1710

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42; NO. 6, NOVEMBER 1996

Expander Codes

Michael Sipser and Daniel A. Spielman

Abstract— Using expander graphs, we construct a new family
of asymptotically good, linear error-correcting codes. These codes
have linear time séquential decoding algorithms and logarithmic
time parallel decoding algorithms that use a linear number of
processors. We present both randomized and explicit construc-
tions of these codes. Experimental results demonstrate the good
performance of the randomly chosen codes.

Index Terms— Asymptotically good error-correcting code,
linear-time, expander graph.

I. INTRODUCTION

E PRESENT an asymptotically good family of linear
error-correcting codes that can be decoded in linear
time. As these codes are derived from expander graphs, we call
them “expander codes.” Expander codes belong to the class of
low-density parity-check codes introduced by Gallager [10].
Gallager [10] suggested using the adjacency matrix of a
-randomly chosen low-degree bipartite graph as the parity
check matrix of an error-correcting code. He showed that
such a code probably has a rate and minimum distance near
the Gilbert—Varshamov bound. He also suggested a natural
sequential algorithm for decoding these codes, although he
was unable to demonstrate that it would correct a constant
fraction of error: A
In our first construction, we replace Gallager’s random
graphs with very good expander graphs. In Section V-A, we
analyze the natural sequential decoding algorithm in terms of
the expansion of this graph, and show that it will remove

a constant fraction of error from a corrupted codeword. In

Appendix I, we show that this algorithm succeeds only if
the underlying graph is an expander. Zyablov and Pinsker
[35] showed that, with high probability over the choice of
the graph, Gallager’s codes could be decoded by circuits
of size O(nlogn) and logarithmic depth. In Section V-
B, we show that our expander codes can be decoded by
-slightly simpler circuits of similar complexity. Pippenger [27]
pointed out that a proof of the correctness of our parallel
decoding algorithm can be obtained from Kuznetsov’s proof
of correctness of a construction of fault-tolerant memories
derived from Gallager’s codes [17]. Unfortunately, we are
unaware of explicit constructions of expander graphs that have
the level of expansion needed for the arguments in Section V.

Manuscript received December 15, 1995; revised April 20, 1996. This work
was supported in part by the U.S. Air Force under Contract F49620-92-7-0125,
by DARPA under Grant N00014-92-3J-1799, and by the NSF under Grant
9212184CCR. The work of D. A. Spielman was also supported in part by an
NSF Postdoc and the Fannje and John Hertz Foundation.

The authors are with the Department of Mathematics, Massachusetts
Institute of Technology, Cambridge, MA 02139 USA.

Publisher Item Identifier S 0018-9448(96)07304-X.

However, a randomly chosen graph will have the required
level of expansion with high probability.

~In: Section. VI, we construct asymptotlcally good expander
codes that rely on graphs with less expansion. As explicit
constructions of graphs with-such expansion exist,” we can
present explicit constructions of asymptotically good expander
codes, along with a simple parallel algorithm that can remove
a constant fraction of error from these codes. This algorithm
can be implemented as a circuit of size O(nlogr) and depth
O(logn), or simulated in linear time on a sequential machine.

For the sake of accuracy, we: begin this paper with a brief
overview of a few important models of computation in which
our algorithms can be seen to run in linear time. In Section
III, we recall the properties of expander graphs that we will
need in this paper. We conclude with some advice to those
who might implement these codes-along with the results of
some experiments that we performed to test the performance
of expander codes derived from randomly chosen graphs.

We are unaware of an algorithm that will encode our
expander codes in less than O(n?) time (such a time bound
is trivial for linear codes). However, our expander codes are
an essential element of a construction of asymptotically good
codes that can be both encoded and decoded in linear time
[31].

A. Terminology

In this paper, we build linear codes over the alphabet {0, 1}
(although it is easy to generalize the constructions to larger
fields). By a code of block length n and rate r, we mean a
code in which the words have n symbols, of which rn are
message symbols that may be freely chosen and the remaining
(1—r)n are determined by the choice of the message symbols.
In particular, a linear code of block length n and rate r is a
subspace of GF(2)™ of dimension 7n. If a‘code has minimum
relative distance «, then each pair of words in the code. differs
in at least an symbols. When we say that an algorithm will
correct an € fraction of error from the code C, we mean that the
algorithm, on input a word w that differs from a word v € C
in at most en symbols, will output v. We make no restrictions
on the output of the algorithm on other input words.

II. MODELS OF LINEAR TIME

The meaning of “linear time” depends on the -model of
computation considered. In- this section, we provide a brief
description of a few standard models of sequential computation
under which our- algorithms runin-linear time:. We also
describe the circuit model, which we will use to analyze our
parallel algorithms.

0018-9448/96$05.00 © 1996 IEEE

SIPSER AND SPIELMAN: EXPANDER CODES

A. The Models

We analyze the efficiency of algorithms by measuring their
running time on a RAM (see [4]). A RAM has a central
processor that can access data from a memory. This processor
should have a few basic operations: addition, subtraction, read
from memory, store to memory, branch if zero, branch if
greater than zero, etc. Under the uniform cost model, each
of these operations costs one unit of time. Thus the time used
by an algorithm in the uniform cost model is just the number
of these basic operations that the processor performs.

