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Abstract

We present a linear-system solver that, given an � -by- �
symmetric positive semi-definite, diagonally dominant ma-
trix � with � non-zero entries and an � -vector � , pro-
duces a vector �� within relative distance � of the solution
to � ��� � in time ���������  !�#"%$'&(�)�+*,�!-/.!0213�546- , where . is the
log of the ratio of the largest to smallest non-zero entry of� . If the graph of � has genus �87�9 or does not have a :<;>=
minor, then the exponent of � can be improved to the min-
imum of �>?A@CB and �EDF*CG�-H� �I?�B - . The key contribution of
our work is an extension of Vaidya’s techniques for con-
structing and analyzing combinatorial preconditioners.

1. Introduction

Sparse linear systems are ubiquitous in scientific comput-
ing and optimization. In this work, we develop fast algo-
rithms for solving some of the best-behaved linear systems:
those specified by symmetric, diagonally dominant matri-
ces with positive diagonals. We call such matrices PSDDD
as they are positive semi-definite and diagonally dominant.
Such systems arise in the solution of certain elliptic differ-
ential equations via the finite element method, the model-
ing of resistive networks, and in the solution of certain net-
work optimization problems [23, 19, 15, 25, 26].

While one is often taught to solve a linear system � ��� �
by computing �KJL� and then multiplying �MJN� by � , this ap-
proach is quite inefficient for sparse linear systems—the
best known bound on the time required to compute �OJL�
is ���)� 7��  /PRQ - [9] and the representation of � JN� typically re-
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quires ST�)�U7V- space. In contrast, if � is symmetric and has� non-zero entries, then one can use the Conjugate Gradi-
ent method, as a direct method, to solve for �OJN�'� in ���)�N�8-
time and ���)�U- space! Until Vaidya’s revolutionary intro-
duction of combinatorial preconditioners [24], this was the
best complexity bound for the solution of general PSDDD
systems.

The two most popular families of methods for solving lin-
ear systems are the direct methods and the iterative meth-
ods. Direct methods, such as Gaussian elimination, perform
arithmetic operations that produce � treating the entries of� and � symbolically. As discussed in Section 1.4, direct
methods can be used to quickly compute � if the matrix �
has special topological structure.

Iterative methods, which are discussed in Section 1.5, com-
pute successively better approximations to � . The Cheby-
shev and Conjugate Gradient methods take time propor-
tional to �XW Y[Z
���\-]"^$�&[�_Y[Z(���`-/*C��- to produce approxima-
tions to � with relative error � , where Y#Z[���`- is the ratio of
the largest to the smallest non-zero eigenvalue of � . These
algorithms are improved by preconditioning—essentially
solving abJL�!� ��� abJL�'� for a preconditioner a that is
carefully chosen so that Y Z �E�Kc/ad- is small and so that it is
easy to solve linear systems in a . These systems in a may
be solved using direct methods, or by again applying itera-
tive methods.

Vaidya [24] discovered that for PSDDD matrices � one
could use combinatorial techniques to construct matricesa that provably satisfy both criteria. In his seminal work,
Vaidya shows that when a corresponds to a subgraph of
the graph of � , one can bound Y Z ���Mc/aO- by bounding
the dilation and congestion of the best embedding of the
graph of � into the graph of a . By using precondition-
ers derived by adding a few edges to maximum spanning
trees, Vaidya’s algorithm finds � -approximate solutions to
PSDDD linear systems of maximum valence e in time



���5��e��U-/�!� P��L"%$'&[�_Y[Z[���`-/*C��-/- . 1 When these systems have spe-
cial structure, such as having a sparsity graph of bounded
genus or avoiding certain minors, he obtains even faster al-
gorithms. For example, his algorithm solves planar linear
systems in time ���/��e��U- ��� 7 "^$�&(�_Y Z ���`-/*C��-/- . This paper fol-
lows the outline established by Vaidya: our contributions
are improvements in the techniques for bounding Y Z ���Mc/ad- ,
a construction of better preconditioners, a construction that
depends upon average degree rather than maximum degree,
and an analysis of the recursive application of our algo-
rithm.

As Vaidya’s paper was never published2, and his manuscript
lacked many proofs, the task of formally working out his re-
sults fell to others. Much of its content appears in the the-
sis of his student, Anil Joshi [16]. Gremban, Miller and
Zagha[13, 14] explain parts of Vaidya’s paper as well as ex-
tend Vaidya’s techniques. Among other results, they found
ways of constructing preconditioners by adding vertices to
the graphs and using separator trees.

Much of the theory behind the application of Vaidya’s tech-
niques to matrices with non-positive off-diagonals is devel-
oped in [3]. The machinery needed to apply Vaidya’s tech-
niques directly to matrices with positive off-diagonal ele-
ments is developed in [5]. The present work builds upon
an algebraic extension of the tools used to prove bounds
on Y(Z[���Mc/aO- by Boman and Hendrickson [6]. Boman and
Hendrickson [7] have pointed out that by applying one of
their bounds on support to the tree constructed by Alon,
Karp, Peleg, and West [1] for the

�
-server problem, one ob-

tains a spanning tree preconditioner a with Y Z �E�KcRaO- �
��� 0 ��� � ��	�
�� ��	� ��	�
'- . They thereby obtain a solver for PS-
DDD systems that produces � -approximate solutions in time�8�!� �����!13�54�"^$�&[�EY(Z[���\-R*,�!- . In their manuscript, they asked
whether one could possibly augment this tree to obtain a
better preconditioner. We answer this question in the af-
firmative. An algorithm running in time ����� � ���R7L"%$'& 7 �)�U-/-
has also recently been obtained by Maggs, et. al. [18].

The present paper is the first to push past the ���)� �!� � - bar-
rier. It is interesting to observe that this is exactly the point
at which one obtains sub-cubic time algorithms for solving
dense PSDDD linear systems.

Reif [21] proved that by applying Vaidya’s techniques re-
cursively, one can solve bounded-degree planar positive
definite diagonally dominant linear systems to relative ac-
curacy � in time ���)�������H13�64�"%$'&(�EY+���`-/*,�!-/- . We extend this

1 For the reader unaccustomed to condition numbers, we note that for
an PSDDD matrix � in which each entry is specified using � bits of
precision, ��������� �!���#"�"%$'&(���)�����%*+" .

2 Vaidya founded the company Computational Applications and Sys-
tem Integration (http://www.casicorp.com) to market his linear sys-
tem solvers.

result to general planar PSDDD linear systems.

Due to space limitations, some proofs of have been omitted,
but will appear in the on-line and full versions of the paper.

1.1. Background and Notation

A symmetric matrix � is semi-positive definite if ,.-+�/,102
for all vectors , . This is equivalent to having all eigenval-

ues of � non-negative.

