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Abstract

We demonstrate that isomorphism of strongly regular
graphs may be tested in time pdn?logn)  our ap-
proach is to analyze the standard individualization and
refinement algorithm in light of Neumaier’s claw bound,
which implies that low degree strongly regular graphs
have a small second-largest eigenvalue, unless they are
Steiner or Latin square graphs.

1. Introduction

The problem of finding an algorithm that is guaran-
teed to efficiently determine whether two graphs are
isomorphic has troubled many researchers [RC77]. For
many years, no known algorithm had a worst-case run-
ning time better than n®™. While this problem is
polynomial-time solvable on average in many senses
of the word [BK79, Kuc87], there are many classes
of graphs that do not seem amenable to the heuris-
tics that work on “average” graphs. For a while,
the class of strongly regular graphs seemed to cap-
ture much of the difficulty of the isomorphism prob-
lem. But, in 1980, Babai [Bab80] proved that a sim-
ple combinatorial algorithm would test isomorphism
of strongly regular graphs in time pdvnlegn)  pap
more efficient tests of isomorphism were found for Latin
square graphs and Steiner triple graphs [Mil78], graphs
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with bounded color class [Bab79], graphs of bounded
genus [Mil80, FM80, Lic80], graphs with bounded eigen-
value multiplicity [BGM82], and graphs of bounded
degree [Luk82]. For generalizations of these classes,
see [Mil83] and [Pon89]. By combining Zemlyachenko’s
degree reduction technique with Luks’s algorithm for
graphs of bounded degree, it is possible to solve the

general graph isomorphism problem in time 2V An logn)
(See [Bab8la, BL83, ZKT85|). Thus, the known com-
plexity of determining isomorphism of strongly regular
graphs became no better than that for arbitrary graphs.

We will show that naive, known, combinatorial al-
gorithms can be used to test isomorphism of strongly
regular graphs in time ndn*logn) e begin by ob-
serving that the algorithm used in [Bab80] only takes a
long time on strongly regular graphs of relatively low de-
gree. We then apply a theorem of Neumaier [Neu79] to
show that such graphs have small second-largest eigen-
value or are Latin square graphs or Steiner graphs.
In either case, we can obtain an improved analysis.
Our analysis of isomorphism testing of strongly regular
graphs with small second-largest eigenvalue is inspired
by the intuition that such graphs are “quasi-random”
(See [CGW89] for related notions).

In Section 2, we recall the definitions of strongly reg-
ular graphs, Latin square graphs, and Steiner graphs as
well as various facts about these structures that will aid
our analysis. The reader may want to skim this sec-
tion and return to it when necessary. In Section 3, we
review the basic individualization and refinement ap-
proach to testing graph isomorphism. We analyze the
performance of the individualization and refinement al-
gorithm for strongly regular graphs with small second-
largest eigenvalue in Section 4, and for Steiner graphs in
Section 5. We then combine the results of these sections
to obtain our main theorem.

2. Strongly Regular Graphs and Partial
Geometries



Definition 1. A strongly regular graph (SRG) with pa-
rameters (n, k, A, 1) is a graph on n vertices such that

e each vertex in G has degree k,

e each pair of neighbors in G have exactly A common
neighbors, and

e each pair of non-neighbors in G have exactly u
common neighbors.

As the complement of a strongly regular graph is also
strongly regular, we can assume that k£ < n/2.

There is a wonderful theory of strongly regular graphs
which we will not be able to present here (See Figure 1
for an example). We just state a few facts that we
will need. For more information about strongly regu-
lar graphs, consult [Bos63, Sei79, Cam78, vLW92].

Figure 1: A strongly regular graph with parameters
(10,3,0,1).

There are some trivial examples of strongly regular
graphs. These are the disjoint unions of cliques, and
the complements of these graphs. Isomorphism of such
graphs is easy to determine, so we will not consider them
in this paper. All other strongly regular graphs are con-
nected and have degree k > v/n — 1.

Proposition 2. Let G be a connected, non-trivial,
strongly regular graph with parameters (n, k, A\, u). Then,

(o) (n—k—1p=kk—1-X).
(b) The adjacency matriz of G has just three eigenval-

ues, k > r > 0 > s, of multiplicities 1, f, and g
respectively, that satisfy

k+ fr+gs = 0, p—rs = k,
2+ fr2+gs? = nk,and A—pu = r+s.