In the logarithmic cost model, the cost of a basic step is
proportional to the length of its argument. Thus the addition
of two n-bit numbers takes time n, even if each fits within a
register. Similarly, reading an n-bit word from memory stored
at an address whose description requires n bits will take time
2n. Our sequential decoding algorithms run quite naturally in
linear time according to the uniform cost model: Decoding
a word of length n requires O(n)-bit additions and O(n)
memory accesses. To make these algorithms run in linear time
in the logarithmic cost model, we need to add an additional
layer to the code (see Section VII). This extra layer enables
us to perform only O(n/logn) memory access, each of which
retrieves O(logn) bits.

The Pointer Machine (also known as the Kolmogorov—
Uspenskil machine) is a model of computation designed to
capture the time complexity of algorithms, rather than the
architecture of any particular computer. The input, output,
and working environment of a Pointer Machine is a constant-
degree directed graph. The CPU of the machine is a special
node in the graph. At each time step, the CPU looks at the
configuration of nodes of distance at most two from itself and,
depending on their configuration, rearranges the edges between
these nodes, possibly creating new edges or new nodes. The
Kolmogorov—Uspenskii thesis [15] asserts that any reasonable
model of computation can be simulated by a Pointer Machine
with at most a constant factor difference in speed. For more
information about pointer machines, we direct the interested
reader to [11], [15], [18], and [29]. Our sequential decoding
algorithms naturally run in linear time on a Pointer Machine.

To measure the efficiency of our parallel decoding algo-
rithms, we will use the model of Boolean circuits (see [9]
and [28] for a more detailed description of this model). Each
wire in one of these circuits carries a 0 or a 1. Each gate
in the circuit has as input two wires, and outputs a Boolean
function of its two inputs. Its output can be directed to as
many wires as desired. We restrict ourselves to considering
acyclic circuits—those in which the directed graph naturally
associated with the circuit is acyclic. The inputs of the circuit
enter and exit on wires. The size and depth of the circuit
are the number of wires and the length of the longest path
in the digraph of the circuit, respectively. This is a very
restrictive model of parallel computation, and it captures many
of the difficulties of implementing our algorithms in hardware
(although it does ignore the space required to lay out a circuit).
We describe the complexity of our parallel decoding algorithm
in the circuit model to emphasize that it is efficient even in
this restrictive model. We hope that someone implementing
this algorithm will have access to more complex devices.

1711

B. Precomputation

When we measure the efficiency of our decoding algorithms,
we assume that some precomputation has occurred before
decoding begins. This precomputation is independent of the
word being decoded. The output of the precomputation is an
object whose $ize is linear in the codeword length. It should
be considered an auxiliary input to the decoding algorithm.

The purpose of the precomputation is to build a graph
associated with the code as well as the check matrix of the
code. This graph is the auxiliary input. On a Pointer Machine,
the graph is provided to the machine as its input usually is. On
a RAM, the graph should be provided in memory as collections
of pointers. For a circuit, the graph is used to decide how the
circuit should look. From the description of the codes, it will be
obvious that the precomputation can be performed efficiently
in polynomial time.

III. EXPANDER GRAPHS

Expander graphs have been the focus of much study in
theoretical computer science and combinatorics. An expander
graph is a graph in which every set of vertices has an unusually
large number of neighbors. Our constructions require graphs
that expand by a constant factor, but which have only a linear
number of edges. It is a remarkable fact that such graphs exist.
In fact, a simple randomized process will produce one with
high probability. Deterministic, polynomial-time constructions
also exist.

Let G = (V, E) be a graph on n vertices. To describe
the expansion properties of G, we say every set of at most m
vertices expands by a factor of 6 if, for all sets S C V

|S] <m = H{y: 3z € S such that (z, y) € E} > 6|5|.

In our constructions, we will make use of unbalanced
bipartite expander graphs. That is, the vertices of the graph
will be divided into two sets so that there are no edges between
vertices in the same set. We call such a graph (¢, d)-regular
if all the nodes in one set have degree ¢ and all the nodes in
the other have degree d. By counting edges, we find that the
number of c-regular vertices must differ from the number of
d-regular vertices by a factor of d/c. We will only consider
the expansion of sets of vertices contained within one side
of the graph. We call a graph a (¢, d, €, §) expander if it is
a (c, d)-regular graph in which every subset of at most an ¢
fraction of the c-regular vertices expands by a factor of at least
6. We will use families of (¢, d, €, §) expanders in which ¢, d,
¢, and 6 remain constant as the number of vertices increases.

It is well known that a randomly chosen (c, d)-regular graph
will probably be a good expander:

Proposition 1: Let B be a randomly chosen (¢, d)-regular
bipartite graph between n c-regular vertices and (c/d)n d-
regular vertices. Then, for all 0 < « < 1, with high probability,
all sets of an c-regular vertices in B have at least

c [2caH (o)
n(a(l—(l—a)d)— W)

neighbors, where H(:) is the binary entropy function.

1712

Proof: See Appendix IL O

The most common. way to prove that a particular graph is
a good expander is to examine its second-largest eigenvalue.
The largest eigenvalue of a k-regular graph is k. If the second-
largest eigenvalue is far from the first, then the graph is a good
expander. The greatest possible separation between the first-
and second-largest eigenvalues in a graph was achieved in
explicit constructions by Margulis [21] and Lubotzky, Phillips,
and Sarnak [19].

Theorem 2 (Lubotzky—Phillips—Sarnak, Margulis): For ev-
ery pair of primes p, ¢ congruent to 1 modulo 4 such that p is
a quadratic residue modulo g, there is a (p+ 1)-regular Cayley
graph of PSL(2, Z/qZ) with q(¢? — 1)/2 vertices such that
the second-largest eigenvalue of the graph is at most 2./p..

