Fault Diagnosis in a Small Constant Number of Parallel Testing Rounds

Richard Beigel*
Yale University

Grigorii Margulisf
Yale University and MIT

Daniel A. Spielman?

Russian Academy of Sciences

Abstract

Consider a set of processors, V, that can communicate
with each other. Assume that each processor can be
either “good” or “faulty”. Also assume that the pro-
cessors can be used to test each other. We provide a
parallel algorithm that determines which processors are
good and which are faulty in 32 rounds of testing, pro-
vided that a strict majority of the processors are good.

1. Introduction

Consider a set of processors, V, that can communicate
with each other. Assume that each processor can be
either “good” or “faulty”. Also assume that the proces-
sors can be used to test each other. If a good processor
tests a good processor, it outputs “good”; if a good pro-
cessor tests a faulty processor, it outputs “faulty”; we
make no assumptions about the output of faulty proces-
sors. The fault diagnosis problem is to determine which
processors are good, and which are faulty. This model
was introduced by Preparata, Metze, and Chien [12].
They observed that fault diagnosis is possible in gen-
eral only if a majority of the processors are good. We

*Dept. of Computer Science, P.O. Box 2158, Yale Station, New
Haven, CT 06520-2158. rjb@cs.yale.edu. Supported in part by
NSF grant CCR-8958528.

tDept. of Mathematics, P.O. Box 2155, Yale Station, New
Haven, CT 06520-2155. margulis@math.yale.edu. On leave from
the Institute for Problems in Information Transmission, Russian
Academy of Sciences. Supported in part by NSF grant DMS-
9204270.

{Dept. of Applied Mathematics, Massachusetts Institute of
Technology, Cambridge, MA 02139. spielman@math.mit.edu.
Partially supported by the Fannie and John Hertz Foundation.
Supported in part by NSF grant CCR-8958528 under an REU
supplement while at Yale College.

will write n to denote the number of processors and ¢ to
denote an upper bound on the number of faulty proces-
sors. We assume throughout this paper that ¢t < n/2.

In the nonadaptive version of the Preparata-Metze-
Chien model, the choice of which processors to test must
be made before any tests are performed; in the adaptive
version, the choice of which processors to test is allowed
to depend on the results of prior tests. The adaptive
model was studied further in [3, 6, 7, 13, 2], and the
nonadaptive model was studied further in [9, 5, 15, 2].

Hakimi and Schmeichel [7] asked how long the test-
ing would take if the processors could test each other in
parallel. A testing round can be viewed as a directed
matching where the processors are the vertices and an
edge 1s drawn from each testing processor to the pro-
cessor it tests. Hakimi and Schmeichel [7] showed that
O(t+logn) rounds suffice. Schmeichel, Hakimi, Otsuka,
and Sullivan [13] improved this to O(log|, ;¢ t) rounds.

Beigel, Kosaraju, and Sullivan [2] introduced a vari-
ation on the fault diagnosis model, allowing two pro-
cessors to test each other simultaneously. We call such
tests undirected tests; one processor testing another is
called a directed test. It is clear that undirected tests
can be simulated via two rounds of directed tests. The
undirected model simplifies certain analysis. They [2]
designed an algorithm that has two processors test each
other if they are adjacent in certain bounded-degree ex-
pander graphs. Recall Vizing’s Theorem [4], which says
that a graph of degree d is a subset of d + 1 matchings.
This implies that d 4+ 1 rounds of undirected tests are
sufficient to test each pair of vertices joined by an edge
in a graph of degree d. They [2] concluded therefore
that a constant number of testing rounds suffice. How-
ever, they did not present the constant explicitly (it’s
about 5000000), and they did not make any attempt to
optimize it.

Warren Smith [14] conjectured that it should be pos-
sible to obtain a small constant by using random graphs.
We validate his conjecture, by designing a deterministic
algorithm based on random graphs that performs fault

diagnosis in 32 rounds of directed tests. Surprisingly,
our analysis is easier in the stronger directed model.

Overview of our algorithm: We produce a certain kind
of random directed graph of degree 28 on n vertices that
will, with very high probability, for any set containing
more than %n good processors, induce a strongly con-
nected component containing more than %n good pro-
The first 28 rounds of tests are determined
nonadaptively according to any such graph. Fault di-
agnosis i1s completed adaptively in 4 additional rounds.
Since at least one such graph exists for each n, we have
a deterministic algorithm that uses 32 rounds of test-
ing; however, it could take exponential preprocessing
time to verify that the randomly generated graph has
the desired property. In this sense, the algorithm is
nonconstructive. (If we merely desire a 0O-sided error
randomized algorithm that works with high probability
for each possible individual fault set, then even fewer
rounds suffice. This is a topic for the full paper.)

