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Abstract. A sparsifier of a graph is a sparse graph that approximates it. A spectral sparsifier is one
that approximates it spectrally, which means that their Laplacian matrices have similar
quadratic forms. We prove that every graph has a spectral sparsifier with a number of
edges linear in its number of vertices. In particular, we prove that for every ε ∈ (0, 1)
and every undirected, weighted graph G = (V, E,w) on n vertices, there exists a weighted
graph H = (V, F, w̃) with at most �(n− 1)/ε2� edges such that for every x ∈ R

V , (1− ε)2 ·
xTLGx ≤ xTLHx ≤ (1 + ε)2 · xTLGx, where LG and LH are the Laplacian matrices of G
and H, respectively. We give an elementary deterministic polynomial time algorithm for
constructing H. This result is a special case of a significantly more general theorem which
provides sparse approximations of general positive semidefinite matrices: given any real
matrix Bn×m and ε ∈ (0, 1), there is a nonnegative diagonal matrix Sm×m with at most
�n/ε2� nonzero entries such that (1 − ε)2BBT � BSBT � (1 + ε)2BBT .
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1. Introduction. A sparsifier of a weighted graph G is a sparse graph H that is
similar to G in some useful way. Many notions of similarity have been considered. For
example, graph spanners [30, 9] have the property that the distance between every
pair of vertices in H is approximately the same as in G. Benczúr and Karger’s [4] cut
sparsifiers have the property that the weight of the boundary of every set of vertices
is approximately the same in H as in G.

In this paper, we consider a strengthening of cut sparsification: spectral sparsi-
fication. Following Spielman and Teng [35, 37], we say that H is a κ-approximation
of a weighted, undirected graph G = (V,E,w) if there exist b ≥ a > 0 with b/a ≤ κ
such that for all x ∈ R

V ,

(1) a · xTLGx ≤ xTLHx ≤ b · xTLGx,

where LG and LH are the Laplacian matrices ofG andH . In the language of numerical
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linear algebra, condition (1) simply says that the relative condition number of LG and
LH is at most κ.

We recall that the Laplacian matrix of a weighted undirected graph G = (V,E,w)
may be defined as a sum of outer products over its edges:

LG =
∑

(u,v)∈E

wu,v(χu − χv)(χu − χv)
T ,

where wu,v is the weight of edge (u, v) and χu ∈ R
v is the characteristic vector of

vertex u (with a 1 on coordinate u and zeros elsewhere). Thus, its quadratic form is
given by

xTLGx =
∑

(u,v)∈E

wu,v(xu − xv)
2.

This has a clear combinatorial meaning when x is the characteristic vector of a subset
S ⊂ V of the vertices (i.e., xu = 1 if u ∈ S, and xu = 0 otherwise). In this case,
xTLGx is the sum of the weights of edges with exactly one endpoint in S:

xTLGx =
∑

(u,v)∈E,u∈S,v �∈S

wu,v.

Benczur and Karger’s cut sparsifiers are designed to approximately preserve exactly
these quantities. Extending the approximation guarantee to all vectors x ∈ R

V as
prescribed in (1) approximately preserves many additional properties, most notably
the eigenvalues of LG and the effective resistances between pairs of vertices in G when
it is viewed as a resistive circuit. The reason is that all of these quantities have a
variational characterization in terms of xTLGx, which is the natural notion of energy
for functions x on the vertices of G.

Our main result is that every undirected weighted graph on n vertices has a
(1+ε
1−ε )

2-approximation with at most n/ε2 edges, for every ε ∈ (0, 1). We henceforth

use the standard notation A � B to indicate that xTAx ≤ xTBx for every vector x,
or, equivalently, that B −A is positive semidefinite.

Theorem 1.1. For every ε ∈ (0, 1), every undirected weighted graph G =
(V,E,w) on n vertices contains a weighted subgraph H = (V, F, w̃) with

⌈
(n− 1)/ε2

⌉
edges that satisfies

(2) (1− ε)2LG � LH � (1 + ε)2LG.

Our proof provides a deterministic greedy algorithm for computing the graphs H
in time O(n3m/ε2). We remark that while the edges of H are a subset of the edges
of G, the weights of edges in H and G will typically be different. In fact, there exist
unweighted graphs G for which every good spectral sparsifier H must contain edges
of widely varying weights [37].

In section 4 we show that the quantitative bounds achieved by Theorem 1.1
are within a factor of four of optimal. The examples that demonstrate this near-
optimality are simply the complete graphsKn. The more restricted problem of finding
unweighted, regular approximations of complete graphs is better understood, and the
optimal graphs for this problem are called Ramanujan graphs [24, 26]. The title of this
paper reflects the fact that our sparsifiers are at most twice as dense as the Ramanujan
graphs achieving the same approximation quality.
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We derive Theorem 1.1 from a more general statement, which says that every sum
of outer products of vectors can be spectrally approximated by a sparse sum which
has almost the same quadratic form.

Theorem 1.2. Let v1,v2, . . . ,vm be vectors in R
n with

∑
i≤m viv

T
i = M . For

every ε ∈ (0, 1), there exist scalars si ≥ 0 with |{i : si �= 0}| ≤ ⌈rank(M)/ε2
⌉
so that

(1− ε)2M �
∑
i≤m

siviv
T
i � (1 + ε)2M.

This is seen to be equivalent to the statement written in the abstract by consid-
ering the n ×m matrix B with columns v1, . . . ,vm, which satisfies BBT = M , and
taking S to be a diagonal matrix containing the scalars s1, . . . , sm ≥ 0 provided by
the theorem.