One can show that a graph with the eigenvalue separation
displayed by these graphs is a good expander by using results
from [6], [13], and [33]. Other constructions that achieve a
similar separation have since appeared ([8], [23], and [24]).
From the fact that these graphs are Cayley graphs, one can
show that they have a simple representation. '

Proposition 3: Each graph described in Theorem 2 can be
constructed in time polynomial in its number of vertices.
Moreover, this polynomial-time. computation can be used to
construct a description of the graph of size logarithmic in the
number of vertices in the graph. There is an algorithm that,
given this description, will produce the labels of the neighbors
of a node in the graph in time polynomial in the length of the
labels (i.e., polylogarithmic in the number of vertices).

In the remainder of this paper, we can ignore the fact that
these graphs are Cayley graphs, and just concentrate on the
relation between their degrees and second-largest eigenval-
ues. Unfortunately, these graphs are not unbalanced-bipartite.
To obtain unbalanced-bipartite expander graphs from these
graphs, we use their edge-vertex incidence graphs. From a
d-regular graph GG on n vertices, we derive a (2, d)-regular
graph with dn/2 vertices on one side and n vertices on the
other.

Definition 4: Let G be a graph with edge set F and vertex
set V. The edge-vertex incidence graph of G is the bipartite
graph with vertex set £ UV and edge set

{(e, v) € E x V : v is an endpoint of e}.

To understand the expansion of these edge-vertex incidence
graphs, we use a lemma of Alon and Chung [2].

Lemma 5 (Alon—Chung): Let G be a d-regular graph on n
vertices with second-largest eigenvalue A. Let X be a subset
of the vertices of G of size yn. Then, the number of edges
contained in the subgraph induced by X in G is at most

d2n (’Y + ?ﬂ(l —’7))

We could use this lemma to characterize the edge-vertex
incidence graphs of the graphs constructed in Theorem 2 as
(2, d, €,) expanders for some ¢ and §. However, we will find
it more convenient to work directly with Lemma 5. .

We note that Alon ef al. [1] used expander graphs in a
different way to obtain a uniform construction of asymptoti-

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 6, NOVEMBER 1996

_ constraint
restricts
these -

Variables

Constraints

Fig. 1. A constraint restricts the variables that are its neighbors.

cally good low-rate error-correcting codes that lie above the ’
Zyablov bound (see [25] and [36]).

IV. THE CONSTRUCTION

To build an expander code, we begin with an ‘unb’alanced
bipartite expander graph. Say that B is a (¢, d)-regular graph
between sets of vertices of size n and (c/d)n, and that d > c.
We will identify each of the n nodes on the large side of the
graph with one of the bits in a code of length n. We refer to
these n bits as variables. Each of the (c/d)n vertices on the
small side of the graph will be associated with a constraint
on the variables. Each constraint will correspond to'a set of
linear restrictions on the d variables that are its neighbors
(see Fig. 1). In particular, a constraint will require that the
variables it restricts form a codeword in some linear code of
length d. Because the restrictions we impose upon the variables
are linear, the resulting expander code will be linear as well.
It is convenient to let all the constraints ‘impose isomorphic
codes (on different variables, of course). We will construct
asymptotically good families of codes from families of (c, d)-
regular expander graphs in which c-and d remain constant as
their number of vertices increases. _

Definition 6: Let B be a {c, d)-regular graph between a
set of n nodes {vy, -+, v, }, called variables, and a set of
en/d nodes {C1, -+, Cepnyq}» called constraints. Let b(%, j)
be a function designed so that, for each constraint C;, the
variables neighboring C; are vy(; 1), =, Up(;, a)- Let S be an
error-correcting code of block length d. The expander code
C(B, S) is the code of block length n whose codewords
are the words (i, ---, ,) such that, for 1 < ¢ < cn/d
(Toi,1)5 -+ T, a)) 1S a codeword of S.

If B is a sufficiently good expander-and if the constraints
are identified with sufficiently good codes, then the resulting
expander code will be a good code.

Theorem 7: Let B be a (¢, d, o, ¢/d ¢) expander-and S an
error-correcting code of block length d, rate » > (¢ — 1)/c,
and minimum relative distance e. Then C(B,) has rate at -
least ¢r — {¢ — 1) and minimum relative distance at least «.

SIPSER AND SPIELMAN: EXPANDER CODES

Proof: To obtain the bound on the rate of the code,
we will count the number of linear restrictions imposed by
the constraints. As each constraint imposes (1 — 7)d linear
restrictions, the variables suffer at most

n;l(l—r)dzcn(l——r)

linear restrictions, which implies that they have at least n{cr —
(¢ — 1)). degrees of freedom. To prove the bound on the
minimum distance, we will show that there can be no nonzero
codeword of weight an or less. Let w be a nonzero word of
weight at most an and let V' be the set of variables that are 1
in this word. There are c|V'| edges leaving the variables in V.
The expansion property of the graph implies that these edges
will enter more than (c/de)|V| constraints. Thus the average
number of edges per constraint will be less than de, so there
must be some constraint that is a neighbor of V, but which
has a number of neighbors in V' that is less than the minimum
distance of &. This implies that w cannot induce a codeword of
S in that constraint; so, w cannot be a codeword in C{B, §)..0
The analysis of our decoding algorithms for these codes will
be extensions of this proof. To ease the presentation of our
arguments, we say that a constraint C; is satisfied by a word
(x1, -+, @n) if (To,1), > Ta(i,a)) 18 @ codeword of S.
Remark 8: A construction of codes defined by identifying
the nodes on one side of a bipartite graph with the bits of
the code and identifying the nodes on the other side with
constraints first appeared in the work of Tanner [32]. Following
Gallager’s lead [10], Tanner analyzed the performance of his
codes by examining the girth of the bipartite graph. Margulis
{20] also used high-girth graphs to construct error-correcting
codes. It seems that analysis resting on high girth is insufficient
to demonstrate that families of codes are asymptotically good.