Definition 3. A Steiner 2-system with parameters
(s,h,t) is a set system consisting of points and lines
such that

1. any two points lie on exactly one line,

2. each line contains s points, and each point inter-
sects h lines,

3. through any point « and any line [ that does not
contain x, there are exactly ¢ lines through z that
meet [.

Definition 4. A Steiner graph is the line graph of a
Steiner 2-system—the graph whose vertices represent
lines in the Steiner system such that two vertices are
neighbors if their corresponding lines intersect.

Definition 5. An s-net is a set system consisting of
points and lines such that the number of points is a
square, say m2, and the lines are divided into s classes
of m lines each. Each line contains exactly m points,
lines in the same class do not intersect, and lines in
different classes intersect in exactly one point.

For example, a 3-net is a Latin square: The points can
be indexed by pairs (¢,5) where 1 < 4,5 < m. The
first set of lines can consist of collections of points of
fixed first coordinate and the second set of points of
fixed second coordinate. Lines in the third set then
have exactly one point with each first coordinate and
one point with each second coordinate (See Figure 2).

Figure 2: A Latin square with m = 3, and its graph

Definition 6. A Latin square graph is the point graph
of an s-net: the graph contains a vertex for each point
in the s-net and two vertices share an edge if there is a
line through their corresponding points. (warning: the
names of these objects vary throughout the literature.)

Proposition 7. Steiner graphs and Latin square graphs
are strongly regular.

The cornerstone of this paper is the following theorem
of Neumaier [Neu79].



Theorem 8 (Neumaier). Let G be a strongly regular
graph with parameters (n,k, A, u) and eigenvalues k >
r > s. Then, at least one of the following conditions
must hold

(a) rSmax{Z(—s—l)(p,-l—l—i—s),%—s—l},

(b) pu = s, in which case G is a Steiner graph derived
from a Steiner 2-system in which each line con-
tains s points.

(¢) = s(s+1), in which case G is a Latin square graph
derived from an s-net.

Condition (a) is known as Neumaier’s claw bound.
It tells us that the ratio of the first two eigenvalues of a
strongly regular graph with k = o(n) is small, unless it
is a Latin square or Steiner graph. In either case, we can
take advantage of this structure to test isomorphism.

Corollary 9. Let G be a strongly regular graph with
parameters (n,k,\, 1) and eigenvalues k > r > s that
satisfies Neumaier’s claw bound and such that k = o(n).
Then, r = o(k).

Proof:  From part (a) of Proposition 2, we find that
1 = o(k). From the claw bound and the fact that 2(—s—
N(p+1+s) <s*(u+1), we find

r<s?(p+1).

Following Neumaier [Neu79] (partially), we let m = —s,
because s is negative. Thus, k = g + rm, from part (b)
of Proposition 2, implies

kE <rm(1+o(1)).

Combining the last two inequalities, we obtain

Eo< mdptD)(1+o(l) =
k 1/3
m , and
N ((u +1(+ 0(1))>
ro < KR (1+o(1),
which, together with u = o(k), implies r = o(k). O

This corollary does not begin to take advantage of
the power of Neumaier’s theorem, but it is all that we
will need for the results in Section 4.

If a strongly regular graph is of type (b) or (c¢) and
if p is not too large, then one can compute the Steiner
2-system or s-net from the graph in polynomial time.
On the other hand, if y is large, then we will show that
r is small. The next two statements and proofs are
analogous to a theorem of Miller [Mil78].

Proposition 10. If G is a Steiner graph on n vertices
derived from a Steiner 2-system in which each line has
s points and \/n—2 > (s—1)2, then one can reconstruct
the Steiner 2-system in time polynomial in n.

Proof: Recall that n is the number of lines in the
Steiner 2-system. Let v be the number of points in the
system and let A be the number of lines through each
point. Consider two lines, I; and I, of the Steiner 2-
system that intersect at a point p. There are h — 2 +
(s — 1)? lines that intersect both I; and l>: h — 2 that
also go through p and (s — 1)? that go through other
points on l; and I5.

Now, examine the corresponding structures in the
Steiner graph. The lines l; and l2 correspond to vertices
in the graph and p an edge between them. The h —
24 (s— 1)2 lines that intersect l; and I3 correspond to
vertices that are neighbors of the vertices representing
l; and I3. Our algorithm needs to distinguish the h — 2
vertices corresponding to the lines through p. To do
this, note that these lines meet each other, and they
cannot meet the other (s — 1)? lines. Thus, if h — 2 >
(s — 1)2, then they are distinguished by their degrees
in the graph induced on the mutual neighbors of the
vertices corresponding to l; and Ils.