1.1. Related Work. Spielman and Teng [35, 37] introduced the notion of sparsi-

fication that we consider and proved that (1+ ε)-approximations with Õ
(
n/ε2

)
edges

could be constructed in Õ (m) time, where we write Õ (m) to indicate O(m logc m)
for some constant c. They used these sparsifiers to obtain a nearly linear time al-
gorithm for solving systems of linear equations in symmetric, diagonally dominant
matrices [35, 36].

Spielman and Teng were inspired by the notion of sparsification introduced by
Benczúr and Karger [4] for cut problems, which only requires inequality (1) to hold

for all x ∈ {0, 1}V . Benczúr and Karger showed how to construct graphs H meeting
this guarantee with O

(
n logn/ε2

)
edges in O

(
m log3 n

)
time, for b/a = (1+ε)/(1−ε).

Spielman and Srivastava [34] proved the existence of spectral sparsifiers with

O
(
n logn/ε2

)
edges and showed how to construct them in Õ (m) time. They conjec-

tured that it should be possible to find such sparsifiers with only O
(
n/ε2

)
edges. We

affirmatively resolve this conjecture.
Partial progress was made toward the conjecture by Goyal, Rademacher, and

Vempala [15], who showed how to find graphs H with only 2n edges that O (logn)-
approximate bounded degree graphs. Kapralov and Panigrahy [17] have shown how
to use graph spanners to construct spectral sparsifiers. Faster algorithms for finding
spectral sparsifiers have been discovered by Koutis, Levin, and Peng [21]. Algorithms
that work in the streaming model have been developed by Goel, Kapralov, and Post
and by Kelner and Levin [18].

We remark that all of these constructions were randomized. Ours is the first
deterministic algorithm to achieve the guarantees of any of these papers.

The results we present in this paper have been improved in many ways. The
main linear-algebraic result (Theorem 1.2) was extended from a theorem about sums
of rank-one matrices to sums of arbitrary positive semidefinite matrices by de Carli
Silva, Harvey, and Sato [7]. Kolla et al. [20] extended our algorithm to prove that
every graph has a very good ultrasparsifier, that is, an approximation by a graph with
(1 + β)n edges for β close to zero. These ultrasparsifiers provided evidence for the
existence of very fast algorithms for solving systems of linear equations in symmetric,
diagonally dominant matrices. They were also the inspiration for the discovery of
such algorithms by Koutis, Miller, and Peng [22, 23].

Since many objects besides graphs can be faithfully represented as quadratic forms
of sums of outer products of vectors, Theorem 1.2 implies useful sparse approximation
results in several areas of mathematics. In particular, it was an important ingredient
in recent significant progress in the following problems in geometry and analysis:
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dimension reduction for finite point sets in in �1 (see Newman and Rabinovich [28]);
isomorphic embedding of subspaces of Lp into �p for even p (see Schechtman [32]);
approximation of arbitrary symmetric convex bodies by polytopes with few vertices
(see Barvinok [3]); and existence of “low complexity” extension operators in Sobolev
spaces (see Fefferman, Israel, and Luli [12]). For a more detailed exposition of these
applications, we refer the reader to [27].

The techniques used to prove Theorem 1.2 have also proved to be very useful. In
particular, the barrier function argument used in section 3.2 has been used to obtain
an improvement [33] of Bourgain and Tzafriri’s restricted invertibility theorem [5], give
better algorithms for the column subset selection problem in numerical linear algebra
[6], and obtain better concentration inequalities for the extreme singular values of a
large class of random matrices with independent rows [38]. It was a key element of
the recent solution of the Kadison–Singer problem [25].

2. Preliminaries.

2.1. Pseudoinverses and Square Roots. Suppose we are given a rank-r sym-
metric matrix M with eigendecomposition

M =

r∑
i=1

λiuiu
T
i ,

where λ1, . . . , λr are the nonzero eigenvalues of M and u1, . . . , ur are a corresponding
set of orthonormal eigenvectors. The Moore–Penrose pseudoinverse of M is then
defined as

M+ =

r∑
i=1

1

λi
uiu

T
i .

Notice that ker(M) = ker(M+) and that

MM+ = M+M =
r∑

i=1

uiu
T
i ,

which is simply the projection onto range(M).
If M � 0, then each of the eigenvalues λi is nonnegative and has a square root.

In this case, we may define the square root of M as

M
1
2 =

r∑
i=1

√
λiuiu

T
i ,

which is also positive semidefinite.

2.2. Formulas for Rank-One Updates. We use the following well-known theo-
rem from linear algebra, which describes the behavior of the inverse of a matrix under
rank-one updates (see [14, section 2.1.3]).

Lemma 2.1 (Sherman–Morrison formula). If A is a nonsingular n × n matrix
and v is a vector, then

(A+ vvT )−1 = A−1 − A−1vvTA−1

1 + vTA−1v
.
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There is a related formula describing the change in the determinant of a matrix
under the same update.

Lemma 2.2 (matrix determinant lemma). If A is nonsingular and v is a vector,
then

det(A+ vvT ) = det(A)(1 + vTA−1v).

3. The Main Result. At the heart of this work is the following purely linear
algebraic theorem, which says that every decomposition of the identity into a sum
of outer products has a sparse approximation. Such decompositions appear in many
areas of mathematics and are also called isotropic sets, tight frames, and John’s
decompositions (when their mean is zero).

Theorem 3.1. Suppose d > 1 and v1,v2, . . . ,vm are vectors in R
n with∑

i≤m

viv
T
i = I;

then there exist scalars si ≥ 0 with |{i : si �= 0}| ≤ 	dn
 such that

(3)

(
1− 1√

d

)2

I �
∑
i≤m

siviv
T
i �

(
1 +

1√
d

)2

I.