In the last section, we use expander graphs to produce
a constructive deterministic algorithm that determines
which processors are good and which are faulty in 84
rounds of testing.

Both algorithms are much simpler and much more ef-
ficient than what was previously known. Graphs that
induce a large strong component on any half of the ver-
tices account for much of the improvement. This prop-
erty is similar to expansion, but not the same, even in
undirected graphs, although it follows from properties
of eigenvalues in the undirected case. The use of di-
rected graphs seems empirically to be worth a factor of
two as well, at least in the nonconstructive algorithm.

CESSOors.

2. Random Directed Hamiltonian Paths

Consider the following algorithm for choosing a directed
Hamiltonian path uniformly at random.

E + ¢;
choose any order vy, vs, ...
for 1 <i<ndo
insert v; into the path E at a location chosen
uniformly at random.

, Un, Of the vertices in V;

Lemma 1. Let V be a set of n vertices. Let A and B be
disjoint subsets of V' of sizes an and fn respectively. Let
E be a random directed Hamiltonian path on V. Then

(n —an)!(n — pn)!

n!(n —an — pn)!

PI;E(’)b[Vv €EAVYwEB: (v,w) ¢ E] =

Proof: We can assume without loss of generality
that the algorithm for choosing the random Hamilto-
nian path first creates a random Hamiltonian path on
all the vertices in V' — A, and then adds the vertices in

A one by one. If one of the vertices in A is added so
that it points to a vertex in B, then no matter how the
other vertices in A are added, one of them will point to
a vertex in B. Thus, the probability that no vertex in
A points to a vertex in B is the product of the prob-
abilities that the ith vertex in A does not point to a
vertex in B, for 1 < i < an. The probability that the
ith vertex of A added to the path does not point to a
vertex in B is 2=2n=8n4i Thyg the probability that

. n—on+i . .
no vertex in A points to a vertex in B is

an

Hn—an—/)’n—i—i_(n—an)!(n—ﬁn)! I

n—an+i (n)l(n—an—pn)!’

i=1

3. Fourteen directed Hamiltonian paths suffice

Let Hg be the distribution of graphs on V obtained
by taking the union of d directed Hamiltonian paths
chosen independently at random and then removing all
self-loops and duplicate edges. We will show that if
E is chosen according to Hiy4, then it is very unlikely
that there is any subset V' of V of size greater than
n/2 on which F does not induce a strongly connected
component of size greater than n/6.

To find a large strongly connected component, we use
an extension of a lemma by Erdos and Renyi (see, for
example, [11, p. 45]).

Lemma 2. Let V be a set of n vertices and let E be
a set of edges on V such that for all subsets V' of V
of size n/2 and for all partitions (A, B) of V' where
n/6 < |A| < n/4, E contains edges that cross both from
A to B and from B to A. Then, for every subset W of V
of size greater than n/2, E induces exactly one strongly
connected component of size greater than n/6 on W.

Proof: Let W be a subset of V' of size greater than
n/2. Let Cy,...,Cp, be the strongly connected compo-
nents of W under E. These components form a directed
acyclic graph, so we can assume without loss of gener-
ality that C4,..., C,, are chosen so that i < j implies
that there is no edge in F from C; to Cj.

To prove the existence of a large strongly connected
component, it suffices to assume that |W| = n/2. As-
sume by way of contradiction that £ does not induce a
strongly connected component of size greater than n/6
on W. Let a; = |C;|/n, for 1 < i < m. By assumption,
a; < 1/6, for all ¢. Since .- a; = 1/2, there exists a
j, 1 < j < m,such that 1/6 < 57_, a; < 1/3. We let
A= nglCi and B = U;L;,C;. By the order in which
we chose the Cj’s, there is no edge from B to A. By
changing A and B if necessary, we can assume without
loss of generality that |A] < n/4.

Now, assume that there exist j and & such that j < &,
|C;j] > n/6 and |[Ck| > n/6. We let A = U!_,C; and
B = UL;;,C;. By the order in which we chose the
Cy’s, there is no edge from B to A. |A| > n/6 and
|B| > n/6, but W may be of size greater than n/2. To
obtain the contradiction, discard vertices from A and
B until |A| + |B|] = n/2, being careful to preserve the

property that |A| and |B| have size greater than n/6.
1

Now, we can prove the following;:

Theorem 3. Let V be a set of n vertices. Choose E
according to Hy. Then, with probability at least

1— 6n(gln 24d(2In 24+ 21n 241 1n2))+0(1)
for all subsets V' of V' of size at least n/2+1, E induces
ezactly one strongly connected component on V' of size
greater than n/6.

