our construction. In the following explanation,
we assume familiarity with superconcentrators.

Consider a circuit C that takes as input some message bits x1, . . . , xn, and produces as output
check bits c1, . . . , cm such that the words x1, . . . , xn, c1, . . . , cm form a good error-correcting code.
This means that there is a constant δ such that even if we erase any δn of the message bits and
any δm of the check bits, we can still recover the erased δn message bits. We will show that
this means that there must be gate-disjoint paths from the erased inputs to some subset of the
un-erased outputs.

Assume that we cannot find δn vertex-disjoint paths from the erased inputs to the un-erased
outputs. Then, Menger’s Theorem implies that there is some set of δn− 1 gates in the circuit
such that all paths in the circuit from the erased inputs to the un-erased outputs must go
through these gates. This contradicts our assumption that it is possible to recover the values of
the erased inputs because there are δn bits of information in the erased input gates, but only
δn− 1 bits of information can get through to the un-erased output gates.

Thus, we see that vertex disjoint paths can be drawn in the underlying graph from any δn
input gates into any (1 − δ)m output gates. While this property is not quite as strong as the
property required of superconcentrators, it is close enough that we decided that the easiest way
to create linear-size encoding circuits would be to base them on Pippenger’s [Pip77] construction
of linear-size superconcentrators.

7. Some implementation issues

As our error-correcting codes are closely related to the codes of [SS96], we will only discuss
issues that are not addressed in that paper.

In order to make our codes effective against worst-case errors as well as linear-time encodable,
we sacrifice on rate. For comparison, one should consider the expander codes of Sipser and
Spielman [SS96]. Our codes of rate 1/4 will correct about as many errors on average as their
codes of rate 1/2. While there are many ways that our construction can be modified (for example,
changing the ratios of message bits to check bits in the error-reduction codes), these codes will
always correct fewer errors on average than expander codes of similar rates. We believe that it
should be possible to improve our constructions to overcome this difficulty.

In the meantime, we observe that if one is willing to sacrifice worst-case error-correction,
one can obtain average-case error-correction as good as that obtained by expander codes. The
idea is to recursively apply the error-reduction codes in the natural way: first, the message
bits are protected with an error-reduction code, the check bits of this code are then used as
the message bits of another error-reduction code, and so on. One can iterate this a few times
and then use a known error-correcting code to protect the last set of check bits. Such a code
is vulnerable to worst-case errors that only strike the last and smallest code in the recursion.
However, if the probability that each bit is corrupt is independent, then it is unlikely that too
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many errors will occur in any one level of the recursion, so decoding from the smallest code
up will probably succeed. Moreover, one can interleave the bits from different levels to prevent
bursts from corrupting too many bits on any one level.

We do not recommend using the codes constructed in Theorem 19. These codes are designed
to be asymptotically good in theory, but we would be surprised if they were useful in practice.
However, we expect that the error-reduction codes described in Section 4 and constructions such
as Definition 16 will prove useful.

8. Conclusion

Having presented asymptotically good error-correcting codes that can be encoded and decoded
in linear time, many questions remain. The foremost is: how good can such codes be? In
particular, can one construct a linear-time encodable code for which one can correct in linear
time a number of errors matching the Gilbert-Varshamov bound? For that matter, can one
correct in linear time such a number of errors in any code, regardless of its encoding complexity?

Less daunting problems remain open as well: While the codes that we construct are asymp-
totically good, the rate versus error-correction tradeoffs that we prove are very poor. We hope
that someone will construct linear-time codes with better constants. The sequential decoding
algorithm that we present for the explicit construction of error-reduction codes is a simulation
of a parallel algorithm and therefore unnatural. We would like to see a proof of correctness of
a more natural sequential algorithm.
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