In most of the paper, we will focus on Laplacian matri-
ces: symmetric matrices with non-negative diagonals and
non-positive off-diagonals such that for all 3 , 465U�/798 5 � 2

.
However, our results will apply to the more general fam-
ily of positive semidefinite, diagonally dominant (PSDDD)
matrices, where a matrix is diagonally dominant if : �;7<8 7=:>0
4 
5�? � : �@7<8 5 : for all 3 . We remark that a symmetric matrix is
PSDDD if and only if it is diagonally dominant and all of
its diagonals are non-negative.

In this paper, we will restrict our attention to the solution
of linear systems of the form � � � � where � is a PS-
DDD matrix. When � is non-singular, that is when �OJN�
exists, there exists a unique solution , � �OJN�'� to the lin-
ear system. When � is singular and symmetric, for every�BA Span ���\- there exists a unique � A Span ���\- such
that � � � � . If � is the Laplacian of a connected graph,
then the null space of � is spanned by C .

There are two natural ways to formulate the problem of find-
ing an approximate solution to a system � � � � . A vector�� has relative residual error � if D�� ��FE �GDIH �#D'�JD . We
say that a solution �� is an � -approximate solution if it is at
relative distance at most � from the actual solution—that is,
if D �IE �� DIH �KD � D . One can relate these two notions of
approximation by observing that relative distance of � to
the solution and the relative residual error differ by a multi-
plicative factor of at most Y Z ���`- . We will focus our atten-
tion on the problem of finding � -approximate solutions.

The ratio Y Z ���`- is the finite condition number of � . TheL 7 norm of a matrix, D!�MD , is the maximum of DH�/,#DU*ND=,#D ,
and equals the largest eigenvalue of � if � is symmetric.
For non-symmetric matrices, O ;QPSR ���`- and DH�MD are typi-
cally different. We let : �T: denote the number of non-zero
entries in � , and UWVYX ���\- and U[Z�\L�E�\- denote the small-
est and largest non-zero elements of � in absolute value, re-
spectively.

The condition number plays a prominent role in the analy-
sis of iterative linear system solvers. When � is PSD, it is
known that, after W Y Z ���\-]"^$�&[� � *,�!- iterations, the Cheby-
shev iterative method and the Conjugate Gradient method
produce solutions with relative residual error at most � .



To obtain an � -approximate solution, one need merely run"^$�&[�EY(Z[���\-/- times as many iterations. If � has � non-zero
entries, each of these iterations takes time ���)�8- . When ap-
plying the preconditioned versions of these algorithms to
solve systems of the form a JL� � � � a JN� � , the number
of iterations required by these algorithms to produce an � -
accurate solution is bounded by W Y Z �E�KcRaO- "%$'&(�EY Z �E�\-R*,�!-
where

Y[Z[���Mc/ad- ��� U[Z�\��� �����?
	 � -U� �� - a ��� � U[Z�\��� �����?
	 � -Ua �� - � �� c
for symmetric � and a with Span �_�\- � Span ��ad- . How-
ever, each iteration of these methods takes time ����� - plus
the time required to solve linear systems in a . In our initial
algorithm, we will use direct methods to solve these sys-
tems, and so will not have to worry about approximate so-
lutions. For the recursive application of our algorithms, we
will use our algorithm again to solve these systems, and so
will have to determine how well we need to approximate the
solution. For this reason, we will analyze the Chebyshev it-
eration instead of the Conjugate Gradient, as it is easier to
analyze the impact of approximation in the Chebyshev iter-
ations. However, we expect that similar results could be ob-
tained for the preconditioned Conjugate Gradient. For more
information on these methods, we refer the reader to [12] or
[8].

1.2. Laplacians and Weighted Graphs

All weighted graphs in this paper have positive weights.
There is a natural isomorphism between weighted
graphs and Laplacian matrices: given a weighted graph� � ��� c��bc��\- , we can form the Laplacian matrix in
which �@798 5 � E �M�<3�c��F- for �<3�c��F- A�� , and with diago-
nals determined by the condition � C ��� . Conversely,
a weighted graph is naturally associated to each Lapla-
cian matrix. Each vertex of the graph corresponds to both a
row and column of the matrix, and we will often abuse no-
tation by identifying this row/column pair with the associ-
ated vertex.

We note that if
� � and

� 7 are weighted graphs on the same
vertex set with disjoint sets of edges, then the Laplacian of
the union of

� � and
� 7 is the sum of their Laplacians.

1.3. Reductions

In most of this paper we just consider Laplacian matrices
of connected graphs. This simplification is enabled by two
reductions.

First, we note that it suffices to construct preconditioners for
matrices satisfying �@798 7 � 465 : �@7<8 5 : , for all 3 . This follows

from the observation in [3] that if �� � � ?�� , where � sat-
isfies the above condition, then Y#Z]�
��McRa ?�� -(HAY(Z
�E�Kc/ad- .
So, it suffices to find a preconditioner after subtracting off
the maximal diagonal matrix that maintains positive diago-
nal dominance.

We then use an idea of Gremban [13] for handling posi-
tive off-diagonal entries. If � is a symmetric matrix such
that for all 3 , �/798 7Q0 4 5 : �@7<8 5 : , then Gremban decomposes� into � ? � 
 ? ��� , where � is the diagonal of � , � 

is the matrix containing all negative off-diagonal entires of� , and ��� contains all the positive off-diagonals. Gremban
then considers the linear system � ? � 
 E ���E �!� � ? � 
#"  ��%$ " �  �E � " c
and observes that its solution will have �&$[� ET� and that �
will be the solution to � � � � . Thus, by making this trans-
formation, we can convert any ')( �*�+� linear system into
one with non-negative off diagonals. One can understand
this transformation as making two copies of every vertex
in the graph, and two copies of every edge. The edges cor-
responding to negative off-diagonals connect nodes in the
same copy of the graph, while the others cross copies. To
capture the resulting family of graphs, we define a weighted
graph

�
to be a Gremban cover if it has �,� vertices and, for 3�c�� H � , �<3�c���-NA-� if and only if �<3 ? �2c�� ? �U-NA� , and �M�93�c���- � �O�<3 ? �2c�� ? �U- ,, for 3�c�� H � , �<3�c�� ? �U- A.� if and only if �93 ? �2c���-NA� , and �M�93�c�� ? �U- � �M�<3 ? �2c���- , and, the graph contains no edge of the form �<3�c�3 ? �U- .

When necessary, we will explain how to modify our argu-
ments to handle Laplacians that are Gremban covers.

Finally, if � is the Laplacian of an unconnected graph, then
the blocks corresponding to the connected components may
be solved independently.