By taking d = 1/ε2, we see that Theorem 3.1 is a special case of Theorem 1.2
with M = I. However, Theorem 3.1 can be used to easily prove Theorem 1.2 by a
simple rescaling procedure as follows.

Proof of Theorem 1.2. Let d = 1/ε2. Suppose we are given v1, . . . ,vm ∈ R
n with∑

i≤m viv
T
i = M and rank(M) = r. Since M � 0, its pseudoinverse M+ � 0 has

a square root (M+)
1
2 . Consider the vectors wi := (M+)

1
2vi for i = 1, . . . ,m, and

observe that

m∑
i=1

wiw
T
i = P,

where P is the rank-r projection onto the range of M . Since P is the identity on a
copy of Rr and the condition (3) is invariant under change of basis, we may apply
Theorem 3.1 to obtain scalars si ≥ 0, at most 	dr
 = 	r/ε2
 of which are nonzero,
with

(1− ε)2xTx ≤ xT

(
m∑
i=1

siwiw
T
i

)
x ≤ (1 + ε)2xTx ∀x ∈ range(P ).

Since range(P ) = range(M
1
2 ), quantifying over all x ∈ range(P ) is the same as quan-

tifying over all M
1
2 y with y ∈ R

n, so the above is equivalent to

(1−ε)2yTMy ≤ yTM
1
2

(
m∑
i=1

si(M
+)

1
2viv

T
i (M

+)
1
2

)
M

1
2 y ≤ (1+ε)2yTMy ∀y ∈ R

n.

To complete the proof, observe that M
1
2 (M+)

1
2 = P and that vi ∈ range(M), so

Pvi = vi.
The sparsification result for graphs follows immediately as a special case of The-

orem 1.2.
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Proof of Theorem 1.1. Fix ε ∈ (0, 1). Assume without loss of generality that G is
connected, and let

LG =
∑

(u,v)∈E

wu,v(χu − χv)(χu − χv)
T

be its Laplacian. By inspecting the quadratic form xTLGx, it is easy to see that
the nullspace of LG is simply the span of the all-ones vector, so rank(LG) = n − 1.
Applying Theorem 1.2 yields scalars su,v ≥ 0 with

(1− ε)2LG �
∑

(u,v)∈E

su,vwu,v(χu − χv)(χu − χv)
T � (1 + ε)2LG.

The matrix in the middle is just the Laplacian matrix of the weighted subgraph H
of G with weights w̃u,v = su,vwu,v, at most 	(n − 1)/ε2
 of which are nonzero by
Theorem 1.2, as desired.

It is worth mentioning that the above reduction from spectral approximations
of graphs to spectral approximations of the identity is essentially the same as the
one in [34]. In that paper, the authors consider the symmetric projection matrix
Π = BL+

GB
T instead of the identity, where Bm×n is the signed edge-vertex incidence

matrix of G with rows {(χu − χv)
T }(u,v)∈E . The projection Π has a decomposition

Π =
∑

e∈G πeπ
T
e for certain vectors πe which correspond to edges of G; they show,

by a concentration lemma of Rudelson [31], that randomly sampling O(n log n) of
the πe with probabilities proportional to ‖πe‖2 gives a matrix Π̃ that approximates
Π in the spectral norm and corresponds to a graph sparsifier, with high probability.
We note that the vectors πe are the same as the vectors (LG)

1
2 (χu − χv) considered

above after an appropriate change of basis, and their squared norms have a physical
meaning: they are the effective resistances across the edges in the resistive circuit
corresponding to G. This paper is different from [34] in two ways: we eliminate Π in
order to simplify notation, since we are no longer following the intuition of sampling
by effective resistances, and, instead of Rudelson’s sampling lemma, we use Theorem
3.1 to deterministically select O(n) vectors.

The rest of this section is devoted to proving Theorem 3.1. The proof is construc-
tive and yields a deterministic polynomial time algorithm for finding the scalars si,
which can then be used to sparsify graphs, as advertised.

Given vectors {vi}i≤m with
∑

i viv
T
i = I, our goal is to choose a small set of

coefficients si so that A =
∑

i siviv
T
i is well-conditioned, i.e., the ratio of its largest

and smallest eigenvalues is small. We will build the matrix A in steps, starting with
A = 0 and adding one vector siviv

T
i at a time. We will show that at every step

there is a choice of vi and scaling si which causes the eigenvalues of A to increase at
a steady and predictable rate, in a way which we will make precise soon. This will
cause the condition number to converge to 1 as we continue the process, and sparsity
of the chosen weights si will be guaranteed simply by terminating the process after
O(n) steps.

Before beginning the proof, it will be instructive to study how the eigenvalues
and characteristic polynomial of a matrix evolve upon the addition of a vector. This
discussion should provide some intuition into the structure of the proof and explain the

origin of the “twice-Ramanujan” bound
(√

d+1√
d−1

)2
, which appears in our final result.

3.1. Intuition for the Proof. It is well known that the eigenvalues of A + vvT

interlace those of A. In fact, the new eigenvalues can be determined exactly by looking
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at the characteristic polynomial of A+ vvT , which is computed using Lemma 2.2 as
follows:

pA+vvT (x) = det(xI −A− vvT ) = pA(x)

⎛⎝1−
∑
j

〈v, uj〉2
x− λi

⎞⎠ ,

where λi are the eigenvalues of A and uj are the corresponding eigenvectors. The
polynomial pA+vvT (x) has two kinds of zeros λ:

1. Those for which pA(λ) = 0. These are equal to the eigenvalues λj of A for
which the added vector v is orthogonal to the corresponding eigenvector uj ,
and which therefore do not “move” upon adding vvT .