Proof: By Lemma 2, it suffices to prove that there is
an exponentially small probability that there is a subset
V' of V of size n/2 which has a partition (A, B) such
that 1/6 < |A| < 1/4 and either no edge of F goes from
A to B or no edge of E goes from B to A. By Lemma 1,
the probability that one random directed Hamiltonian
path does not have an edge from A to B is

(n — an)!(n — fn)!

nl(n —an — gn)! "’

where |A| = an and |B| = fn. Thus, the probability
that F does not have an edge from A to B or E does
not have and edge from B to A is at most

(2(71 — an)!(n — ﬂn)!)d .

nl(n — an — fn)!

There are at most 2 choices for V', and for each of
these there are at most 27/2 choices for the sets A and
B, so the probability that there exists a subset V' of
size |V| with a partition (A, B) such that E does not
have an edge from A to B or E does not have an edge
from B to A and 1/6 < |A| < 1/4 is at most

nl(n — an — fn)!

This is maximized when a = 1/6. Applying Stirling’s
formula, we find that

ik <(” —an)!(n —ﬂn)!)d)

nl(n — an — gn)!

(5 2+4d(31In 34510 g+51n2))+0(1)

bl

assuming that 1/6 < a < 1/4. |

Corollary 4. Let V be a set of n vertices, where n is
divisible by 6. Choose E according to Hi4. Then, with
probability at least

1 — ¢—0.018n4+0(1)
for all subsets V' of V of size at least n/2+1, E induces
a strongly connected component on V' of size greater

than n/6.

4. Fault Diagnosis

We have shown that the graph Hi4, with high proba-
bility, induces exactly one strong component consisting
of more than %n good processors. If there is only one
big strong component, then obviously it is the good one
and it can test the remaining %n processors in 5 rounds.
However, it may also induce one or two strong compo-
nents consisting of more than %n faulty processors. Now
we present a simple algorithm that completes the diag-
nosis in 5 rounds even in these less easy cases. In fact,
we present a 4 round algorithm in the Appendix; note
that this beats the naive algorithm even in the easy case.

Lemma 5. Let V be a set of n processors and let V' be
the subset of good processors. Assume that n > 2(k?—k)
and k > 4. Let E be a graph on V that induces at least
one strongly connected component of size greater than
%n on V'. Then we can determine which processors are
good and which processors are faulty by performing the
tests indicated by E and then performing k — 1 more
rounds of adaptive tests.

Proof: Throughout the proof we will write compo-
nent to mean “maximal strongly connected component
of V induced by E,” and big component to mean “com-
%n.” Observe that every

component contains only good processors or only faulty

ponent of size greater than

processors. We call a set of processors good if every pro-
cessor in it is good; we call it faulty if every processor
in it 1s faulty.

Let m be the number of big components induced by
E. We now have three cases to deal with:

Case 1: m < % In £ — m rounds, we have some of
the processors in each big component test all the pro-
cessors that are not in big components. We consider
two exhaustive cases.

Case la: the sets of vertices that each big com-
ponent says are good are pairwise disjoint. Then
exactly one of the big components must be good be-
cause good components must give identical diagnoses.
Thus we can assume that processors from distinct big
components dislike each other. The good component

1We remark that if & is even it suffices to assume that
n>k>4.

will be the unique component that likes a majority of
all the processors.

Case 1b: there is a processor that at least two
big components say is good. Call this processor the
referee, and call these two big strong components Co-
nan and Samson. Simultaneously, have the referee test
Conan and have Conan test Samson (this is possible be-
cause by our assumptions each big component contains
at least two nodes).

If the referee dislikes Conan, then Conan is faulty. If
the referee likes Conan and Conan dislikes Samson, then
Samson is faulty. If the referee likes Conan and Conan
likes Samson, then we merge Conan, Samson, and the
referee into a single big component. In all three of these
subcases we eliminate at least one big component per
round.

We proceed in this fashion until only one big compo-
nent remains or until there is no processor that two big
components say are good. We will have used at most
m — 1 additional rounds.

Case 2: k is odd and m = [%] In this case k is
odd so we can write k = 254+ 1 and m = j+ 1. We
now use j + 1 rounds to have the processors in each big
component test all the processors that are not in big
components. Since we required that n > k? — 1, we can
allow two processors in each big component to remain
idle and still have enough processors left to perform all
these tests. As opposed to letting these processors re-
main idle, we will use them to perform tests from every
big component to every other big component. Since
the complete graph on j + 1 vertices is contained in the
union of j + 1 matchings, we can perform these tests in
the same j + 1 rounds. If there are two big components
that say each other are good, we can merge these two
big components together. We will then be left with j
big components, and can finish in an additional j7 — 1
rounds by following the strategy described in Case 1.