1.4. Direct Methods

The standard direct method for solving symmetric linear
systems is Cholesky factorization. Those unfamiliar with
Cholesky factorization should think of it as Gaussian elim-
ination in which one simultaneously eliminates on rows
and columns so as to preserve symmetry. Given a permu-
tation matrix ' , Cholesky factorization produces a lower-
triangular matrix / such that /0/(- � ' ��' - . Because one
can use forward and back substitution to multiply vectors
by />JL� and / J - in time proportional to the number of non-
zero entries in / , one can use the Cholesky factorization of� to solve the system � �X� � in time ����: / : - .



Each pivot in the factorization comes from the diagonal of� , and one should understand the permutation ' as provid-
ing the order in which these pivots are chosen. Many heuris-
tics exist for producing permutations ' for which the num-
ber of non-zeros in / is small. If the graph of � is a tree,
then a permutation ' that orders the vertices of � from the
leaves up will result in an / with at most �,� E � non-zero
entries. In this work, we will use results concerning matri-
ces whose sparsity graphs resemble trees with a few addi-
tional edges and whose graphs have small separators, which
we now review.

If a is the Laplacian matrix of a weighted graph ��� c��bc��\- ,
and one eliminates a vertex � of degree � , then the remain-
ing matrix has the form  � 2

2 � � c "
where � � is the Laplacian of the graph in which � and its
attached edge have been removed. Similarly, if a vertex �
of degree � is eliminated, then the remaining matrix is the
Laplacian of the graph in which the vertex � and its ad-
jacent edges have been removed, and an edge with weight� * � � * � � ? � * � 7 - is added between the two neighbors of
� , where � � and � 7 are the weights of the edges connect-
ing � to its neighbors.

Given a graph
�

with edge set � ����� � , where the edges
in � form a tree, we will perform a partial Cholesky factor-
ization of

�
in which we successively eliminate all the de-

gree 1 and 2 vertices that are not endpoint of edges in � . We
introduce the algorithm trim to define the order in which
the vertices should be eliminated, and we call the trim or-
der the order in which trim deletes vertices.

Algorithm: trim � � c � c � -
1. While

�
contains a vertex of degree one that is not an

endpoint of an edge in � , remove that vertex and its
adjacent edge.

2. While
�

contains a vertex of degree two that is not an
endpoint of an edge in � , remove that vertex and its
adjacent edges, and add an edge between its two neigh-
bors.

Proposition 1.1. The output of trim is a graph with at
most �@: � : vertices and @ : � : edges.

Remark 1.2. If � � c � - and � � c � - are Gremban covers,
then we can implement trim so that the output graph is
also a Gremban cover. Moreover, the genus and maximum
size clique minor of the output graph do not increase.

After performing partial Cholesky factorization of the ver-
tices in the trim order, one obtains a factorization of the

form

a � /�� / - c where � �  	� 2
2 � � " c/ is lower triangular, and the left column and right columns

in the above representations correspond to the eliminated
and remaining vertices respectively. Moreover, : / :H �,� E� , and this Cholesky factorization may be performed in time���)� ? : � : - .
The following Lemma may be proved by induction.

Lemma 1.3. Let a be a Laplacian matrix and let / and� � be the matrices arising from the partial Cholesky fac-
torization of a according to the trim order. Let 
 be the
set of eliminated vertices, and let � be the set of remain-
ing vertices. For each pair of vertices ���(cR.H- in � joined
by a simple path containing only vertices of 
 , let a 1 P 8  4
be the Laplacian of the graph containing just one edge be-
tween � and . of weight � * � 4 7 � * � 7E- , where the � 7 are the
weights on the path between � and . . Then,

��� - the matrix � is the sum of the Laplacian of the induced
graph on � and the sum all the Laplacians a 1 P 8  4 ,�E.H- C / � C�� , where C is the all-ones vector, and C�� is
the characteristic vector of � , and

����- the matrix /0/ - is the sum of the Laplacian of the
graph containing all edges deleted by trim and the
diagonal matrix that is � for vertices in � and

2
else-

where, minus the sum of all the Laplacians a 1 P 8  4 .
Corollary 1.4. For a and � � as in Lemma 1.3, U[Z)\N�E� � -(H�;UWZ)\#�EaO- and UWVYXU�E� � -(0 UTV XU�EaO-/*,� .

Other topological structures may be exploited to produce
elimination orderings that result in sparse / . In particu-
lar, Lipton, Rose and Tarjan [17] prove that if the sparsity
graph is planar, then one can find such an / with at most���)�T"%$'& �U- non-zero entries in time �����U ��R7 - . In general,
Lipton, Rose and Tarjan prove that if a graph can be dis-
sected by a family of small separators, then / can be made
sparse. The precise definition and theorem follow.

Definition 1.5. A subset of vertices � of a graph
� �

� � c �M- with � vertices is an � �)�U- -separator if : �[:.H�� ���U- ,
and the vertices of � E � can be partitioned into two sets

 and � such that there are no edges from 
 to � , and
: 
 :�c : � :+H �,�+* 	 .

Definition 1.6. Let � �E- be a positive function. A graph
� �

� � c �M- with � vertices has a family of � �E- -separators if for
every �TH � , every subgraph

� $�� � with � vertices has a
� ��� - -separator.

Theorem 1.7 (Nested Dissection: Lipton-Rose-Tarjan).
Let � be an � by � symmetric PSD matrix, ��� 2

be a
constant, and �U���U- be a positive function of � . Let � �9,(- �



�U���U- ,�� . If
� �E�\- has a family of � �_- -separator, then the

Nested Dissection Algorithm of Lipton, Rose and Tarjan
can, in � � � ? ���+�)�U-6���[-5 �� time, factor � into � � / / -
so that / has at most � � � �U���U- ���
-57L"%$'& ��� non-zeros.

To apply this theorem, we note that many families of
graphs are known to have families of small separa-
tors. Gilbert, Hutchinson, and Tarjan [10] show that all
graphs of � vertices with genus bounded by � have a fam-
ily of ����� ���U- -separators, and Plotkin, Rao and Smith [20]
show that any graph that excludes :
	 as minor has a fam-
ily of ����� � �T"%$'& �L- -separators.

1.5. Iterative Methods

Iterative methods such as Chebyshev iteration and Conju-
gate Gradient solve systems such as � � � � by succes-
sively multiplying vectors by the matrix � , and then taking
linear combinations of vectors that have been produced so
far. The preconditioned versions of these iterative methods
take as input another matrix a , called the preconditioner,
and also perform the operation of solving linear systems ina . In this paper, we will restrict our attention to the precon-
ditioned Chebyshev method as it is easier to understand the
effect of imprecision in the solution of the systems in a on
the method’s output. In the non-recursive version of our al-
gorithms, we will exploit the standard analysis of Cheby-
shev iteration (see [8]), adapted to our situation:

Theorem 1.8 (Preconditioned Chebyshev). Let � and a
be Laplacian matrices, let � be a vector, and let � satisfy� � � � . At each iteration, the preconditioned Chebyshev
method multiplies one vector by � , solves one linear system
in a , and performs a constant number of vector additions.
At the

�
th iteration, the algorithm maintains a solution ��

satisfying

DC�]��FE � - D H�� J�S� � ��� 1 � 8 � 4 Y[Z[���`-�� Y(Z
�EaO-�D � D �

In the non-recursive versions of our algorithms, we will pre-
compute the Cholesky factorization of the preconditionersa , and use these to solve the linear systems encountered
by preconditioned Chebyshev method. In the recursive ver-
sions, we will perform a partial Cholesky factorization ofa , into a matrix of the form /�� � c 2���2 c/� ��� / - , construct
a preconditioner for � � , and again use the preconditioned
Chebyshev method to solve - the systems in � � .