V. A SIMPLE EXAMPLE

A simple example of expander codes is obtained by letting
B be a graph with expansion greater than ¢/2 on sets of size
at most an and letting P be the-code consisting of words of
even weight, i.e., those (z1, -+, 74) € {0, 1}¢ such that

Z z; = 0 modulo 2.

The parity-check matrix of the resulting code, C(B, P), is just
the adjacency matrix of B. The code P has rate (d—1)/d and
minimum relative distance 2/d, so C(B, P) has rate 1 — c/d
and minimum relative distance at least «.

To obtain a code that we can decode efficiently, we will
need even greater expansion. With greater expansion, small
sets of corrupt variables will induce noncodewords in many
constraints. By examining these unsatisfied constraints, we will
be able to determine which variables are corrupt. In Sections
V-A and V-B, we will explain how to decode these simple
expander codes.

Unfortunately, we do not know of explicit constructions of
expander graphs with expansion greater than ¢/2 (Kahale [13]
shows that graphs with the eigenvalue separation achieved in
Theorem 2 have such expansion, but that eigenvalue separation
cannot certify greater expansion). Thus in order to construct

1713

these simple codes, we must use a randomized construction of
expanders as explained in Section III and Appendix II

A. Sequential Decoding

There is a natural algorithm for decoding these simple
expander codes. We say that a constraint is satisfied by
a setting of variables if the sum of the variables in the
constraint is even; otherwise, the constraint is unsatisfied.
Consider what happens when we flip! a variable that is in
more unsatisfied than satisfied constraints. The unsatisfied
constraints containing the variable become satisfied, and vice
versa. Thus we have decreased the total number of unsatisfied
constraints. The goal of the sequential decoding algorithm is
to keep doing this until no unsatisfied constraint remains, in
which case it outputs a codeword. Theorem 10 says that if
the graph used to define the code is a good expander and if
the input to the algorithm is close to a codeword, then the
algorithm will succeed.

Simple Sequential Decoding Algorithm:

« If there is a variable that is in more unsatisfied than
satisfied constraints, then flip the value of that
variable. '

¢ Repeat until no such variable remains.

It is easy to implement this algorithm so that it runs in linear
time on a Pointer Machine or a RAM under the uniform cost
model. In Fig. 2, we present one such way of implementing
this algorithm. A discussion of how algorithms such as this
one can be modified to run in linear time on a RAM in the
logarithmic cost model appears in-Section VIL

Lemma 9: For ¢ and d constant, the implementation in
Fig. 2 runs in linear time on a Pointer Machine, as well as
on a RAM in the uniform cost model.

Proof: We assume that the graph has been provided to
the algorithm as a collection of pointers in which each vertex
indexes a list of pointers to its neighbors. The implementation
runs in two phases: a setup phase that requires linear time, and
then a-loop that takes constant time per iteration.

During the setup phase, the variables are partitioned into
sets by the number of unsatisfied constraints in which they
appear. It is trivial to perform this operation in linear time
on a RAM in the uniform cost model. A Pointer Machine can
perform this operation in linear time because its input contains
the graph between the variables and the constraints; thus it can
find the neighbors of a variable in constant time, rather than
the logarithmic time that would be required to access arbitrary
nodes in the graph.

During normal iteration of the loop, a variable that appears
in the greatest number of unsatisfied constraints is flipped;
the status of each constraint that contains that variable is
updated; and each variable that appears in each of those
constraints is moved to the set that reflects its new number
of unsatisfied constraints. These operations can be performed
in constant time because only a constant number of pieces of

Hf the variable was 0, make it 1. If it was 1, make it 0.

1714

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42,'NO. 6, NOVEMBER 1996

Set-up phase

Initialize sets Sg, ...,

Leop

Until sets Speyay, - . - > Sc are empty do:

Choose a variable v from set S;
Flip the value of variable v

Otherwise, report “failed to decode”.

Input: a (c,d)-regular graph B between variables and constraints, and
an assignment of values to the variables.

For each constraint, determine whether or not it is satisfied by the variables.
S, to empty sets.

For each variable, count the number of unsatisfied constraints in which it appears.
If this number is %, then put the va.na.ble in set S;.

Find the greatest ¢ such that 5; is not empty

For each constraint C that contains variable v
Update the status of constraint C'
For each variable w in constraint C
Recompute the number of unsatisfied constraints in which w appears.
Move w to the set indexed by this number.

If all variables are in set Sp, then output the values of the variables.

Fig. 2. An implementation of the simple sequential decoding algorithm.

data are affected, and the constant number of pointers that are
referenced are all linked in the graph

If, at some point, there is no variable in more unsatisfied
than satisfied constraints, the implementation leaves the loop
-and checks whether it has successfully decoded its input. If
all the variables are in the set Sy, then there are no unsatisfied
constraints and the implementation will output a codeword.