If no two big components say each other are good,
then we know that j of these big components are faulty
and only one is good. Since the majority of the proces-
sors are good, this good component must like at least
5 — % of the processors not in the big components. Ac-
cordingly, we can declare as faulty any big component
that likes fewer than this many processors. Since there
are at most 3 — - processors not in big components,
and since n > 4k, there are at least two processors that
are liked by at least three big components. Thus, in one
round, we can use these processors as referees to elim-
inate at least two of the big components. We can then
finish the testing as we did in Case 1.

Case 3: m > [%] We reduce Case 3 to Case 1
or Case 2 by pretending that there are only [%] big
components. That is, we treat the other big components
as 1f they were not big components. Since most of the

processors are good, we know that at least one of the
big components that we keep is good.

What we have proved so far suffices to produce a 33-
round testing algorithm. The Appendix’s improved ver-
sion of Lemma 5 for the case k = 6 gets this bound down
to 32.

Theorem 6. For a set of processors V', there exists an
algorithm that will determine which processors are good
and which processors are faulty in 32 testing rounds,
assuming that a magority of the processors are good.

Proof: By Corollary 4, there exists a directed graph
E of degree 28 such that for every subset of more than
%|V| processors, F induces exactly one connected com-
ponent of size 1|V| in that subset. We can split each
Hamiltonian path in E into two matchings, and perform
all the tests indicated by E in 28 rounds. By Lemma 11,
we can then determine which processors are good and
which are faulty in an additional 4 rounds of testing.

We remark that a graph chosen at random from H4
has an exponentially high probability of being sufficient
for this theorem. We could also produce a randomized
algorithm that chooses its Hamiltonian paths at random
each time it i1s given a problem instance. This algorithm
uses fewer Hamiltonian paths and hence fewer testing
rounds; it has zero-sided error since it will be able to
tell if it has not found a strongly connected component
of more than n /6 processors. We will discuss this further
in the full paper.

5. Nonadaptive Algorithms

Preparata, Metze, and Chien [12] proved that any non-
adaptive fault-diagnosis algorithm must use a testing
graph of degree at least ¢, where ¢ is the number of
faults to be tolerated. Thus, 1t 1s difficult to perform
complete fault-diagnosis nonadaptively. A problem that
nonadaptive algorithms can handle is the “diagnosis-
with-repair” problem [9, 12], in which the diagnoser
must identify at least one faulty processor or certify
that there are none. Beigel, Kosaraju, and Sullivan [2]
show that there exist a constant v and a 3-regular undi-
rected test graph that will identify a good processor and
a faulty processor (if there is one), assuming that the
number of faulty processors is less than vn. Since a
3-regular undirected graph is contained in the union of
4 undirected matchings, their test sequence may use as
many as 8 rounds of tests in the directed model.
Beigel, Kosaraju, and Sullivan [2] also showed that a
test graph consisting of a single undirected Hamiltonian
cycle can solve the diagnosis-with-repair problem only
when ¢ = 6(y/n). In contrast, we show that a test graph

consisting of the union of 2 directed Hamiltonian paths
can solve the diagnosis-with-repair problem if as many
as 11—371 faults are to be tolerated. This uses 4 rounds of
testing.

Lemma 7. Let V be a set of n processors. Choose E
according to Hy. Then, the probability that there is a
choice of at most %|V| faulty processors such that E
fails to induce a strongly connected component of size
greater than %|V| wn the good processors is at most

n\ ezt (n—sz_fn!n—%n)!
in (n)!(n — 52 — in)!

Given a choice for the faulty processors, pick
any sgln of the good processors. If there is no strongly
connected component of size greater than %n in these
good processors, then by Lemma 2, there is a parti-
tion (A, B) of these good processors such that no edge
points from A to B or no edge points from B to A,

and 2=2n < |A]| < %n There are at most (fn) possi-

d

Proof:

2s
ble choices for the faulty processors. For each of these,
there are at most 25" possible partitions of the %n
good processors. Thus, by Lemma 1, the probability
that there exists a choice of the faulty processors such
that there is a partition (A, B) of the good processors
such that no edge points from A to B or no edge points

from B to A, and 2n < |A| < in is at most

(1) (emin=tnt)”

where a + 3 = 5;1 and 52_52 < a < 1/2. This is maxi-

. _9
mized when o = 5,)5‘. 1

Theorem 8. Let V be a set of n processors. Then
there exists an oblivious algorithm which will solve the
diagnosis-and-repair problem in 4 rounds of testing, as-
suming that at most 11—3|V| of the processors are faulty.