2. Support Theory

The essence of support theory is the realization that one
can bound O(Z(���Mc/ad- by constructing an embedding of �

into a . We define a weighted embedding of � into a to be
a function � that maps each edge � of � into a weighted
simple path in a linking the endpoints of � . Formally,���&� ��� � �! #" $ � is a weighted embedding if for all�BA � , % �IA a!�&� �'�Fc �N-�� 2)(

is a simple path connect-
ing from one endpoint of � to the other. We let path *T�+�,-
denote this set of edges in this path in a . For �1A � , we
define wd * �'�,- � 4 Z&, path - 1/. 4 P�0 � * 11. 8 Z 4 � and the weighted

congestion of an edge � A a under � to be wc * � �N- �
4 . � Z&, path - 11. 4 wd * �'�,-2� �+�Fc �N- �
Our analysis of our preconditioners relies on the following
extension of the support graph theory.

Theorem 2.1 (Support Theorem). Let � be the Laplacian
matrix of a weighted graph

�
and a be the Laplacian ma-

trix of a subgraph ( of
�

. Let � be a weighted embedding
of
�

into ( . Then

Y(Z[���KcRaO-(H U[Z�\Z3,54 wc * ���N- �
To understand this statement, the reader should first con-
sider the case in which all the weights � . , . Z and � �+��c �N-
are 1. In this case, the Support Theorem says that Y Z �E�KcRaO-
is at most the maximum over edges � of the sum of the
lengths of the paths through � . This improves upon the up-
per bound on Y#Z
�E�KcRaO- stated by Vaidya and proved in Bern
et. al. of the maximum congestion times the maximum di-
lation, and it improves upon the bound proved by Boman
and Hendrickson which was the sum of the dilations. This
statement also extends the previous theories by using frac-
tions of edges in a to route edges in � . That said, our proof
of the Support Theorem owes a lot to the machinery devel-
oped by Boman and Hendrickson and our � is analogous to
their matrix 6 .

We first recall the definition of the support of � in a , de-
noted 72�E�KcRaO- :

72���Mc/ad- � UWV X8%:9;�=<�> 0?9
c@>6aBA � ( �
Gremban proved that one can use support to characterize
O[Z :

Lemma 2.2. If Null �E�\- � Null ��ad- , then

O Z ���Mc/ad- � 72�E�KcRaO-C72�Ea cR�\- �
Vaidya observed

Lemma 2.3. If ( is a subgraph of the weighted graph
�

,� is the Laplacian of
�

and a is the Laplacian of ( , then72��a<c/�\- H � .
Our proof of the Support Theorem will use the Splitting
Lemma of Bern et. al. and the Rank-One Support Lemma
of Boman-Hendrickson:



Lemma 2.4 (Splitting Lemma). Let � � � � ? � 7 ?������6?�  and let a � � � ? a 7 ?������V? a  . Then,

72���Mc/aO- H U[Z�\7 72���@7/cRa@7_- �
For an edge � A � and a weighted embedding � of � intoa , we let � . denote the Laplacian of the graph containing
only the weighted edge � and a . denote the Laplacian of
the graph containing the edges � A path *T���!- with weights
��Z3� �'�Fc �N- . We have:

Lemma 2.5 (Weighted Dilation). For an edge � A � ,

72��� . c/a . - � wd * �+�,- �
Proof. Follows from Boman and Hendrickson’s Rank-One
Support Lemma.

Proof of Theorem 2.1. Lemma 2.5 implies

72��� . c wd * �+�,- a . - � �'�
We then have

72���Mc�U[Z�\Z&,&� wc * � �N-�aO-QH 72���Mc �Z&,&� wc * � �N-��\Z�-
� 72���Mc �. , � wd * ���,-�a . -
H U[Z�\. , � 72��� . c wd * ��� -�a . -
H � c

where the second-to-last inequality follows from the Split-
ting Lemma.

3. The Preconditioner

In this section, we construct and analyze our preconditioner.

Theorem 3.1. Let � be a Laplacian and
� � � � c �bc �\-

its corresponding weighted graph. Let
�

have � vertices
and � edges. For any positive integer >QHA� , the algorithm
precondition, described below, runs in ����� "%$'& � -
time and outputs a spanning tree � � � of

�
and a set

of edges � � � such that

(1) if a is the Laplacian corresponding to � � � , then7 Z ���Mc/aO- H ; � � 0 � � � ��	�
�� ��	� ��	�
'- , and

(2) : � :H � � >67N"%$'& �+* "%$'&2"%$'& � � .
Moreover, if

�
has genus � 7 or has no : 	 minor, then

(2’) : � :H � � > �U"%$'& �U"^$�& �+* "%$'&2"%$'& �U- ,

and if
�

is the Gremban cover of such a graph, then the
same bound holds and we can ensure that � is a Grem-
ban cover as well.

Proof. Everything except the statement concerning Grem-
ban covers follows immediately from Theorem 2.1 and
Lemmas 3.7, 3.8, and 3.13.

In the case that
�

is Gremban cover, we apply the algorithm
precondition to the graph that it covers, but keeping all
weights positive. We then set � and � to be both images of
each edge output by the algorithm. Thus, the size of the set� is at most twice what it would otherwise be.

For our purposes, the critical difference between these two
graphs is that a cycle in the covered graph corresponds in
the Gremban cover to either two disjoint cycles or a double-
traversal of that cycle. Altering the arguments to compen-
sate for this change increases the bound of Lemma 3.10 by
at most a factor of 	 , and the bound of Lemma 3.13 by at
most D .

The spanning tree � is built using an algorithm of Alon,
Karp, Peleg, and West [1]. The edges in the set � are con-
structed by using other information generated by this algo-
rithm. In particular, the AKPW algorithm builds its span-
ning tree by first building a spanning forest, then building
a spanning forest over that forest, and so on. Our algorithm
works by decomposing the trees in these forests, and then
adding a representative edge between each set of vertices in
the decomposed trees.

Throughout this section, we assume without loss of gener-
ality that the maximum weight of an edge is 1.

3.1. The Alon-Karp-Peleg-West Tree

We build our preconditioners by adding edges to the span-
ning trees constructed by Alon, Karp, Peleg and West [1].
In this subsection, we review their algorithm, state the prop-
erties we require of the trees it produces, and introduce the
notation we need to define and analyze our preconditioner.