To see that the loop will only be executed a linear number
of times, observe that the number of unsatisfied constraints
decreases with each iteration. As there are only a linear number
" of constraints, this decrease can only occur a linear number
of times. Note that this is true regardless of the expansion
properties of the underlying graph. O

Theorem 10: Let B be a (c, d, o, 3¢/4) expander Let P
be the code consisting of all even-weight words of length d.
Then, the simple sequential decoding algorithm will correct an
a/2 fraction of error from the code C(B, P).

Proof: 'When the algorithm i8 provided with a word that
is within distance an/2 of a codeword, we call corrupt the
variables in which the word differs from that codeword. We
say that the decoding algorithm is in szate (v,) if v variables
are corrupt and v constraints are unsatisfied. We view v as
a potential associated with v. Our goal is to show that the
potential will eventually reach zero. We will show that if the
decoding algorithm begins with a word with at most an/2
corrupt variables, then there will always be some variable with
more unsatisfied neighbors than satisfied neighbors, until no
corrupt variables remain.

First; we consider what happens when the algorithm is in
a state (v, u) with v < an. Let s be the number of satisfied
neighbors of the corrupt variables. By the expansion of the

graph, we know that ,
u+ s> (3/4) cv.

Because each satisfied neighbor of the corrupt variables must
share at least two edges with the corrupt variables, and each
unsatisfied neighbor must share at least one, we know that

cv > u+ 28.
By combining these two inequalities, we obtain
u > cv/2. : : (@)

Since each unsatisfied constraint must share at least-one edge
with a corrupt variable, and since there are only cv edges
leaving the corrupt variables, we see from inequality -(1) that
more than half the edges leaving the corrupt variables must
enter unsatisfied constraints. This implies that there must be
some corrupt variable such that more than half of its neighbors
are unsatisfied. However, this does not mean that the decoding
algorithm will decide to flip a corrupt variable. It does mean
that, if v < an, the algorithm will flip some variable.

We will show that the algorithm successfully decodes its

input if it begins with at most an/2 corrupt variables. The only

way the algorithm could fail is if it flips so many uncorrupt
variables that v becomes greater than an. Assume by way
of contradiction that this happens. Then there must be some
time at which v equals an. At this time, (1) tells us that
u > can /2. This leads to a contradiction because v is initially
at most can/2 and can only decrease during the execution of
the algorithm. - : O

In Appendix I, we show that if the simple sequential
decoding algorithm can correct a constant fraction of error
from a code C(B, P), then the graph B must be an.expander.

SIPSER AND SPIELMAN: EXPANDER CODES

However, our bound on the expansion B must have is far from
the bound shown sufficient in Theorem 10.

B. Farallel Decoding

The simple sequential decoding algorithm has a natural
parallel analog: in parallel, flip each variable that appears in
more unsatisfied than satisfied constraints. We will see that
this algorithm can also correct a constant fraction of error if
the code is derived from a sufficiently good expander graph.

Simple Parallel Decoding Algorithm:

* In parallel, flip each variable that is in more unsatisfied
than satisfied constraints.
* Repeat until no such variable remains.

Theorem 11: Let B be a (c, d, a, (3/4 + €)c) expander,
for any € > 0. Let P be the code consisting of all even-
weight words of length d. Then, the simple parallel decoding
algorithm will correct any g < (1 + 4¢)/2 fraction of error
after 1og, (;_4.) (2on) decoding rounds.

Proof: Let V denote the set of corrupt variables in the
input. Assume that |V| < an(1 + 4¢)/2. We will show that
after one decoding round, the algorithm will produce a word
that has at most (1 — 4¢)[V| corrupt variables.

Let I be the set of corrupt variables that fail to flip in
one decoding round, and let C be the set of variables that
were originally uncorrupt, but which become corrupt after-one
decoding round. After one decoding round, the set of corrupt
variables will be FUC. Set § so that the number of constraints
that contain variables in V' is 6¢|V/|. By expansion, § > 3/4+e.

We first establish that [V U C| < an. Assume by way of
contradiction that |V U C| > an, and consider a subset C” of
C such that |V U C’| = an. By expansion, [N(V U C")| >
(3/4 4 €)can. On the other hand, each variable in C' has at
most ¢/2 neighbors that are not neighbors of S; so,

[N(VUCH| < 8|V + c(an — [V])/2.
Combining these two inequalities, we obtain
V| > an(1+ 4¢)/(46 — 2).
As 6 < 1, this contradicts our assumption that
V| < an(l + 4¢)/2.

Because |V U C| < an, we can bound the number of
neighbors of V U C by

B/4+ac(lVI+[0)) < IN(V U O)| < 6|V + (¢/2)IC)-
@

We now bound é¢|V| in terms of |F|. To do this, we bound
the number of neighbors of V' by observing that each variable
in F' must share at least half of its neighbors with other
corrupt variables. Thus each variable in F' can account for
at most (3/4)c neighbors. Moreover, each variable in V\F
can account for most ¢ neighbors, which implies

e[V < (3/4)c|Fl + (V] = |F) = [V| = |F|/4.

1715

Substituting this inequality into inequality (2), we conclude
B/4+(VI+IC) < V|- |F|/4+|C|/2

which implies
[V|(1—4e) > |F|+ (1+4€)|C| > |[FUC|. O

Proposition 12: For ¢ and d constant, the simple parallel
decoding algorithm can be implemented as a circuit of size
O(nlogn) and depth O(logn).