Proof: Choose E according to the subset of graphs
in Hs that are strongly connected. That is, we choose
E according to Hs, and if E does not contain a cycle
that traverses all the vertices, we choose again until we
pick an F which does contain such a cycle. It is easy to
see that with probability at least one half, F is strongly
connected. Why? Let H and I be the two Hamiltonian
paths of which E is composed. If I contains a path from
the end of H to the beginning of H, then E is strongly
connected. Note that I contains such a path if and only
if the reverse of I does not. Thus, for every graph E
which is not strongly connected, there is at least one
that is. Call this distribution H/,

We will show that, with exponentially high probabil-
ity, there does not exist a choice for the faulty processors

such that E chosen from Hs fails to induce a strongly
connected component of size greater than 11—3|V| in the
good processors. Since the space of H) contains at least
one half the space of Hy, the same will hold for graphs
E chosen according to H). Since we are assuming that
there are at most 11—3|V| faulty processors, we know that
all the processors in the big strongly connected compo-
nent must be good. Now, to find a faulty processor, we
just follow a cycle through all the vertices as it leaves
a good processor. Every processor that it certifies as
good 1s a good processor. Thus, we can just follow the
cycle until we find a good processor that certifies an-
other processor as faulty. If all the tests along a cycle
report good, then all the processors are good.

Applying Stirling’s formula to Lemma 7 and taking
logarithms, we find that

() (e) -
1

s—1 1.1 s — s—1
In2——-In(-) - 1
n(s sn(s) s n(s)
s+2, s4+2 1.1 1 1
d 1 —In-——-In—
+ <25 NS +2n2 sns))

—%lnn—}-O(l).

Substituting in s = 13 and d = 2, we find that the coeffi-
cient of n is negative, so the probability is exponentially
small.

The number 1/13 could be replaced by a slightly
larger real number in the analysis above.

6. Using Expanders

Expander graphs have the “large component” property
that we make use of in our fault detection algorithm.
Thus, we can make our fault detection algorithm con-
structive with a moderate decrease in efficiency.

Let G be a d-regular graph. We define the adjacency
matrix of G to be a matrix 7' whose (4, j)-th entry is % if
G contains an edge between vertex ¢ and vertex j, and
which is 0 otherwise. We have chosen this definition
so that the largest eigenvalue of T is 1. All constant
vectors are eigenvectors for this eigenvalue. We show
that if the second largest eigenvalue of the adjacency
matrix of a graph is small, then the graph has the “large
component” property.

Lemma 9. Let G = (V, E) be a d-regular graph on n
vertices and let T be its adjacency matriz. Assume that
all the eigenvalues of T' except the greatest have absolute
value at most A. Then, for any two disjoint subsets A

and B of V where |A| = an and |B| = bn and

—\/E >
0-a)-b)

G contains an edge between some verter in A and some

)

verter in B.

Proof:
n vectors:

We use the following inner product on length-

, LS o
() = - > F)ili).
i=1
Assume V = {1,...,n}, and let ¥4 be the characteristic
vector of the set A and X' be the characteristic vector
of the set B. Assume by way of contradiction that G
contains no edge between A and B. It then follows that

<T(>ZA)J?B> =0.

We now write Xa = @+ (Xa—d) and Xp = b+ (XB — E),
where @ and b denote the constant vectors that are
all a’s and b’s, respectively. =~ We also note that
Yi=1(Xa(i) —d(@)) =0 and 37, (¥s (i) — b(i)) = 0,
which implies that ¥4 — @ and Xp — b are perpendic-
ular to the first eigenvector of T'. Since ¥4 — @ has no
component in the direction of the first eigenvector, we
have that

I7(Fa = @) < XXa =l
which implies
(T(Ra-@).%5=b)| < AIXa—alllis b

= Aab(l —a)(1—=1b).

We will need two more equalities. First, we see that
(T(@). (Xp ~5)) =0

because @ is an eigenvector for 1 and (}'p — b) is perpen-
dicular to all eigenvectors for 1. Second, the equation

<T(>ZA — @), 17> =0
follows because Y4 — @ is perpendicular to eigenvectors
for 1, which implies that T'(x4 — @) is perpendicular to
eigenvectors for 1, but b is an eigenvector for 1.
Combining these equations with the inequality, we
obtain our contradiction:

0 = (T(Xa), XB)
= (1(@),5)+ (7@ (s - b))
+ (T(Ra—=@).0) +(T(Xa— @), (X6 - 1))
= ab+({T(Ta -), ({p - F))
> ab—A\/ab(1—a)(1 - b
> 0

Vab
——ab____ 5) |
(1—a)(1-b)

because we assumed that

Theorem 10. There exists a constructive algorithm
that will determine, for infinitely many values of n,
which of n processors are good and which processors are
faulty in 84 rounds of testing.