We now complete the proof by showing that A >
+/n. By counting intersections of points with lines, we

compute
(;) = n<;> and (1)

vh = mns. (2)

Because there are more points than points per line,
v > s. Together with (1), this implies that v? < ns?.
Plugging this into (2), we obtain h > 1/n. |

Proposition 11. If G is a Latin Square graph on n
vertices derived from an s-net and n > (s — 1)*, then
one can reconstruct the s-net in time polynomial in n.

Proof:  Similar to the proof of Proposition 10. Also
see [Mil78, Theorem 8]. O

In the cases where we cannot apply Proposition 10
or 11, we will apply the following lemma to obtain a
situation like we have for graphs of type (a).

Lemma 12. If G is a strongly regular graph of type (b)
or (c) with k = o(n*/®) and s = 2 (n*/*), thenr = o(k).



Proof:  Since k = o(n), we can use part (a) of Propo-
sition 2 to show that u = o(k). Combining this and
s = 2 (n'/*) with p — rs = k from part (b) of Proposi-
tion 2 we find r = o(k). O

Miller [Mil78] has shown that isomorphism of s-nets
can be decided in time O(n'°8"+A1)), In Section 5, we
will show how to test isomorphism of Steiner 2-systems,
and in Section 4 we will show how to test isomorphism
of strongly regular graphs that satisfy Neumaier’s claw
bound or the conditions of Lemma 12.

3. Individualization and Refinement
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Figure 3: Animation of a refinement process that pro-
duced a canonical label.

A standard heuristic for testing isomorphism of
graphs is to try to assign to each graph a canonical
label so that two graphs are isomorphic if and only if
they have the same label. One approach to finding a
canonical label is to find a canonical way to assign a
unique label to each vertex in a graph. For example, we
could begin by labeling vertices by their degrees. We
could then refine this labeling by creating, for each ver-
tex, the list of labels of its neighbors, and assigning new
labels to the vertices corresponding to the lexicographic
order of these lists (See Figure 3). This process is called
refinement. We keep refining the labeling until we can-
not make any more progress. If, after refinement, every
vertex has a distinct label, then we have produced a
canonical label for the graph. Note that this process
will terminate in polynomial time.

On the other hand, this process won’t get very far if it
begins with a graph in which every vertex has the same
degree. A natural way to try to break the symmetry is

Figure 4: Nodes a, b, and ¢ were individualized. After
one refinement step, every vertex in the graph had a
unique label. Note that it is important to replace the
neighbor lists with shorter labels: if we don’t, then the
labels will quickly become too long to write down.

to individualize a particular vertex—assign it a unique
label—and then repeatedly refine the labeling in hope
of obtaining a unique label for each vertex (See Fig-
ures 4 and 5 for examples of this process). If this works,
one could obtain a canonical label for the graph by enu-
merating over the n labels obtained by individualizing
different vertices, and then using the lexicographically
least label.

In fact, one could try individualizing all choices of k
vertices at a cost of O(n¥) time. Babai [Bab80] proved
that a canonical label can be assigned to a strongly
regular graph by individualizing O(nl/ 2log n) vertices
and refining once. In fact, it suffices to individualize
n(logn)/k vertices [Bab81b]:

Theorem 13 (Babai). Let G be a strongly regular
graph with parameters (n,k,\,u). Then, there exists
a set of O(n(logn)/k) vertices in G whose individual-
ization will result in a unique labeling of every vertex in
G after one refinement step. In fact, a randomly chosen
set of n(logn)/k vertices usually suffices.

4. Testing Isomorphism when r = o(k)

In this section, we will show that every strongly regular
graph that has degree at most k = o(n?/%) and second-
largest eigenvalue 7 = o(k) has a set of O(n!/*y/logn)
vertices whose individualization will result in a unique
labeling of the vertices in G after two refinement steps.
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Figure 5: An attempt at individualizing a different set
of nodes that did not result in a unique label for each
vertex. Note that the current labels cannot be refined
any further.