The AKPW algorithm is run with the parameters , �
� � � ��	�
�� ��	�� ��	�
 and � �	�  � ��	>
� ��	 R�
 , and the parameters � �
D� "^$�&2� and � � ,�� are used in its analysis.

We assume, without loss of generality, that the maximum
weight edge in � has weight 1. The AKPW algorithm be-
gins by partitioning the edge set � by weight as follows:�N7 ��� � A�� � � *�� 7�� �O�'�,-QH � *�� 7 JN��� �
For each edge � A � , let class �'�,- be the index such that� A � class 1/. 4 .



The AKPW algorithm iteratively applies a modification of
an algorithm of Awerbuch [2], which we call cluster,
whose relevant properties are summarized in the following
lemma.

Lemma 3.2 (Colored Awerbuch). There exists an algo-
rithm with template�

���������
	��� � � c�,+c � � c � ��� c �  -Hc
where

� � � � c �O- is a graph, , is a number, � � c � ��� c�� 
are disjoint subsets of � , and

�
is a spanning forest of � ,

such that

(1) each forest of

�
has depth at most 	 , � "%$'& � ,

(2) for each � H 3 H �
, the number of edges in class �@7 be-

tween vertices in the same tree of

�
is at most , times

the number of edges in class �@7 between vertices in
distinct trees of

�
, and

(3) �������
	��� runs in time ��� 4 7 : �/7�: - .
The other part of the AKPW algorithm is a subroutine with
template � $ ��������	�����
	 � � c � -Hc
that takes as input a graph

�
and a spanning forest

�
of�

, and outputs the multigraph
� $ obtained by contracting

the vertices of each tree in

�
to a single vertex. This con-

traction removes all resulting self-loops (which result from
edges between vertices in the same tree), but keeps an im-
age of each edge between distinct trees of

�
. The classes,

weights, and names of the edges are preserved, so that each
edge in

� $ can be mapped back to a unique pre-image in
�

.

We can now state the AKPW algorithm:

Algorithm: � � AKPW � � -
1. Set � � � and

� 1 5 4 � � .

2. While
� 1 5 4 has more than one vertex

(a) Set � 5 � cluster � � 1 5 4Hc�,Uc � 5 J��=�+� c ��� � c�� 5 - .
(b) Set

� 1 5 �+�54 ��������	�����
	 � � 1 5 4Hc � 5 -
(c) Set � � � ?A� .

3. Set � � � 5 � 5
The tree output by the AKPW algorithm is the union of the
pre-images of the edges in forests � 5 . Our preconditioner
will include these edges, and another set of edges � con-
structed using the forests

�
5
.

To facilitate the description and analysis of our algorithm,
we define�

5
to be the forest on � formed from the union of the

pre-images of edges in � � � ����� � � 5 JN� ,

� 5� to be the tree of

�
5

containing vertex � .� 57 ��� ��� c�� -(A � 7 � � 5� �� � 5� � ,! 57 � � 57 E � 5 �+�7 , and
! 5 � � 7 ! 57 .

We observe that

�
5 � � is comprised of edges from� � c ��� � c � 5 , and that each edge in

! 5
has both end-

points in the same tree of

�
5 � � .

Alon, et. al. prove:

Lemma 3.3 (AKPW Lemma 5.4). The algo-
rithm AKPW terminates. Moreover, for every 3 H � ,""" � 57 """ H """ � 1 5 JL�647

""" * ,'H : �N7=:5*�, 5 J 7 �
We remark that ,���� : � : , so for 3 H � E � , � 57 �$# . The
following lemma follows from the proof of Lemma 5.5 of
[1] and the observation that ��� 0 : � : .
Lemma 3.4. For each simple path ' in

�
5 �+� and for eachL

, : '&% �('�:+H UWV X+� � 5 J ' �+�Cc ��� - .
3.2. Tree Decomposition

Our preconditioner will construct the edge set � by decom-
posing the trees in the forests produced by the AKPW al-
gorithm, and adding edges between the resulting sub-trees.
In this section, we define the properties the decomposition
must satisfy and describe the decomposition algorithm.

Definition 3.5. For a tree
�

and a set of edges
!

between
the vertices of

�
, we define an

!
-decomposition of

�
to be

a pair �*) c 7L- where ) is a collection of subsets of the ver-
tices of

�
and 7 is a map from

!
into sets or pairs of sets

in ) satisfying

1. for each set � A+) , the graph induced by
�

on � is
connected,

2. for each edge in
�

there is exactly one set � A�)
containing that edge, and

3. for each edge in � A ! , if : 72�+� - : � � , then both end-
points of � lie in 72�+� - ; otherwise, one endpoint of �
lies in one set in 72�'�,- , and the other endpoint lies in
the other.

We note that there can be sets � A ) containing just one
vertex of

�
.

For a weighted set of edges
!

and an
!

-decomposition�*) c�7L- , we define the
!

-weight of a set � A,) by�.-O� � -0/2143� 4 . ,�- � 5 ,�6 11. 4 �M�'�,- .
We also define � � � � � ! - /7143� 4 . ,�- �M�+�,- .



Our preconditioner will use an algorithm for computing
small

!
-decompositions in which each set � A ) with

: � : � � has bounded
!

-weight.

Lemma 3.6 (Tree Decomposition). There exists an algo-
rithm with template

�*) c�7L- � � ��������������� � � c ! c��#-
that runs in time ����: ! : ? : � : - and outputs an

!
-

decomposition �*) c�7L- satisfying

1. for all � A+) such that : � : � � , � - ��� -QH�� , and

2. : ) :+H � � � � � � ! -/*	� .

Proof. We let
� �*��- denote the set of vertices in the sub-

tree rooted at � , and for a set of vertices � , let
! ��� - �%�� A ! �&� % ! �� # ( . We then define 
�O��� - /7143� ! � � �*��-/- .

Let ��� denote the root of the tree. Our algorithm will pro-
ceed as if it were computing 
�O����,- via a depth-first traver-
sal of the tree, except that whenever it encounters a subtree
of weight more than �N*)� , it will place nodes from that sub-
tree into a set in ) and remove them from the tree. There
are three different cases which determine how the nodes are
placed into the set and how 7 is constructed.

If, when processing a node � , the algorithm has traversed a
subset of the children of � , %2� � c � ��� c��  ( such that 
�O��� � - ?�����'? 
�O���  - 0��N*)� , then a set � is created, all the nodes
in %7� ( � 7 ? � � ��� 7 - are placed in � , and those nodes in� 7 ? � � �*�)7E- are deleted from the tree. If a node � is encoun-
tered such that �N*)��H ! � � ��� -5- H�� , then a set � is cre-
ated, the nodes in

� �*��- are placed in � , and those nodes in
� are deleted from the tree. In either case, for each node� A ! ��� - we set 72�'�,- � 72�'�,- � % � (

.