2. Those for which pA(λ) �= 0 and

f(λ) =

⎛⎝1−
∑
j

〈v, uj〉2
λ− λj

⎞⎠ = 0.

These are the eigenvalues which have moved and strictly interlace the old
eigenvalues. The above equation immediately suggests a simple physical
model (see Figure 1), which gives intuition into where these new eigenval-
ues are located.

λ1

λ2

λ3

λn

λ1

λ2

λ3

λn

〈v,u2〉2 = 1/4

〈v,un〉2 = 1/4

〈v,u1〉2 = 1/2

〈v,u3〉2 = 0

Fig. 1 Physical model of interlacing eigenvalues.

Physical Model. We interpret the eigenvalues λ as charged particles lying on
a slope. On the slope are n fixed, chargeless barriers located at the initial
eigenvalues λj , and each particle is resting against one of the barriers under
the influence of gravity. Adding the vector vvT corresponds to placing a
charge of 〈v, uj〉2 on the barrier corresponding to λj . The charges on the
barriers repel those on the eigenvalues with a force that is proportional to
the charge on the barrier and inversely proportional to the distance from the
barrier—i.e., the force from barrier j is given by

〈v, uj〉2
λ− λj

,
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a quantity which is positive for λj “below” λ, which push the particle “up-
ward,” and negative otherwise. The eigenvalues move up the slope until they
reach an equilibrium in which the repulsive forces from the barriers cancel
the effect of gravity, which we take to be a +1 in the downward direction.
Thus the equilibrium condition corresponds exactly to the total “downward
pull” f(λ) being equal to zero.

With this physical model in mind, let us consider what happens to the eigenvalues
of A when we add a random vector from our set {vi}. The first observation is that
for any eigenvector uj (in fact, for any vector at all), the expected projection of a
randomly chosen v ∈ {vi}i≤m is

Ev〈v, uj〉2 =
1

m

∑
i

〈vi, uj〉2 =
1

m
uT
j

(∑
i

viv
T
i

)
uj =

‖uj‖2
m

=
1

m
.

Of course, this does not mean that there is any single vector vi in our set that realizes
this “expected behavior” of equal projections on the eigenvectors. But if we were
to add such a vector1 in our physical model, we would add equal charges of 1/m to
each of the barriers, and we would expect all of the eigenvalues of A to drift forward
“steadily.” In fact, one might expect that after sufficiently many iterations of this
process, the eigenvalues would all march forward together, with no eigenvalue too
far ahead or too far behind, and we would end up in a position where λmax/λmin is
bounded.

In fact, this intuition turns out to be correct. Adding a vector with equal projec-
tions changes the characteristic polynomial in the following manner:

pA+vavgvT
avg
(x) = pA(x)

⎛⎝1−
∑
j

1/m

x− λj

⎞⎠ = pA(x) − (1/m)p′A(x),

since p′A(x) =
∑

j

∏
i�=j(x − λi). If we start with A = 0, which has characteristic

polynomial p0(x) = xn, then after k iterations of this process we obtain the polynomial

pk(x) = (I − (1/m)D)kxn,

where D is the derivative with respect to x. Fortunately, iterating the operator
(I − αD) for any α > 0 generates a standard family of orthogonal polynomials—the
associated Laguerre polynomials [11]. These polynomials are very well studied and
the locations of their zeros are known; in particular, after k = dn iterations the ratio
of the largest to the smallest zero is known [11] to be

d+ 1 + 2
√
d

d+ 1− 2
√
d
,

which is exactly what we want.
It is worth mentioning that the associated Laguerre polynomials and the bound

above also arise naturally in random matrix theory. In particular, let g1, . . . , gm ∼
N (0, I/n) be independent Gaussian random vectors in R

n (i.e., each with independent
normal entries with variance 1/n), and suppose m/n = d > 1. Then, it is well known

1For concreteness, we remark that this “average” vector would be precisely vavg = 1√
m

∑
j uj .
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[10] that the eigenvalues of the Wishart ensemble

1

m

∑
i≤m

gig
T
i

are contained with high probability in the interval

[(1 − 1/
√
d)2 − o(1), (1 + 1/

√
d)2 + o(1)],

where the o(1) terms tend to zero as m,n → ∞ while keeping m/n = d fixed. Intu-
itively, this happens because each gi is rotationally invariant, so each random rank-one
update gig

T
i has about the same projection on each of the eigenvectors of the sum of

the previous terms
∑

j≤i−1 gjg
T
j , which is similar to the “expected” case described

above.
To prove the theorem, we will show that we can choose a sequence of actual

vectors that realizes the expected behavior (i.e., the behavior of repeatedly adding
vavg) as long as we are allowed to add arbitrary fractional amounts of the viv

T
i via

the weights si ≥ 0. We will control the eigenvalues of our matrix by maintaining two
barriers as in the physical model and keeping the eigenvalues between them. The
lower barrier will “repel” the eigenvalues forward; the upper one will make sure they
do not go too far. The barriers will move forward at a steady pace. By maintaining
that the total “repulsion” at every step of this process is bounded, we will be able
to guarantee that there is always some multiple of a vector to add that allows us to
continue the process.

3.2. Proof by Barrier Functions. We begin by defining two “barrier” potential
functions which measure the quality of the eigenvalues of a matrix. These potential
functions are inspired by the inverse law of repulsion in the physical model discussed
in the previous section.