The basic idea is the following: consider what happens if
we choose two non-neighbors at random. They will have
p common neighbors, and these common neighbors will
each have k neighbors. Thus, these two non-neighbors
define a set of roughly uk vertices. If a vertex « is in this
set but y is not, then we say that these non-neighbors
distinguish x from y, because the individualization of
these non-neighbors will cause z and y to have different
labels after two refinements (See Figure 6). The quasi-
random property of the graph should imply that the
event that  is in the set is only weakly correlated with
the event that y is in the set. Thus, the probability
that the set distinguishes = from y should be roughly
pk/n. Because we individualize O(nl/ 1/log n) vertices,
we expect to get O(n'/2logn) such sets. Again, the
quasi-random property of the graph should imply that
these sets act independently, so the probability that x
is not distinguished from y should be

1/2
(1 — pk/n)" " 8",

which is small for n'/2 < k < o(n?/3), and p =~ k?/n.
We now make this intuitive argument formal.

Lemma 14. Let G be a strongly regular graph with
parameters (n,k,\,pu) such that r = o(k) and k =
o(n?/3). Then, individualization of a random set of
O(nl/‘l\/log n) vertices of G followed by two refinement
steps will give a unique name to every verter in G with
high probability.

@

Figure 6: We want there to be vertices a and b in A
that have a common neighbor with z, but do not have
a common neighbor with y.

Proof: We begin by showing that each pair of ver-
tices, x and y, will probably receive different labels. We
will then sum over all pairs.

In the proof, we will make use of the inequalities
u? = o(k), A = o(k), and Ak = o(un), which follow,
respectively, by combining k = o(n?/3) with part (a) of
Proposition 2, combining p = o(k) with » = o(k) and
A —p =7+ s, and combining A = o(k) with part (a) of
Proposition 2.

Let A be a randomly chosen subset of the vertices
of G into which each vertex is placed independently
with probability en—3/4y/Iog n, for some constant c. We
will estimate the probability that there are two non-
neighbors a and b in A such that a and b have a common
neighbor 7 that is a neighbor of z, but have no common
neighbor j that is a neighbor of y (see Figure 6).

Let {v1,...,vr} be the set of neighbors of z, and
let S; be the set of neighbors of v; that are not neigh-
bors of . Fach vertex z that is not a neighbor of z
is in exactly p of these sets, because x and z share pu
common neighbors. Let {vy,...,v;} be the vertices that
are common neighbors of z and y (clearly | < A) and
let W be the set of vertices in G that are in at least
/2 of the sets {Si4+1,...,S%}. Corollary 9 implies that
lk <Xk = o(pn), so |[W|=n(1—o0(1)). We now apply
Lemma 15 to find a set system

{Tla .- -7Tek/y.} c {Sl+17 .. '7Sk}

such that each set T; contains at least dk elements of
W that are in no other set 7}, for some constants € and
d. Let U; denote those elements that of W that are in
T; exclusively. We will show that, with high probability,
some set U; contains the elements a and b that we desire.

Write p = n~3/4y/logn. The probability that U;
contains at least two elements of A is at least

1—(1—p)® —pdk (1 —p)™*"
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Given that U; contains at least two elements of A, we
want to compute the probability that they are non-
neighbors and do not have a common neighbor that is
also a common neighbor of y. Well, U; contains at least
0k(8k — 1) ordered pairs of distinct elements. Of these,
kA are pairs that are neighbors. Lemma 16 tells us that,
of the 6k(dk — 1) — kX pairs that are not neighbors, only
u(pe — 1)(k — A) have a common neighbor that is also a
neighbor of y. Thus, the fraction of ordered pairs of dis-
tinct elements of U; that satisfy the desired conditions
is

Sk(6k—1)— kA —p(p—1)(k—A)

0k(6k —1)

= (1 —0 (1))a

because A = o(k), k = o(n), and u? = o(k). So, the
probability that U; contains two elements of A that are
non-neighbors and which do not have a common neigh-
bor with y is

2 (p*(6k)%) (1 —o(1)) = 0 (n_3/2k202 log n) .

Thus, the probability that there is no set U; that con-
tains two such elements of A is at most

(1 -1 (n_3/2kzcz log n))Ek/“ = 2 1°g"),

because n=%/2k3 /u = 2 (1) for k > n'/2. That is, the
probability that x and y receive different labels is at
least 1 — e~ (<" lo&n), Summing over the n(n — 1)/2
possible choices for = and y, we see that each pair of
vertices will receive different labels with probability at
least 1 — n2e—?(c?1og "), which is close to 1 for a suffi-
ciently large constant ¢. Moreover, the probability that
the size of A deviates from its expectation by more than

a constant factor is very small. O

The rest of this section is devoted to proving the lemmas
that we needed in the proof of Lemma 14.