Proof: Lubotzky, Phillips, and Sarnak [8] and inde-
pendently Margulis [10] construct certain Cayley graphs
which have second-largest eigenvalue % and degree
p + 1 whenever p is congruent to 1 modulo 4. (The
number of vertices is ¢(¢? — 1)/2 where ¢ is any prime
that is congruent to 1 modulo 4 and p is a quadratic non-
residue mod ¢.) For p =37, a = %—}— ﬁ and b = %— %
we have that

Va2
I—a)(l—-0b p+1’

Thus, by applying the techniques of Lemma 2, we see
that the graphs corresponding to p = 37 will induce at
least one connected component of size greater than n/7
on the good processors. This graph is contained in the
union of 78 directed matchings, so we can perform all
the tests that it indicates in at 78 rounds. By Lemma 5
we need at most 6 more rounds to complete the testing.

Incidentally, Alon and Chung [1] have proved that
expanders induce a long path on each sufficiently large
subset of the vertices. This observation could have been
used to obtain constructively a deterministic testing al-
gorithm that runs in about 1000 rounds.

A. The Final Four Rounds of Testing

Lemma 11. LetV be a set of n processors and let V' be
the subset of good processors. Assume that E is a graph
on V' that induces exactly one strongly connected compo-
nent of size greater than %n on V' and induces at most
two strongly connected components of size greater than
%n on V —V'. Then we can determine which processors
are good and which processors are faulty by performing
the tests indicated by E and then performing four more
rounds of adaptive tests.

Proof: Throughout the proof we will write compo-
nent to mean “strongly connected component of V' in-
duced by E,” and big component to mean “component
of size greater than %n.” Observe that every component
contains only good processors or only faulty processors.
We call a set of processors good if every processor in it

is good; we call it faulty if every processor in it is faulty.

Case I: F induces exactly one big component.

Comment. Let b = [%n] Let B consist of exactly b
processors from the big component, and let X consist
of exactly 2b of the remaining processors. Let y =
n—3b, and observe that y < 3b. Let Y consist of [%y]
of the remaining y processors, and Y5 the other L%yJ of
them. (Note that if the big component contains more
than [%n], then the extras will be placed into X, Y7,

or Ys.)

Rounds 1 and 2. The processors in B test all of the
processors in X. Simultaneously, the processors in Y3
and Y5 test each other according to a maximal undi-
rected bipartite matching.

Comment. Let G be the set of good processors found

in X, and let ¢ = |G]. BU X contains at least one-half
of the processors, and exactly b+ g of them are good.
Therefore, because a majority of all the processors are
good, fewer than b+ g of the processors in Y3 U Ya can
be faulty.
We will refer to the edges in the undirected bipartite
matching between Y7 and Y3 as the Y7 Y5 edges. A Y1—
Y5 edge is called a happy edge if both processors on it
report that the other is good; it is called an unhappy
edge otherwise. Call a processor happy if it is on a
happy edge; call it unhappy if it is on an unhappy edge.
If y1 > yo, then one processor in Y7 i1s unmatched; it is
neither happy nor unhappy. Call a Y1-Y5 edge a good-
good edge if both processors on it are good. Call it a
faulty-faulty edge if both processors on it are faulty.
We will retain this terminology in Case 2. Clearly

e Every good-good edge is a happy edge.

e Every happy edge is either a good-good edge or a
faulty-faulty edge.

e Every unhappy edge contains at least one faulty pro-
Cessor.

Because there are fewer than b 4+ g faulty processors

among Y7 and Ys there must be more than L%yJ —b—g

good-good edges. Let h be the number of happy edges.

Then h > |1y| —b—g.

Subcase a: h > b.

Round 3.a. The processors in B test the first b
happy processors in Y]

Round 4.a. The processors in B test the remaining
h — b happy processors in Y7 and all of the y — 2hA
unhappy or unmatched processors.

Comment. Note that Round 4.a involves at most
y—h—>b<y—2b<b tests.

Subcase b: h < b.
Round 3.b. The processors in BUG test each happy

processor in Y7 and also test an additional b+ g — h
unhappy processors.

Comment. Let G’ consist of the good processors
found on happy edges (both endpoints), and let ¢’ =
|G’|. Then ¢" > 2(|1y] —b—g),s0 ¢’ > y—2b—2g.
Therefore b+g+g¢' >y—b—g.

Round 4.b. The processors in BUG UG’ test the
remaining y —2h — (b+g—h) = y—b—g—~h
unhappy or unmatched processors.