Proof: Each parallel decoding round can be implemented
as a circuit of linear size and constant depth: computing which
constraints are unsatisfied can be performed by a constant
number of layers of XOR gates, and the decision of whether
or not a given variable should flip can be made a circuit that
computes the majority of a constant number of inputs. 0

Remark 13: One can show that this parallel algorithm can
be simulated sequentially in linear time. In this sense, Theorem
11 is stronger than Theorem 10. We have included Theorem 10
because it is a simple analysis of a more natural algorithm, and
because the sequential algorithm should be substantially faster
than a sequential simulation of the parallel algorithm. More-
over, our experiments indicate that the sequential algorithm
usually corrects more errors than the parallel algorithm (see
Section VIII), even though this superiority is not evidenced in
our theoretical analyses.

Remark 14: Zyablov and Pinsker [35] demonstrated that if
B is a randomly chosen (c, d)-regular graph, then, with high
probability over the choice of graph, a parallel algorithm very
similar to the preceding algorithm will successfully correct a
constant fraction of error in the code C(B, P). Pippenger has
pointed out that Kuznetsov’s [17] analysis of a construction of
fault-tolerant memories also serves as a proof of correctness of
our simple parallel decoding algorithm. Pippenger [26] made
a connection between Kuznetsov’s work and expander graphs.

VI. EXpPLICIT CONSTRUCTIONS OF EXPANDER CODES

In this section, we present an explicit construction of
asymptotically good expander codes (Theorem 19). We will
construct codes of the form C(B, §), where & is itself a
good code of constant block length and B is the edge-vertex
incidence graph of one of the expander graphs constructed in
Theorem 2. Almost any good code & will suffice; however, to
obtain the best possible performance, one should choose the
best code available.

We begin with a bound on the minimum distance of these
codes.

Lemma 15: If S is a linear code of rate r, block length
d, and minimum relative distance ¢, and if B is the edge-
vertex incidence graph of a d-regular graph with second-largest
eigenvalue A, then the code C(B, §) has rate at least 2r — 1
and minimum relative distance at least

A 2

1716

Proof: Let G be the d-regular graph from which B is
derived. Let n be the number of vertices of &, so the number
of variables of C(B, S) is dn/2 and the number of constraints
is n. Lemma 5 implies that any set of

d2n (”y + 2 (fy—72)>

variables will have at least yn constraints as neighbors. Since
each variable has two neighbors, the average number of
variables per constraint will be

Thus if
dy + (M)~) < ed 3

then a word of relative weight v2 + (\/d)(y — %) cannot be
a codeword of C(B, S). Inequality (3) is satisfied for v <
(1=X/d)/(e—A/d). So, in particular, C(B, S) cannot have a
nonzero codeword of relative weight ((e — A/d)/(1 — X/d))?
or less. O

The decoding algorithm for these codes is slightly more
complicated that the decoding algorithm used in Section
V. Rather than just flipping variables that appear in many
unsatisfied constraints, it will flip the variables most likely
to satisfy those constraints. As we are unaware of a natural
sequential - algorithm -for decoding these codes, we present a
logarithmic time parallel algorithm and then demonstrate that
it can be simulated sequentially in linear time. The algorithm
proceeds in rounds.

Parallel Decoding Round for C(B, S):
.|(where S has block length d and minimum relative
distance ¢)

* For each constraint, if the variables in that constraint
differ from a codeword of & in at most de/4 places,
then send a “flip” ‘message to each variable that differs.

* In parallel, flip the value of each variable that receives
at least one “flip” message.

Proposition 16: For S fixed, a parallel decoding round can
be implemented ag a linear-size circuit of constant depth.

Lemma 17: Let S be a linear code of rate r, block length
'd, and minimum relative distance ¢, and let B be the edge-
vertex incidence graph of a d-regular graph with second-largest
eigenvalue A. If a parallel decoding round for C(B, §) is given
as input a word of relative distance « from a codeword, then
it will output a word of relative distance at most

2 n 16 +4)\
al 20222, 24
3 €2 ed

from that codeword.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL."42, NO. 6, NOVEMBER 1996

Proof: Let G be the d-regular graph from which B is
derived. Let n be the number of vertices of G, so C(B, S)
has dn/2 variables and n constraints.

Let X be the set of adn/2 corrupt variables. The variables
that are corrupt in the output.of the decoding round will be
those not in X to which a “flip”.message is sent and those in X
that do not receive a “flip” message. We will call a constraint
confused if it sends a “flip” message to a variable that is not in
X. We will call a constraint unhelpful if it contains a'variable
in X, but does not send-a “flip” message to that variable.

In order for a constraint to be confused, the constraint must
have at least 3/4ed variables of X as neighbors. Each variable
of X is a neighbor of two constraints, so there can be at most

dnb
20‘7 __dan
;i—ed 3¢

confused constraints. Each of these can send at most de/4
“flip” signals, so at most '

dan de dn 2w
3¢ 42 3
variables not in X will receive “flip” signals.

For a constraint to be unhelpful, it must have more than
de/4 neighbors in X. Thus there are at most

dn
Za— _ dan
dE €
1 :

unhelpful constraints. So, by Lemma 5, there can be at most

dn AN W

2 < €) + d.(€) '
variables both of whose neighbors are unhelpful.- As this set
contains all the variables in X that fail to receive a “flip”
message, we have proved the lémma. : [

Remark 18: Unless a < €2(1/3 ~ 4)\/ed)/16 and by im-
plication € > 12A/d, the output Word can be farther from the
codeword than the input is.