Lemma 15. There ezist constants € and 6 such that for
any set W and any family A of a subsets of W such that

1. each set in A has at most k elements, and

2. each v € W is contained in at least /2 but fewer
than u of the sets in A,

for a/p larger than some constant, there exists a sub-
family B C A such that

1. |B| > ek/u, and

2. for each S € B, there are at least §k elements of
W that are contained in S but not in any other set
in B,

Proof:  Let n be the number of elements in W. By
counting the number of containments of points in sets
two ways, we determine

ak < un :>T;c—ﬂz a.

For each set S € A, include S in C with probability 1/u.
Let U be the vertices in W that are contained in just
one set in C. For a v € W that is contained in p sets in
A, the probability that v € U is

1 1\*?t _ a1 1\#/2 1 1
L
u( © 2p © 2Ve

Because the expected size of U is at least n/24/e, the
probability that U has size greater than n/44/e is at
least 1/44/e. Since the size of C is the sum of indepen-
dent random variables, one can use a Chernoff bound to
show that the probability that C has size greater than
twice its expectation, 2a/pu, is small, provided that a/u
is at least some large constant. Thus, we can assume
that there exists a family of sets C of size at most 2a/u
so that U has size at least n/4+/e. Let €1 = 1/44/e.

As each set in C has at most k elements, a simple
counting argument shows that at least €;a/2u sets in C
must each have at least €;k/4 elements of U: Otherwise,
we have at most e1a/2u sets with at most k elements of
U, and at most 2a/u sets with less than e;k/4 elements
of U, for a total of fewer than

a 2a k er1ka
e1— |k+—e1i— | < < en
2p Iz 4 %

elements of U, which would be a contradiction. These
€1a/2p sets are the subfamily B that we desire. Thus,
we have proved the lemma with € = €;/2 and § = €; /4.

O

Lemma 16. Let G be a strongly regular graph with pa-
rameters (n, k, \, n). Let i and y be non-neighbors in G.
Then, there are at most

2u(p —1)(k = A)
ordered triples (a,b,j) such that (See Figure 7)
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Figure 7: The configurations that we count in
Lemma 16. z, i, and y are fixed.

(a) a and b are neighbors of i,
(b) a and b are neighbors of j,
(c) j is a neighbor of y, and

(d) a and b are non-neighbors.

Proof: We first count the number of triples that
satisfy conditions (a) through (¢). We will later remove
those that violate (d).

There are p j’s such that j is a neighbor of both 7
and y. For each such j there are A(A — 1) ordered pairs
(a,b) such that a and b are distinct common neighbors
of ¢ and j. Thus, from the j’s which are neighbors of ¢,
we obtain a contribution of gA(A — 1) triples.

Similarly, there are (k — p) j’s that are neighbors
of y but not of ¢. For each such j there are u(u —
1) ordered pairs (a,b) such that a and b are distinct
common neighbors of ¢ and j. Thus, from the j’s which
are not neighbors of ¢, we obtain (k— A)u(p — 1) triples.

We now observe that we have over-counted because
we failed to exclude those triples in which a and b are
neighbors. Many such triples are accounted for by those
j that are neighbors of ¢. By Lemma 17, for each j that
is a neighbor of 7, there are at least

AA=1) = (p-1)(k—-A)

ordered pairs (a, b) such that a and b are neighbors and
are both neighbors of ¢ and j as well. Thus, we can
remove at least p(A(A—1) — (u—1)(k— A)) triples from
our count, for a total of

PAA =1+ (k= Np(p—1) —p(AA-1) -
= 2u(p —1)(k = A).

(b= 1)k = X))
m

Lemma 17. Let G be a strongly regular graph with pa-
rameters (n,k,\, u). Then, for every pair of neighbors
i and j in G, there are at least A\(A—1) — (u—1)(k—))
ordered pairs (a,b) such that a and b are neighbors and
both a and b are common neighbors of i and j.

Proof:  Consider the ordered pairs of vertices (a,b)
such that a is a neighbor of ¢ and j, and b is a neighbor of
a and j other than i. Because ¢ and j have A common
neighbors and a and j have A — 1 common neighbors
other than 4, there will be A(A — 1) such pairs.

Now, consider a b € N(i¢) N N(j). Such a b can
account for at most p — 1 ordered pairs, because b and 7
have only 1 common neighbors, of which one is j. Thus,
there are at least

AA=1) = (u—1)(k = A)
ordered pairs (a,b) such that (a,b) is an edge in N(7) N
NG). 0

5. Testing Isomorphism of Steiner Graphs

Steiner 2-systems in which each line contains two points
are called triangle graphs. There is at most one triangle
graph of any size, so determining isomorphism of these
is trivial [Cam78].