Comment. Round 4.b can be performed because
b+g+g >y—b—g>y—b—g—nh

Case II: E induces exactly two big components.

Comment. Observe that one of the big components
contains only good processors and the other big com-
ponent contains only faulty processors. Let b = [i:n]
Let B consist of exactly b processors from the first big
component, and let By consist of exactly b processors
from the second big component. Let z = [1(n — 2b)],
1.e., x is the least number that is not smaller than
one-half of the number of remaining processors. Let
X consist of exactly z of the remaining processors. Let
y=mn—2b—x. Let Y] consist of [%y] of the remain-
ing processors, and let Yy consist of the |L1y| others.

2
Observe that 26 > z >y >z — 1.

Rounds 1 and 2. The processors in By and Bs test all
of the processors in X. Simultaneously, the processors
in Y7 and Y5 test each other according to a maximal
undirected matching. Let X; be the set of processors
that B; labels good in X, and let z; = |X;|, fori = 1,2.

Subcase a: z; > %x, and X; and X, are not dis-
joint.

Comment. Let p € X7 N X3, Then processor p must
be good.

Round 3.a. Processor p tests one processor in Bj.
Simultaneously, the processors in By test all the pro-
cessors in Ys.

Comment. If the result of p’s test is “good,” then all
processors in By and therefore all processors in X3
are good. Otherwise all processors in By are good.

Round 4.a. If By is good, then the processors in
By U X test the processors in Y7 UY5. Otherwise
the processors in By test the processors in Y.

Subcase a’: z5 > %m, and X; and X5 are not dis-
joint.
Swap B; and Bs, and then proceed as in Subcase a.

Subcase b: z; < %CL‘ and x5 < %:c

Comment. Then at most one-half of the processors
in By UByUX are good. Therefore a majority of
the processors in Y7 UY5 are good. Because every
unhappy edge contains at least one faulty processor,

a majority of the unmatched and happy processors
must be good.

Round 3.b. The happy and unmatched processors in
Y1 test some of the processors in Bj; the remaining
processors in B test the unhappy processors in Y7.
The processors in By test the unhappy processors in
Bs.

Comment We give two votes to each happy proces-
sor in Y7 (so it can cast a proxy for its neighbor in Y3
as well) and one vote to the unmatched processor (if
there is one). Because a majority of the happy and
unmatched processors in Y1 UY; are good, the major-
ity vote will determine whether B is good or faulty,
and consequently whether Bj is good or faulty. If B;
is good, then Round 3b also diagnoses the unhappy
processors in Yj.

Round 4.b. Let B; be the good big component as
determined in Round 3b. The processors in B; test
the processors in Y3_; and the unmatched processor
in Y] if there 1s one.

Comment. Note that the total number of tests in
Round 4.b is [%y] < b. The status of the unhappy
processors in Y; was determined in Round 3b. The
status of happy processors in Y; is the same as their
neighbors in Y3_;.

Subcase c: z; > %CE > r9, and X; and X, are dis-
joint.

Comment. Because exactly one-half of the proces-
sors in B U By are good, a majority of the processors
in X UY;UY5 must be good. Since z > y, more than
y of the processors in X UY; UY; are good.
Suppose that Bs is good. Then exactly zs of the
processors in X are good. Therefore more than y—z5
of the processors in Y1 UY; are good. Therefore more
than y — x5 — [%y] = L%yJ — x5 of the Y1—Y5 edges
are good-good.

Suppose that Bj is faulty. Then exactly z; of the
processors in X are good. Therefore more than y—z,
of the processors in Y7 UY; are good.

Subsubcase 1: At most L%yJ — x5 of the Y-V,
edges are happy.
1

Comment. Then at most |[5y] — zo of them are

good-good, so we may conclude that B, is faulty
and therefore By U X; is good.

Rounds 3.c.1 and 4.c.1. The processors in By U X
test the processors in Y; U Y5.

Subsubcase 2: More than [%yJ — x5 of the V1Y,
edges are happy.

Comment. Because B says that X5 is faulty and
B, says that X is good, X5 is good if and only if
Bj is good.

Round 3.c.2. Let the processors in Y5 and the un-
happy and unmatched processors in Y; test some
of the processors in By U X5.

Comment. (Round 3.c.2 can be performed because

there are at most x5 unhappy or unmatched pro-
cessors in Y1.) Count two votes for each happy pro-
cessor that performs a test and one vote for each
unhappy or unmatched processor that performs a
test. The total of the “good” votes is at least as
large as the number of good processors in Y7 U Ys
that would report that Bs is good. The total of the
“faulty votes 1s at least as large as the number of
good processors in Y7 U Ys that would report that
B- is faulty.
If By were in fact good, then more than y—az4 of the
processors in Y1UY> would be good, and they would
report that Bs is good. If By were in fact faulty,
then more than y — x1 of the processors in Y7 UY,
would be good, and they would report that Bs is
faulty. These events cannot both occur because,
then there would be more than y — z1 +y — 22 >
2y — x > y votes, but there are exactly y votes.
Thus Bs is good if and only if there are more than
y — x5 votes for “good.”