If a node � is encountered which is not handled by either of
the preceeding cases and for which 
�O�*��- ��� , then two sets
� � � � �*��- and � 7 � %2� ( are created, and those nodes
in
� ��� - are deleted from the tree. For each edge � A ! ��� - ,

� 7 is added to 72�'�,- and for each edge � A ! � � ��� - E %2� ( - ,
� � is added to 72�+� - .
When the algorithm finally returns from examining the root,
all the remaining nodes are placed in a final set, and this
set is added to 72�'�,- for each edge � A ! with endpoints
in this set. The algorithm maintains the invariant that when-
ever it returns from examining a node � , it has either deleted� , or removed enough vertices below � so that 
�d��� - � �N* � .
To see that the algorithm produces at most � � � � � *	� sets, we
note that each edge in

!
can contribute its weight to at most

two sets, and that every time the algorithm forms sets, it ei-
ther forms one set with weight at least �N* � or two sets with
total weight at least � .

3.3. Constructing the Preconditioner

We can now describe our algorithm for constructing the pre-
conditioner. We will defer a discussion of how to efficiently
implement the algorithm to Lemma 3.8.

The algorithm will make use of the parameter

B 1 5 4 /2143��� , 5 JN� if � H �
,���� 5 J���JL� otherwise

Algorithm: � � c � - � Precondition � � -
1. Run

� ��������� � � - . Set � to the number of iter-
ations taken by AKPW, and record � � c ��� � c ��� and! �,c ��� � c ! � .

2. For � � � to �
(a) let % � � c ��� � c �  ( be the set of trees in

�
5 � � .

(b) for 3 � � to
�

i. let
!

be the subset of edges in
! 5 with end-

points in
� 7

ii. Set � % � � c � ��� c � ' ( c�7L- to
decompose � � 75c ! c : � :/*=> B 1 5 45-

iii. for each � H�� H L
, let ��� 8 � be the max-

imum weight edge in
!

between � � and
��� , and add � � 8 � to � .

Lemma 3.7. Let � be the set of edges produced by Pre-
condition. Then,

: � :+H�G � 7 > 7 � � � > 7 "%$'& �+* "%$'&2"%$'& � � �
Moreover, if

�
has no : 	 minor, then : � : �

� �'> �U"^$�& �L"%$'& �+* "^$�&2"^$�& �U- �
Proof. Let � 5 be the total number of sets produced by ap-
plying decompose to the trees in

�
5 � � . We first bound

4 5 � 5 . We have

�
5 � 5 H � 5 �&> B 1 5 4 � � � � � ! 5 -/* : � :

� � �&>/*N: � : - � 5
B 1 5 4 �

7
� � � � � ! 57 - �

To bound this sum, we set

� 5 7 �! "#
"$

2
if � � 3 ,

4 '&% 7 "" ! '7 "" if 3 � � , and""" ! 57
""" if � � 3 �



We observe that Lemma 3.3 implies � 5 7 H : �N7=:/*�, 5 J 7 , and
� 5 7 � 2

for �[0 3 ? � . As B 1 5 4 is increasing, we have

�
5
B 1 5 4 �

7
� � � � � ! 57 -(H � 5

B 1 5 4
5�

7 ? 5 J���� �
� 5 7 *�� 7 JN�

� �
7

7 � � JN��
5�? 7

B 1 5 4 � 5 7 *�� 7 JL�

H �
7

: � 7 : 7 � � JL��
5�? 7

B 1 5 4 * � , 5 J 7 � 7 JN� �
H �

7
: �N7�: �

H : � : �(c
as B 1 5 4 H6, 5 J 7 � 7 JL� for � H63 ? � E � . Thus, 4 5 � 5 H � �5> ,
and, because we add at most one edge between each pair of
these sets, we have : � :+H G� 7�>67 .
As observed by Vaidya, a result of Mader [4] implies that
if a graph does not have a complete graph on � vertices as
a minor, then the average degree of every minor of

�
is�����U"^$�& � - . Hence, the number of edges added to � at iter-

ation � is at most � 5 �L"%$'&�� , and so

: � :+H � 5 � 5 �U"^$�& � H G� > �U"^$�& � �
Finally, a graph of genus � 7 does not have a :�� 1 	 4 minor.

Using the dynamic trees data structure of Sleator and Tar-
jan [22], we prove:

Lemma 3.8. If
�

is a graph with � vertices and � edges,
then the output of precondition can be produced in���)� "%$'& � - time.

3.4. Analyzing the Preconditioner

We will use weighted embeddings of edges into paths in� � � to bound the quality of our preconditioners. The
weights will be determined by a function 9L� ��c L - , which we
now define to be

9L� �'c L - � � � � E L � �
1 5 J ' J��=�+�64�����	��
������� Otherwise.

For each edge � A ! 5
and each edge � A path *T�'�,- , we

will set � �'�Fc �N- � 9L� ��c class � �N-6- . We will construct � so as
to guarantee class �'�,- � class ���N- ? � .

It remains to define the paths over which edges are embed-
ded. For an edge � � �*�+c ��- in

! 5
, if � A � � � then we set

path *T�'�,- � � and � �+�Fc��,- � � . Otherwise, we let
�

be the
tree in

�
5 �+� containing the endpoints of � and let 7 be the

function output by decompose on input
�

. If : 72�'�,- : � � ,
then we let path * �'�,- be the simple path in

�
connecting

the endpoints of � . Otherwise, we let % � � c � � ( � 72�'�,-
and let � ��8 � be the edge added between � � and ��� . We
then let path *T�'�,- be the concatenation of the simple path
in
�

from � to � �S8 � , the edge � �S8 � and the simple path in
�

from � �S8 � to � .
The two properties that we require of 9 are encapsulated in
the following lemma.

Lemma 3.9. ����- For all � 0 � , 4 5 ' ? �
� 
���� � � � �	��
���� 8 �  -� 1 5 8 ' 4 H

� 5 �+�'� � ? �'-Hc and

�E.H- For all
L 0 � , 465�� ' 9L� ��c L -QH � � ? � - .

We now derive the upper bound we need on the maximum
weighted congestion of the embedding � .

Lemma 3.10. For each � and each simple path ' in

�
5 �+� ,

�
Z&,��

��M���N-C9L� ��c class � �N-6- H � � ? ��- � 5 �+� �

Proof.