Steiner 2-systems in which each line contains three
points are the famous Steiner triple systems. Miller [Mil78]
showed how to determine isomorphism of the line graphs
of Steiner triple systems in O(n'°8"+A1)) time.

For general Steiner 2-systems, we will test isomor-
phism in time pdrnflogn) Oy approach will again
be that of individualization and refinement, but on the
system of points and lines. To assign a unique name to
every point in a Steiner 2-system, we first choose a col-
lection of points at random. Since there is at most one
line through any two points, this will give a unique name
to every line through two of these points. Similarly, each
point that lies on two lines with unique names can be
given a unique name. We will show that O(n'/%logn)
points suffice to give enough lines unique names so that
each point lies at the intersection of two of these lines.

Lemma 18. Let S be a Steiner 2-system with n lines
and s > 2 points per line. Then there is a set, A, of
O(nl/ 4log n) points such that every point in the system
lies on the intersection of two lines that each have at
least two points in A.

Proof: Let v be the number of points in the system
and let h be the number of lines through each point. It
is easy to see that

<;> = n(Z), and vh = ns.



We throw each point into the set A independently with
probability

n'/4logn S n'/4logn _ logn
v = syn snl/4
Since each line contains s points, the probability that a
given line will contain at least two points of A is

1-(1- logn s _ o logmn 1— logn s-1
snl/4 Sni/d snl/4
-0 ((logn)2>
= ni/4 .

For a given point x, the probability that there will
be two lines through x that each contain at least two
points of A is at least

2 h 2 2 h
o)) o)
<1 - e 08" n) _ p1/2(1og? p)e=0(Io8" n)

because h is at least 4/n (as demonstrated in the proof
of Proposition 10) and at most n. Thus, with very high
probability, every point in S lies on at least two lines
with two points in A. Moreover, it is highly unlikely
that the number of elements in A will be a constant
factor greater than n'/4logn. O

Theorem 19. Isomorphism of strongly regular graphs
1
can be determined in nA™"°1°6") gime.

Proof:  For graphs of degree greater than o(n2/3),
we use Babai’s analysis of individualization and refine-
ment, Theorem 13. For the remaining graphs, we use
Theorem 8 to divide them into three classes. For those
of class (a), those that meet Neumaier’s claw bound,
we apply Lemma 14 to show that a canonical label-
ing can be found in nAn*"*1egn) time. For the Latin
square and Steiner graphs with n = 2 (34), we apply
Lemma 12 and Lemma 14 to find the canonical label-
ing. For the remaining Latin square and Steiner graphs,
we apply Proposition 11 or Proposition 10 to find the
corresponding s-net or Steiner 2-System and then apply
either Miller’s algorithm [Mil78] or Lemma 18 to test for
isomorphism. O

6. Conclusions

We have presented a better analysis of the perfor-
mance of the individualization-and-refinement isomor-
phism test for strongly regular graphs. We suspect that

it is possible to do better. For example, we have intro-
duced a strange jump in the time complexity of testing
isomorphism of strongly regular graphs: for graphs of
degree o(n?/?), we find a canonical label by individu-
alizing O(n'/*y/logn) vertices, whereas we need to in-
dividualize O(n'/®logn) vertices for graphs of degree
n?/3. We cannot believe that this jump is necessary.

Rather, we feel that it should be possible to take
advantage of the quasi-random properties of low de-
gree strongly regular graphs to analyze the occurrence
of other structures in these graphs and thereby obtain
a better time bound on isomorphism testing. Rather
than just trying to find a unique name for every ver-
tex in a graph, it should be possible to show that they
will be broken into classes of limited size, and then ap-
ply techniques for testing isomorphism of graphs with
bounded color classes. We note that if analyses such as
these are going to be applied to general graphs, then it
will be necessary to use such technology because Cai,
Fiirer, and Immerman [CFI92] have constructed graphs
that require the individualization of {2 (n) vertices be-
fore refinement will give each vertex a unique name. We
are encouraged by the idea that a separation of the first
from the second eigenvalue of a graph might be able to
aid in the analysis of refinement, because graphs that
lack such a separation have small isoperimetric num-
bers [SJ89, Moh89], which we feel should be of assis-
tance in testing isomorphism.

Acknowledgement: I would like to thank Shang-
Hua Teng for many enlightening conversations about
graph isomorphism, and for reading an early draft of
this paper.
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