Round 4.c.2. If B; is good, then the processors in
By U X5 test the processors in Yy and the unhappy
and unmatched processors in Y;. If By is good,
then the processors in By U X test the processors
n Y1 U Yz.

Subcase ¢’: ¢y > % >cy. Swap By and B;, and

then proceed as in Subcase c.

Case III: E induces exactly three big compo-
nents.

Comment. Observe that one of the big components
contains only good processors and the other two big
components contain only faulty processors. Let b =
[%n] Let B; consist of exactly b processors from the

1th big component, for i = 1,2,3. Let £ = n —3b. Let

X consist of the remaining z processors.

Rounds 1, 2, and 3. The processors in B; test the
processors in X fori=1,2,3.

Comment. If B; is good, then the other big compo-
nents must be faulty, so B; must report that more
than %n — b of the processors in X are good. Because
b > %n, we have

(n—3b):§x,

so each contender reports that strictly more than two-
thirds of the processors in X are good.

Subcase a: exactly one big component is a con-
tender.

Comment. That contender is the unique good big
component, so no more testing is necessary.

Subcase b: exactly two big components are con-
tenders.

Comment. There is a processor p that both con-
tenders report is good. Then p must be good.

Round 4.b. Processor p tests one processor from one
of the contenders.

Comment. The result of that test determines which
contender is good.

Subcase c: exactly three big components are
contenders.

Comment. There is a processor p that all three con-
tenders report is good. Then p must be good. There
is another processor ¢ that Bs and B3 both report is
good. If B is faulty, then ¢ is good.

Round 4.c. Processor p tests one processor from By,
and processor ¢ tests one processor from Bs.

Comment. The result of p’s test determines whether
Bj is good. If B; is not good, then the result of ¢’s
test determines which of Bs and Bj is good.

Observe that E cannot induce four or more big com-
ponents because three of them would be faulty. |

Acknowledgments. We would like to thank Warren Smith and
Steven Salzberg for helpful discussions.

References

[1] N. Alon and F. R. Chung. Explicit construction of
linear sized tolerant networks. Discrete Math., 72:15-19,
1988.

[2] R. Beigel, R. Kosaraju, and G. Sullivan. Locating
faults in a constant number of parallel testing rounds.

In Proc. SPAA, pp. 189-198, 1989.

[3] P. M. Blecher. On a logical problem. Discrete Math.,
43:107-110, 1983.

[4] J. A. Bondy and U. S. R. Murty. Graph Theory with
Applications. North Holland, New York, 1976.

[5] A.T. Dahbura and G. M. Masson. An O(n?%) fault
identification algorithm for diagnosable systems. IEEE
Trans. Comput., 1984.

[6] S. L. Hakimi and K. Nakajima. On adaptive sys-
tem diagnosis. IEEFE Trans. Comput., C-33(3):234-240,
1984.

[7] S. L. Hakimi and E. F. Schmeichel. An adaptive
algorithm for system level diagnosis. J. of Alg., 5:526—
530, 1984.

[8] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan
graphs. Combinatorica, 8(3):261-277, 1988.

[9] U. Manber. System diagnosis with repair. IEEE
Trans. Comput., C-29:934-937, 1980.

[10] G. A. Margulis. Explicit group-theoretical con-
structions of combinatorial schemes and their appli-
cation to the design of expanders and concentrators.
Problems of Information Transmission, 24:39-46, 1988.
Translated from Problemy Peredachi Informatsii, Vol.
24, No. 1, pp. 51-60, Jan-Mar, 1988.

[11] E. M. Palmer. Graphical Evolution. John Wiley &
Sons, New York, 1985.

[12] F.P. Preparata, G. Metze, and R. T. Chien. On the
connection assignment problem of diagnosable systems.
IEEFE Trans. Electron. Comput., EC-16:848-854, 1967.

[13] E. Schmeichel, S. Hakimi, M. Otsuka, and G. Sul-
livan. On minimizing testing rounds for fault identifica-
tion. In 18th Int’l Symp. Fault-Tolerant Comput., 1988.

[14] W. Smith, 1989. Personal communication.

[15] G. F. Sullivan. A polynomial time algorithm for
fault diagnosability. In Proc. 25th FOCS, pp. 148-156,
1984.