Definition 3.2. For u, l ∈ R and A a symmetric matrix with eigenvalues
λ1, λ2, . . . , λn, define

Φu(A)
def
= Tr(uI −A)−1 =

∑
i

1

u− λi
(upper potential),

Φl(A)
def
= Tr(A− lI)−1 =

∑
i

1

λi − l
(lower potential).

As long as A ≺ uI and A � lI (i.e., λmax(A) < u and λmin(A) > l), these
potential functions measure how far the eigenvalues of A are from the barriers u and
l. In particular, they blow up as any eigenvalue approaches a barrier, since then uI−A
(or A − lI) approaches a singular matrix. Their strength lies in the fact that they
reflect the locations of all the eigenvalues simultaneously: for instance, Φu(A) ≤ 1
implies that no λi is within distance 1 of u, no two λi’s are at distance 2, no k are at
distance k, and so on. In terms of the physical model, the upper potential Φu(A) is
equal to the total repulsion of the eigenvalues of A from the upper barrier u, while
Φl(A) is the analogous quantity for the lower barrier.
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To prove the theorem, we will build the sum
∑

i siviv
T
i iteratively, adding one

vector at a time. Specifically, we will construct a sequence of matrices

0 = A(0), A(1), . . . , A(Q)

along with positive constants2 u0, l0, δU , δL, εU , and εL, which satisfy the following
conditions:

(a) Initially, the barriers are at u = u0 and l = l0 and the potentials are

Φu0(A(0)) = εU and Φl0(A
(0)) = εL.

(b) Each matrix is obtained by a rank-one update of the previous one—specifically,
by adding a positive multiple of an outer product of some vi:

A(q+1) = A(q) + tvvT for some v ∈ {vi} and t ≥ 0.

(c) If we increment the barriers u and l by δU and δL, respectively, at each step,
then the upper and lower potentials do not increase. For every q = 0, 1, . . . , Q,

Φu+δU (A(q+1)) ≤ Φu(A(q)) ≤ εU for u = u0 + qδU ,

Φl+δL(A
(q+1)) ≤ Φl(A

(q)) ≤ εL for l = l0 + qδL.

(d) No eigenvalue ever jumps across a barrier. For every q = 0, 1, . . . , Q,

λmax(A
(q)) < u0 + qδU and λmin(A

(q)) > l0 + qδL.

To complete the proof we will choose u0, l0, δU , δL, εU , and εL so that, after Q = dn
steps, the condition number of A(Q) is bounded by

λmax(A
(Q))

λmin(A(Q))
≤ u0 + dnδU

l0 + dnδL
=

d+ 1+ 2
√
d

d+ 1− 2
√
d
.

By construction, A(Q) is a weighted sum of at most dn of the vectors, as desired.
The main technical challenge is to show that conditions (b) and (c) can be satisfied

simultaneously—i.e., that there is always a choice of vvT to add to the current matrix
which allows us to shift both barriers up by a constant without increasing either
potential. We achieve this in the following three lemmas.

The first lemma concerns shifting the upper barrier. If we shift u forward to
u + δU without changing the matrix A, then the upper potential Φu(A) decreases
since the eigenvalues λi do not move and u moves away from them. This gives us
room to add some multiple of a vector tvvT , which will move the λi toward l and
increase the potential, counteracting the initial decrease due to shifting. The following
lemma quantifies exactly how much of a given vvT we can add without increasing the
potential beyond its original value before shifting.

2We suggest that, on first reading the paper, the reader follow the proof with the assignment
εU = εL = 1, u0 = n, l0 = −n, δU = 2, δL = 1/3. This will provide the bound (6d + 1)/(d − 1) and
eliminates the need to use Claim 3.6.
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Lemma 3.3 (upper barrier shift). Suppose that λmax(A) < u, and v is any vector.
If

1

t
≥ vT ((u+ δU )I −A)−2v

Φu(A)− Φu+δU (A)
+ vT ((u + δU )I −A)−1v

def
= UA(v),

then

Φu+δU (A+ tvvT ) ≤ Φu(A) and λmax(A+ tvvT ) < u+ δU .

That is, if we add t times vvT to A and shift the upper barrier by δU , then we do not
increase the upper potential.

We remark that UA(v) is linear in the outer product vvT .
Proof. Let u′ = u + δU . By the Sherman–Morrison formula, we can write the

updated potential as

Φu+δU (A+ tvvT ) = Tr(u′I −A− tvvT )−1

= Tr

(
(u′I −A)−1 +

t(u′I −A)−1vvT (u′I −A)−1

1− tvT (u′I −A)−1v

)

= Tr(u′I −A)−1 +
tTr(vT (u′I −A)−1(u′I −A)−1v)

1− tvT (u′I −A)−1v

since Tr is linear and Tr(XY ) = Tr(Y X)

= Φu+δU (A) +
tvT (u′I −A)−2v

1− tvT (u′I − A)−1v

= Φu(A)− (Φu(A)− Φu+δU (A)) +
vT (u′I −A)−2v

1/t− vT (u′I −A)−1v
.

As UA(v) > vT (u′I − A)−1v, the last term is finite for 1/t ≥ UA(v). By now,
substituting any 1/t ≥ UA(v), we find that Φu+δU (A + tvvT ) ≤ Φu(A). This also
tells us that λmax(A + tvvT ) < u + δU , because if this were not the case, then there
would be some positive t′ ≤ t for which λmax(A+ t′vvT ) = u+ δU . But, at such a t′,
Φu+δU (A+ t′vvT ) would blow up, and we have just established that it is finite.