�
Z&,��

��M���N-C9L� ��c class ���N-5- H
5�
' ? �

�
Z&,������ 


��M� �N- 9L� �'c L -
H

5�
' ? �

UWVYX � � 5 J ' � �,c ��� ��M� �N- 9L� ��c L -
H

5�
' ? �

� ' UTV X � � 5 J ' �+� c � �=�9L� ��c L -
H � 5 �+� � � ? �'-

where the third-to-last inequality follows from Lemma 3.4,
the second-to-last inequality follows from � A � ' , and the
last inequality follows from Lemma 3.9 ��� - .
Lemma 3.11. For each edge � A�� ,

wd * �'�,-(H � ��� ?�@ - � 5 �+� �M�+�,- �
Proof. Let � A ! 57 , let

�
be the forest in

�
5 �+� contain-

ing the endpoints of � , and let �*) c�7L- be the output of de-
compose on input

�
. If : 72�'�,- : � � , the � is routed over the

simple path in
�

connecting its endpoints, so we can ap-
ply Lemma 3.10 to show

wd * �'�,-(H � � ? �'- � 5 � � �M�+� - �
Otherwise, let 72�'�,- � % � � c � � ( , and observe that
path *T�'�,- contains two simple paths in

�
and the edge



���S8 � . Applying Lemma 3.10 to each of these paths and re-
calling class ��� ��8 � -FH � , which implies �M��� �S8 � -�0 � *�� 5 ,
we obtain

wd * ���,-(H �
� � ? �'- � 5 �+� �M�'�,- ? � 5 �O�'�,-QH ����� ?T@ - � 5 �+� �M�+�,- �
Lemma 3.12. For each �'A � 4 and for each �

�
. ,�- � � Z&, path - 11.64 wd * �'�,-(H ����� ? @ - � � � 7 : � :R*=> �

Proof. Let
�

be the tree in

�
5 �+� containing the endpoints

of � , and let � ) c 7L- be the output of decompose on in-
put
�

. There are two cases two consider: � can either be
an edge of

�
, or � can be one of the edges � ��8 � . If � is

an edge of
�

, let � be the set in ) containing its end-
points. Otherwise, if � is one of the edges � ��8 � , let � be
the larger of the sets � � or ��� . If : � � : � : ���J: � � , then
the only edge having � in its path is � itself, in which case
the lemma is trivial. So, we may assume : � :�� � . In ei-
ther case, each edge � for which �6A path *T�'�,- must have
� A;72�'�,- . Thus,

�
. ,�- � � Z3, path - 11. 4 wd * ���,-(H �

. ,�- � � 5 ,�6 11.64 wd * �'�,-
H �
. ,�- � � 5 ,�6 11.64 �M�'�,-N� ��� ? @ - � 5 �+�

� � - � ��� -N� ��� ?�@ - � 5 � �
H � ��� ? @ - � 5 �+� : � :R*=> B 1 5 4
H � ��� ? @ - � 7 � � : � :/*�> �

Lemma 3.13. Let � , � and � be constructed as above. Let( � � � � . Then,

U[Z�\Z&,54 wc * ���N- � � > � 0 � � � ��	>
�� ��	� ��	%
'- �
Proof. For any edge � A ( , we let

L � class � �N- and com-
pute

wc * � �N- � �
. ,�� � Z3, path - 11. 4 wd * �+�,-2� �'�Fc �N-

� �
5

�
. ,�- � � Z&, path - 11.64 wd * �+�,-29L� �'c L -

H �
5 9L� ��c L -N� ��� ?�@ - � � � 7 : � :/*�>

H � � ?A� -N���� ?�@ - � � � 7 : � :/*=>!c� � 0 � � � ��	>
J� ��	� ��	�
'- : � :R*=> �
where the second-to-last inequality follows from Lemma
3.12, the last inequality follows from Lemma 3.9 �_.H- , and

the last equality follows from � � � � 0 � � � ��	�
�� ��	�� ��	�
'- .

4. One-Shot Algorithms

Our first algorithm constructs a preconditioner a for
the matrix � , performs a partial Cholesky factoriza-
tion of a by eliminating the vertices in trim order to obtaina � /�� � c 2���2 c/� � � / - , performs a further Cholesky factor-
ization of � � into / � / - � , and applies the preconditioned
Chebyshev algorithm. In each iteration of the precondi-
tioned Chebyshev algorithm, we solve the linear systems
in a by back-substitution through the Cholesky factoriza-
tions.

Theorem 4.1 (One-Shot). Let � be an � -by- � PSDDD ma-
trix with � non-zero entries. Using a single application of
our preconditioner, one can solve the system � � � � to
relative accuracy � in time � � �����=�!�6 ����H13�54�"%$'&(�EY+���`-/*,�!- � .
Moreover, if if the sparsity graph of � does not contain a
minor isomorphic to the complete graph on � 9 vertices, or
if it has genus at most � 7�9 , for B � � * 	 , then the expo-
nent of � can be reduced to �'�%� � @ � �2? B - ?�� � � - .

Proof. The time taken by the algorithm is the sum of the
time required to compute the preconditioner, perform the
partial Cholesky factorization of a , pre-process � � (either
performing Cholesky factorization or inverting it), and the
product of the number of iterations and the time required
per iteration. In each case, we will set > � � � for some
constant � , and note that the number of iterations will be� 1 ��J � 4��/7����H13�54 , and that the matrix � � will depend on � � .

If we do not assume that � has special topological structure,
then � � is a matrix on � 7 � ���H13�54 vertices. If we solve sys-
tems in � � by Cholesky factorization, then it will take time� � � ? � Q � ���H13�54 � to perform the factorization and time
� � � ? � � � ���H13�54 � to solve each system. So, the total time
will be � 13�!J � 49�R7�� � � ���!13�54 ? � Q � ���!1 �64 . Setting � � 	 * � 	 ,
we obtain the first result.

If the graph has genus B 7 or does not have a : ; = mi-
nor, or is the Gremban cover of such a graph, then can
apply part ��� $ - of Theorem 3.1. Thus, � � is a matrix on� � �U9����H13�54 vertices. In the Gremban cover case, the pre-
conditioner is a Gremban cover, and so the partial Cholesky
factorization can ensure that � � is a Gremban cover as
well. As the Gremban cover of a graph has a similar fam-
ily of separators to the graph it covers, in either case we
can apply the algorithm of Lipton, Rose and Tarjan to ob-
tain the Choleksy factorization of � � . By Theorem 1.7, with
� � � *)� ? B , the time required to perform the factorization
will be � � � ? � � 1% R9��L =�R7/4<���!13�54 � , and the time required to



solve the system will be

� � � 13��J � 49�R7 �)� ? � � 1^7R9��+�54<���H13�54��
� � � � 1 ��J � 4��/7��+�����H13�64�� c

provided � � � BT? � - H � . We will obtain the desired result
by setting � � � 	 E D B -/* � .

5. Recursive Algorithms

We now show how to apply our algorithm recursively to im-
prove upon the running time of the algorithm presented in
Theorem 4.1.