We will now build asymptotically good expander codes from
the graphs constructed in Theorem 2 and good codes known
to exist by the Gilbert—Varshamov bound (see [25]). We will
then show that these codes can be decoded by the 1terat10n of
a logarithmic number of parallel decoding rounds.

Theorem 19: For all € such that 1 —2H (¢) > 0, where H ()
is the binary entropy function, there exists a polynomial-time
constructible family of expander codes of rate 1 — 2H (¢) and

. minimum relative distance arbitrarily close to ¢2 in which any

o < €% /48 fraction of error can be corrected by a circuit of size
O(nlogn) and depth O(logn). Moreover, the action of this
circuit can be simulated in linear time. on a Pointer Machine
or a RAM under the uniform cost model. -

Proof: From.the Gilbert—Varshamov bound, we know
that for all sufficiently long block. lengths .there exist linear
codes of minimum relative distance ¢ and rate 1 — H(e). We
will use one such code in our asymptotic construction.

SIPSER AND SPIELMAN: EXPANDER CODES

Recall that Theorem 2 allows us to build d-regular expander
graphs with second-largest’eigenvalue at most Ay = 2+v/d — 1.
So long as o < €2/48, there is a d such that

o < €2(1/3 —4Xg/ed)/16

and ¢ > 12)4/d. Fix such a d along with a code S of block
length d, minimum relative distance ¢, and rate 1 — H(¢).

From now on, B will be the edge-vertex incidence graph
of a degree d graph constructed in Theorem 2. The bounds
on the rate and minimum relative distance of C(B, S) follow
from Lemma 15. By Lemma 17, a parallel decoding round for
C(B, 8) will transform a word of relative distance o from a
codeword into a word of relative distance at most

2 L 16 n 4Xg
al 2+ = 4 22¢
3 €2 ed
from that codeword. Let ,
B = (2/3+ 16a/e® + Agd/4e).

Because we chose d so that @ < €2(1/3 — 4\1/ed)/16, we
have § < 1. Thus the iteration of log, /8 an parallel decoding
rounds will correct an errors in the code C(B, §). Because
S is a fixed code, Proposition 16 implies that this decoding
algorithm can be implemented by a circuit of size O(nlogn)
and depth O(logn). .

We now explain how this aigorithm can be simulated in
linear time on a Pointer Machine or a RAM under the uniform
cost model. During each round, the simulating algorithm will
construct a list containing a pointer to each constraint that
could possibly be unsatisfied at the beginning of the next
round. We will show that the amount of work performed by
the algorithm is linear in the total size of these lists and that
the total size of all these lists will be linear in n.

Before the algorithm has read ‘its input, any constraint
could be unsatisfied, so it must begin with a list containing
all the constraints. However, when it builds its list for the
second round, it need only. include those constraints that
were unsatisfied in the first round and those that contain a
variable that received a “flip” message in the first round. In
general, a constraint can only be unsatisfied in round ¢ if it
was unsatisfied in round ¢ — 1 or if a variable it contains
received a “flip” message in round ¢ — 1. Given the list of
constraints that could possibly have been unsatisfied in round
1 — 1, only linear work in the length of this list is needed to
construct the list for round ¢: one need only check which of
the constraints were actually unsatisfied and which variables
received “flip” messages. Similarly, the work required to
simulate the decoding in round 4 will be linear in the length
of its list.

To see that the total size of these lists is linear, observe that
the number of corrupt variables decreases by a factor of (1—03)
after each round. So, the sum of the number of variables that
are corrupt during each round is the sum of a geometric series
whose largest term is an, and thus is linear in an. As only
constraints that contain these variables may be unsatisfied -or
send “flip” messages, the total size of the lists is also linear in
n. (|

1717

Remark 20: Some may consider the use of the Gilbert—
Varshamov bound in the preceding argument to be “noncon-
structive.” To us, a constant amount of nonconstructivity is

"negligible. However, we point out that one could replace this

argument by using any known asymptotically good code, or
just fixing d and picking an appropriate error-correcting code
(say, from the back of [25]). In this case, one might want to
strengthen the use of Lemma 5 with techniques from [14].

A. Alon’s Generalization

Noga Alon has pointed out that the “edge to vertex”
construction that we use to construct expander codes is a
special case of a construction due to Ajtai, Komlés, and
Szemerédi [5]. They construct unbalanced expander graphs
from regular expander graphs by identifying the large side of
their graph with all paths of length k in the original graph and
the small side of their graph with the vertices of the original
graph. A node identified with a path is connected to the nodes
identified with the vertices along that path. The construction
used in Theorem 17 is the special case in which £ = 1.

Alon suggested that the codes produced by applying the
technique of Theorem 19 to this more general class of graphs
can be analyzed by applying the following lemma of Kahale
[14].