The second lemma concerns shifting the lower barrier. Here, shifting l forward to
l + δL while keeping A fixed has the opposite effect—it increases the lower potential
Φl(A) since the barrier l moves toward the eigenvalues λi. Adding a multiple of
a vector tvvT will move the λi forward and away from the barrier, decreasing the
potential. Here, we quantify exactly how much of a given vvT we need to add to
compensate for the initial increase from shifting l and return the potential to its
original value before the shift.

Lemma 3.4 (lower barrier shift). Suppose that λmin(A) > l, Φl(A) ≤ 1/δL, and
v is any vector. If

0 <
1

t
≤ vT (A− (l + δL)I)

−2v

Φl+δL(A) − Φl(A)
− vT (A− (l + δL)I)

−1v
def
= LA(v),
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then

Φl+δL(A+ tvvT ) ≤ Φl(A) and λmin(A+ tvvT ) > l + δL.

That is, if we add t times vvT to A and shift the lower barrier by δL, then we do not
increase the lower potential.

Proof. First, observe that λmin(A) > l and Φl(A) ≤ 1/δL imply that λmin(A) >
l + δL. So, for every t > 0, λmin(A+ tvvT ) > l + δL.

Now proceed as in the proof for the upper potential. Let l′ = l+δL. By Sherman–
Morrison, we have

Φl+δL(A+ tvvT ) = Tr(A+ tvvT − l′I)−1

= Tr

(
(A− l′I)−1 − t(A− l′I)−1vvT (A− l′I)−1

1 + tvT (A− l′)−1v

)

= Tr(A− l′I)−1 − tTr(vT (A− l′I)−1(A− l′I)−1v)

1 + tvT (A− l′I)−1v

= Φl+δL(A)−
tvT (A− l′I)−2v

1 + tvT (A− l′I)−1v

= Φl(A) + (Φl+δL(A) − Φl(A)) − vT (A− l′I)−2v

1/t+ vT (A− l′I)−1v
.

Rearranging shows that Φl+δL(A+ tvvT ) ≤ Φl(A) when 1/t ≤ LA(v).
The third lemma identifies the conditions under which we can find a single tvvT

which allows us to maintain both potentials while shifting barriers and thereby con-
tinue the process. The proof that such a vector exists is by an averaging argument,
so this can be seen as the step in which we relate the behavior of actual vectors to the
behavior of the expected vector vavg. The success of the averaging argument crucially
relies on the fact that the trace of a matrix can be written as the sum of its quadratic
form over any decomposition of the identity. Notice that the use of variable weights
t, from which the eventual si arise, is essential to this part of the proof.

Lemma 3.5 (both barriers). If λmax(A) < u, λmin(A) > l, Φu(A) ≤ εU , Φl(A) ≤
εL, and εU , εL, δU , and δL satisfy

(4) 0 ≤ 1

δU
+ εU ≤ 1

δL
− εL,

then there exist an i and positive t for which

LA(vi) ≥ 1/t ≥ UA(vi),

λmax(A+ tviv
T
i ) < u+ δU , and

λmin(A+ tviv
T
i ) > l+ δL.

Proof. We will show that∑
i

LA(vi) ≥
∑
i

UA(vi),
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from which the claim will follow by Lemmas 3.3 and 3.4. We begin by bounding

∑
i

UA(vi) =

∑
i v

T
i ((u+ δU )I −A)−2vi

Φu(A) − Φu+δU (A)
+
∑
i

vT
i ((u + δU )I −A)−1vi

=
((u+ δU )I −A)−2 • (∑i viv

T
i )

Φu(A)− Φu+δU (A)
+ ((u+ δU )I −A)−1 •

(∑
i

viv
T
i

)

=
Tr((u + δU )I −A)−2

Φu(A)− Φu+δU (A)
+ Tr((u+ δU )I −A)−1

since
∑
i

viv
T
i = I and X • I = Tr(X)

=

∑
i(u+ δU − λi)

−2∑
i(u− λi)−1 −∑i(u + δU − λi)−1

+Φu+δU (A)

=

∑
i(u + δU − λi)

−2

δU
∑

i(u− λi)−1(u+ δU − λi)−1
+Φu+δU (A)

≤ 1/δU +Φu+δU (A)

as
∑
i

(u− λi)
−1(u+ δU − λi)

−1 ≥
∑
i

(u+ δU − λi)
−2

≤ 1/δU +Φu(A) ≤ 1/δU + εU .

On the other hand, we have

∑
i

LA(vi) =

∑
i v

T
i (A− (l + δL))

−2vi

Φl+δL(A)− Φl(A)
−
∑
i

vT
i (A− (l + δL)I)

−1vi

=
(A− (l + δL)I)

−2 • (∑i viv
T
i )

Φl+δL(A)− Φl(A)
− (A− (l + δL)I)

−1 •
(∑

i

viv
T
i

)

=
Tr(A− (l + δL)I)

−2

Φl+δL(A)− Φl(A)
− Tr(A− (l + δL)I)

−1

since
∑
i

viv
T
i = I and X • I = Tr(X)

=

∑
i(λi − l− δL)

−2∑
i(λi − l − δL)−1 −∑i(λi − l)−1

−
∑
i

(λi − l − δL)
−1

≥ 1/δL −
∑
i

(λi − l)−1 = 1/δL − εL

by Claim 3.6.
Putting these together, we find that

∑
i

UA(vi) ≤ 1

δU
+ εU ≤ 1

δL
− εL ≤

∑
i

LA(vi),

as desired.
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Claim 3.6. If λi > l for all i, 0 ≤∑i(λi − l)−1 ≤ εL, and 1/δL − εL ≥ 0, then∑
i(λi − l− δL)