The recursive algorithm is quite straightforward: it first con-
structs the top-level preconditioner a � for matrix � � � � .
It then eliminates to vertices of a � in the trim order to obtain
the partial Cholesky factorization a � � / � � � / - � , where
� � � � � c 2���2 c/� � � . When an iteration of the preconditioned
Chebyshev algorithm needs to solve a linear system in a � ,
we use forward- and backward-substitution to solve the sys-
tems in / � and / - � , but recursively apply our algorithm to
solve the linear system in � � .
We will use a recursion of depth � , a constant to be de-
termined later. We let � � � � denote the initial matrix.
We let a 7 �+� denote the preconditioner for � 7 , / 7 �(7�/ -7 be
the partial Cholesky factorization of a 7 in trim order, and
� 7 � � � c 2 ��2 c/�@7 � . To analyze the algorithm, we must deter-
mine the relative error � 7 to which we will solve the systems
in � 7 . The bound we apply is derived from the following
lemma, which we derive from a result of Golub and Over-
ton [11].

Lemma 5.1 (Preconditioned Inexact Chebyshev
Method). Let � and a be Laplacian matrices satisfy-
ing 72��a cR�\-W0 � . Let � be the solution to � � � � . If, in
each iteration of the preconditioned Chebyshev Method, a
vector �  is returned satisfying

a��  ���  ?
	  c where D 	  D@H��QD �  D c
where � H

� � �CG W Y[Z[��ad-C72�E�Kc/ad- � JL� , then the
�

-th iter-

ate, �  , output by the algorithm will satisfy

D �IE��  D/H� � � J�S� � ��� 1 � 8 � 4 Y(Z
�E�\- � Y(Z
�EaO-�D � D �
Our main theorem is:

Theorem 5.2 (Recursive). Let � be an � -by- � PSDDD
matrix with � non-zero entries. Using the recursive algo-
rithm, one can solve the system � � � � to relative accu-
racy � in time

� � � �!�  ������H13�64 ��"^$�&[�E� JL� -�"%$'&#�)� U[Z)\#�E�\-
UWVYX+���\- -5- 0 13�54 � �

Moreover, if the graph of � does not contain a minor iso-
morphic to the complete graph on � 9 vertices, or has genus
at most � 7R9 , or is the Gremban cover of such a graph, then
the exponent of � can be reduced to � ?�@,B ? � � � - .
We note that if

� �E�\- is planar, then the algorithm take time
nearly linear in � . We believe that we can improve the term����� 1 � 4��� � 1 � 4 to Y[Z[���`- .
The following lemma is needed to bound YNZ[���/7 - andY[Z[��a 7 - .
Proposition 5.3 (Fiedler). Suppose � is an � by � Lapla-
cian matrix. Then the smallest non-zero eigenvalue of � is
at least UWVYXU�E�\-R* � 7 and the largest eigenvalue of � is at
most �;U[Z�\L���`- Thus, Y#Z
�E�\-QH �L .U[Z�\L���`-/*#UWV XU���`- .
The following two lemmas allow us to bound the accuracy
of the solutions to systems in a;7 in terms of the accuracy of
the solutions to the corresponding systems in � 7 .
Lemma 5.4. Let a be a Laplacian matrix and let /�� / -
be the partial Cholesky factorization obtained by eliminat-
ing vertices of a in the trim order. Then

Y+� / -(H
� G
�)� ? � - � � �<U[Z�\L� � c�U[Z)\#�E�\-5-/-
UWVYX ���`- �

Lemma 5.5. Let a be a Laplacian matrix and let /�� /(-
be the partial Cholesky factorization obtained by eliminat-
ing vertices of a in the trim order. For any ��A Span ��ad- ,
let � be the solution to � � � / JN��� and let �� satisfy
D�� E �� D H �#D��GD . Let �� be the solution to /(- �� � �� . Then

D�� E a �� D@H �!Y+� / -5Y+� � -JD�� D �
Proof of Theorem 5.2. Without loss of generality, we as-
sume U[Z�\N���`- � � . For � �'c ��� � c/��� , a � c � ��� cRa�� , and/ � c ��� � c / � as defined above, we can apply Proposition 5.3,
Corollary 1.4, and Lemma 5.4 to show:, U[Z�\N��a 7 � � -QH U[Z�\L��� 7 -(H � 7 U[Z�\L���`- ,, UWVYX+��a 7 �+� -(0 UTV XU�E�/7 -(0 U[Z)\#�E�\-/*,� 7 ,, Y+��a 7_-(H �L7 7 �+�C�<U[Z�\L���`-/*#UWV XU���`-5- , and, Y+��� 7 -(H �L7 7 �L '�9U[Z�\L���`-/*#UWV X+���`-5- , and, Y+� / 7_-(H�� 7 W �  UWZ)\L���\-R*#UWVYX ���`- .
In the recursive algorithm we will solve systems in � 7 , for
3 0 � , to accuracy

� 7 � � � �'GC� � 7 �UP �<U[Z�\L�E�\-/*KUTV XU�E�\-5- 7 � JL� �
By Lemma 5.5 and the above bounds, we then obtain so-
lutions to the systems in a;7 to sufficient accuracy to apply
Lemma 5.1.



Let � 7 be the number of edges of � 7 . When constructing the
preconditioner, we set >�7 � �)��7 - � , for a � to be chosen later.
Thus, by Theorem 3.1 and Proposition 1.1, �F7 H � 1%7 � 4�� ,
and Y(Z[���@75cRa@7 �+� - � � 1^7 � 4 � 13��J � 4<���H13�64 .
We now prove by induction that the running time of the al-
gorithm obtained from a depth � recursion is

� � � ��� ���H13�54 � � "^$�&[�)� U[Z)\#�E�\-
UWVYX+���\- � � � c where

� � /7143� � � E �� -
��
7 ? �

� � �L- 7 JN� ? �]��� �N- � c
and � /7143� � 	 E � @ -/* � . In the limit,

� � approaches
��� /2143�� 	+? � @ -/* � from above. The base case, � � � , follows from

Theorem 4.1.

The preprocessing time is negligible as the partial Cholesky
factorizations used to produce the � 7 take linear time, and
the full Cholesky factorization is only performed on � � .
Thus, the running time is bounded by the iterations. The in-
duction follows by observing that the iteration time is

� �	�	�� ���!13�54 � � ? � ��� � �� � "^$�& �EY+��� � -5Y+��a � -/*,� � - , which

proves the inductive hypothesis because � ��� � �� � � . As�'� 	]� � ���
, there exists an � for which

� � � �'� 	]� .
When the graph of � does not contain a : ;>= minor or has
genus at most � 7�9 , we apply a similar analysis. In this case,
we have � 7 H � 7 JN� � 9����H13�64 . Otherwise, our proof is sim-
ilar, except that we set � � � 	 E B E � � ?  B\? B 7 -/* � ,
and obtain

��� � � 	 ? B ? � � ?  B ? B 7 -R* � , and note that�
� H � ?�@,B .
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