−2∑
i(λi − l − δL)−1 −∑i(λi − l)−1

−
∑
i

1

λi − l − δL

≥ 1

δL
−
∑
i

1

λi − l
.(5)

Proof. We have

δL ≤ 1/εL ≤ λi − l

for every i. So, the denominator of the leftmost term on the left-hand side is positive,
and the claimed inequality is equivalent to∑

i

(λi − l− δL)
−2

≥
(∑

i

1

λi − l − δL
−
∑
i

1

λi − l

)(
1

δL
+
∑
i

1

λi − l − δL
−
∑
i

1

λi − l

)

=

(
δL
∑
i

1

(λi − l − δL)(λi − l)

)(
1

δL
+ δL

∑
i

1

(λi − l − δL)(λi − l)

)

=
∑
i

1

(λi − l − δL)(λi − l)
+

(
δL
∑
i

1

(λi − l − δL)(λi − l)

)2

,

which, by moving the first term on the right-hand side to the left-hand side, is just

δL
∑
i

1

(λi − l − δL)2(λi − l)
≥
(
δL
∑
i

1

(λi − l − δL)(λi − l)

)2

.

By Cauchy–Schwarz,(
δL
∑
i

1

(λi − l − δL)(λi − l)

)2

≤
(
δL
∑
i

1

λi − l

)(
δL
∑
i

1

(λi − l − δL)2(λi − l)

)

≤ (δLεL)

(
δL
∑
i

1

(λi − l − δL)2(λi − l)

)
since

∑
(λi − l)−1 ≤ εL

≤ 1

(
δL
∑
i

1

(λi − l − δL)2(λi − l)

)

since
1

δL
− εL ≥ 0,

and so (5) is established.
Proof of Theorem 3.1. All we need to do now is set εU , εL, δU , and δL in a manner

that satisfies Lemma 3.5 and gives a good bound on the condition number. Then we
can take A(0) = 0 and construct A(q+1) from A(q) by choosing any vector vi with

LA(q)(vi) ≥ UA(q)(vi)
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(such a vector is guaranteed to exist by Lemma 3.5) and setting A(q+1) = A(q)+tviv
T
i

for any t ≥ 0 satisfying

LA(q)(vi) ≥ 1

t
≥ UA(q)(vi).

It is sufficient to take

δL = 1, εL =
1√
d
, l0 = −n/εL,

δU =

√
d+ 1√
d− 1

, εU =

√
d− 1

d+
√
d
, u0 = n/εU .

We can check that

1

δU
+ εU =

√
d− 1√
d+ 1

+

√
d− 1√

d(
√
d+ 1)

= 1− 1√
d
=

1

δL
− εL

so that (4) is satisfied.

The initial potentials are Φ
n
εU (0) = εU and Φ n

εL
(0) = εL. After dn steps, we have

λmax(A
(dn))

λmin(A(dn))
≤ n/εU + dnδU

−n/εL + dnδL

=

d+
√
d√

d−1
+ d

√
d+1√
d−1

d−√
d

=
d+ 2

√
d+ 1

d− 2
√
d+ 1

,

as desired.
To turn this proof into an algorithm, one must first compute the vectors vi, which

can be done in time O
(
n2m

)
. For each iteration of the algorithm, we must compute

((u+ δU )I −A)−1, ((u+ δU )I −A)−2, and the same matrices for the lower potential
function. This computation can be performed in time O

(
n3
)
. Finally, we can decide

which edge to add in each iteration by computing UA(vi) and LA(vi) for each edge,
which can be done in time O

(
n2m

)
. As we run for dn iterations, the total time of

the algorithm is O
(
dn3m

)
.

4. Sparsifiers of the Complete Graph. Let G = (V,E) be the complete graph
on n vertices, and let H = (V, F, w) be a weighted graph of average degree d that

(1 + ε)-approximates G. As xTLGx = n ‖x‖2 for every x orthogonal to 1, it is
immediate that every vertex of H has weighted degree between n and (1+ ε)n. Thus,
one should think of H as being an expander graph in which each edge weight has been
multiplied by n/d.

As H is weighted and can be irregular, it may at first seem strange to view
it as an expander. However, it may easily be shown to have the properties that
define expanders: it has high edge conductance, random walks mix rapidly on H
and converge to an almost uniform distribution, and it satisfies the expander mixing
property (see [2] or [16, Lemma 2.5]). High edge conductance and rapid mixing
would not be so interesting if the weighted degrees were not nearly uniform—for
example, the star graph has both of these properties, but the random walk on the
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star graph converges to a very nonuniform distribution, and the star does not satisfy
the expander mixing property. For the convenience of the reader, we include below a
proof demonstrating that H has the expander mixing property.

Lemma 4.1. Let LH = (V,E,w) be a graph that (1 + ε)-approximates LG, the
complete graph on V . Then, for every pair of disjoint sets S and T ,∣∣∣w(S, T )− (1 + ε

2

)
|S| |T |

∣∣∣ ≤ n(ε/2)
√
|S| |T |,

where w(S, T ) denotes the sum of the weights of edges between S and T .
Proof. We have

− ε

2
LG � LH −

(
1 +

ε

2

)
LG � ε

2
LG,

so we can write

LH =
(
1 +

ε

2

)
LG +M,

where M is a matrix of norm at most (ε/2) ‖LG‖ ≤ nε/2. Let x be the characteristic
vector of S, and let y be the characteristic vector of T . We have

−w(S, T ) = xTLHy.

As G is the complete graph and S and T are disjoint, we also know that

xTLGy = − |S| |T | .
Thus,

xTLHy =
(
1 +

ε

2

)
xTLGy + xTMy

= −
(
1 +

ε

2

)
|S| |T |+ xTMy.

The lemma now follows by observing that

xTMy ≤ ‖M‖ ‖x‖ ‖y‖ ≤ n(ε/2)
√
|S| |T |.

Using the proof of the lower bound on the spectral gap of Alon and Boppana
(see [29]), one can show that a d-regular unweighted graph cannot κ-approximate a
complete graph for κ asymptotically better than

d+ 2
√
d− 1

d− 2
√
d− 1

,

which is the bound achieved by Ramanujan graphs [24, 26]. We conjecture that this
bound also holds for weighted graphs of average degree d. Presently, we prove the
following weaker result for such graphs.

Proposition 4.2. Let G be the complete graph on vertex set V , and let H =
(V,E,w) be a weighted graph with n vertices and a vertex of degree d. If H κ-
approximates G, then

κ ≥ 1 +
2√
d
−O

(√
d

n

)
.
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Proof. We use a standard approach. Suppose that H is a κ-approximation of the
complete graph. We will construct vectors x∗ and y∗ orthogonal to the 1 vector so
that

y∗TLHy∗

x∗TLHx∗
‖x∗‖2
‖y∗‖2

is large, and this will give us a lower bound on κ.
Let v0 be the vertex of degree d, and let its neighbors be v1, . . . , vd. Suppose

that vi is connected to v0 by an edge of weight wi, and the total weight of the edges
between vi and vertices other than v0, v1, . . . , vd is δi. We begin by considering vectors
x and y with

x(u) =

⎧⎪⎨⎪⎩
1 for u = v0,

1/
√
d for u = vi, i ≥ 1,

0 for u �∈ {v0, . . . , vd},

y(u) =

⎧⎪⎨⎪⎩
1 for u = v0,

−1/
√
d for u = vi, i ≥ 1,

0 for u �∈ {v0, . . . , vd}.
These vectors are not orthogonal to 1, but we will take care of that later. It is easy
to compute the values taken by the quadratic form at x and y:

xTLHx =

d∑
i=1

wi(1 − 1/
√
d)2 +

d∑
i=1

δi(1/
√
d− 0)2

=

d∑
i=1

wi +

d∑
i=1

(δi + wi)/d− 2

d∑
i=1

wi/
√
d

and

yTLHy =
d∑

i=1

wi(1 + 1/
√
d)2 +

d∑
i=1

δi(−1/
√
d− 0)2

=

d∑
i=1

wi +

d∑
i=1

(δi + wi)/d+ 2

d∑
i=1

wi/
√
d.

The ratio in question is thus

yTLHy

xTLHx
=

∑
iwi +

∑
i(δi + wi)/d+ 2

∑
iwi/

√
d∑

iwi +
∑

i(δi + wi)/d− 2
∑

iwi/
√
d

=
1 + 1√

d

2
∑

i wi∑
i wi+

∑
i(δi+wi)/d

1− 1√
d

2
∑

i wi∑
i wi+

∑
i(δi+wi)/d

.

Since H is a κ-approximation, all weighted degrees must lie between n and nκ, which
gives

2
∑

iwi∑
i wi +

∑
i(δi + wi)/d

=
2

1 +
∑

i(δi+wi)/d∑
i wi

≥ 2

1 + κ
.
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Therefore,

(6)
yTLHy

xTLHx
≥

1 + 1√
d

2
1+κ

1− 1√
d

2
1+κ

.

Let x∗ and y∗ be the projections of x and y, respectively, orthogonal to the 1 vector.
Then

‖x∗‖2 = ‖x‖2 − 〈x,1/√n〉2 = 2− (1 +
√
d)2

n

and

‖y∗‖2 = ‖y‖2 − 〈y,1/√n〉2 = 2− (1−√
d)2

n
,

so that, as n → ∞,

(7)
‖x∗‖2
‖y∗‖2 = 1−O

(√
d

n

)
.

Combining (6) and (7), we conclude that, asymptotically,

y∗TLHy∗

x∗TLHx∗
‖x∗‖2
‖y∗‖2 ≥

1 + 1√
d

2
1+κ

1− 1√
d

2
1+κ

(
1−O

(√
d

n

))
.

But by our assumption the left-hand side is at most κ, so we have

κ ≥
1 + 1√

d
2

1+κ

1− 1√
d

2
1+κ

(
1−O

(√
d

n

))
,

which on rearranging gives

κ ≥ 1 +
2√
d
−O

(√
d

n

)
,

as desired.

5. Conclusion. The most pressing question raised by our work is whether spar-
sifiers of a quality similar to those we construct can be computed in nearly linear
time. While we have presented a polynomial time algorithm, it is too slow to use
on large graphs. It is well understood how to quickly approximate complete graphs:
random d-regular graphs are almost as good as Ramanujan graphs [13]. However, we
are unaware of an analogous way of approximating arbitrary graphs.

In the original version of this paper, we observed that Theorem 3.1 appeared
to be very similar to a conjecture of Weaver [39] that was known to imply a positive
solution to the Kadison–Singer problem. The differences are that Weaver’s conjecture
requires all of the nonzero scalars si to be identical, but it adds as a condition an upper
bound on the norms of the vectors vi. The barrier function technique introduced in
section 3.2 of this paper played an important role in the recent proof of Weaver’s
conjecture and the solution of the Kadison–Singer problem [25].
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