Lemma 21 (Kahale): Let G, 4 be a d-regular graph on n
nodes with second-largest eigenvalue bounded by A. Let S be
a subset of the vertices of G, 4 of size yn. Then, the number
of paths of length k£ contained in the subgraph induced by S
in G, 4 is at most

nd* (’v + 3 (1- 7))k1

A proof of this fact can also be found in [3].
Theorem 22: For all integers £ > 2 and all ¢ such that
1 — kH(e) > 0, there exists a polynomial-time constructible
family of linear codes with rate 1 — kH(¢) and. minimum
relative distance arbitrarily close to e!+1/(:=1) for which a
circuit of size O(nlogn) and logarithmic depth will decode
some Q(el*+1/(F=1)) fraction of error. Moreover, this circuit
can be simulated in linear time on a sequential machine.
Proof: [Sketch] As in Theorem 17, we will use the
graphs known to exist by Theorem 2. We will form a code
by using the k-path-vertex incidence graph of G,, ,+1 and by
using a Gilbert—Varshamov good code at the constraints. The
Gilbert-Varshamov bound implies that for sufficiently large
block length p + 1, there exist linear codes of rate r and
minimum relative distance e provided that » < 1 — H(e).
Moreover, as p + 1 grows large, the term involving A/d in
Lemma 21 goes to zero. If this term were zero, then we would
know that every set containing an e**1)/¥ fraction of the
variables has at least an ¢'/* fraction of the constraints as
neighbors. Because there are nd* variables of degree k and
n constraints of degree kd®, Theorem 7 would imply that no
word of weight up to ¢(**1)/* can be a codeword. However,
because A/d never actually reaches zero, we can only come
arbitrarily close to this bound.

1718

To decode these codes, we modify the parallel decoding
algorithm so that each constraint sends a “flip” message to its
variables only if the setting of its variables is within ¢/h of a
codeword, for some constant ~ depending on k. An analysis
similar to that in the proof of Lemma 17 shows that if an «
fraction of the variables were corrupt at the start of a round,
then at most an

a(k+1) ohfah A(ah
h—1 e \ e d €

fraction of the variables will be corrupt after the decoding

rouid. We can choose « to be some fixed fraction of ¢l+1/* -

and a value for A so that this term is less than .

The idea behind the sequential simulation of this algonthm

is the samie as that in Theorem 19. [l

VII. LINEAR TIME IN THE LOGARITHMIC COST MODEL

To construct expander codes that can be decoded in linear
time on a RAM in the logarithmic cost model, we will take the
product of an expander code with a good code of length log n.

The reason that we cannot decode the codes presented in
Sections V. and VI in linear time in the logarithmic Cost
model is that our decoding algorithms make O(n) memory
accesses, for which they are charged O(logn) time each. To
solve this problem, we would like to refrieve logn bits with
each memory access. Actually, we will replace each bit in
those expander codes with a byte of (logn)/2 bits. Where the
previous decoding algorithms would compute the exclusive—or
of two bits, our new algorithm will compute the bit-wise
exclusive~or of two bytes. In this way, we can obtain a code
that can be decoded in linear time. However, this code is not
asymptotically good: because this algorithm essentially acts
independently on different bits within the bytes, one could
corrupt the first component of every byte, which is a total
of 2n/logn bits, in such a way that the decoding algorithm
would not be able to correct the errors.

To fix this problem, we encode each of the bytes with a
good linear error-correcting code of length logn and rate 1/2.
This type of construction is called the product of two codes
(see [25]). It can also be viewed as the concatenation of an
expander code over an alphabet of (logn)/2 bits with a binary
code of length logn and rate 1/2. Tn linear time, the decoding
algorithm can produce a table that it can use to perform nearest
neighbor decoding for this code. Such a table lookup will
require O(logn) time.

- To decode this product code in linear time, we first decode
each of the 2n/logn bytes by a table lookup. This takes O(n)
time. We then decode the bytes using the expander code. This
decoding algorithm will correct a constant fraction of error
because, unléss a constant fraction of error appears in the
encoding of a constant fraction of the bytes, there will be
very few errors left after the bytes have been decoded.

Note that there are plenty of explicit asymptotically

good codes that we could compose with the expander -

code. But, since we have linear time and the code only

has length (logn)/2, we could find a code that meets the

Gilbert—Varshamov bound (see [34, p. 127]).
We have proved the following Corollary:

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 6, NOVEMBER 1996

Corollary 23: The pfoduct of an asymptotically good linear
code of length O(logn) with one .of the expander cades

~ constructed in Section V or VI of length O(n/logn) yields -

an asymptotically good code that can be decoded in linear
time on a RAM in the logarithmic cost model.

VIII. NOTES ON IMPLEMENTATION
AND EXPERIMENTAL RESULTS

We imagine using expander codes in coding situations
where long block length is required. For small block lengths,
special codes are known that will provide better performance.
Expander codes should be especially -useful for coding on
write-once media, such as Compact Discs, where fast decoding
is essential, the time required to encode is not critical, and
codes of block length roughly 10000 are already being used
[12].

If one intends to implement expander codes, we suggest
using the randomized construction presented in Section V. We
obtained the best performance from graphs that had degree 5
at the variables. It might be possible to get good performance
with randomly chosen graphs and slightly more complex
constraints, but we have not yet observed better performance
from these.

One drawback of using a randomly chosen graph to generate
an. expander code is that, while the graph will be a good
expander with high probability, we know of no polynomial
time algorithm that will certify that a graph has the-level of
expansion that we need for this construction.? On the other
hand, it is easy to perform experiments to test the performance
of an expander code and thereby weed out those that do not
work well on average.

We now mention a few ideas that we hope will be helpful
to those interested in implementing these codes.

¢ When one chooses a random graph as outlined in Ap-
pendix II, there is a good chance that the graph produced
will have a “double edge.” That is, two edges between the
same two vertices. We suggest using a simple heuristic to
remove one of these edges, such as swapping its endpoint
with that of a randomly chosen edge. If one is choosing a.
relatively small graph, say of 2000 nodes, then there is a
fair chance that there will be two variables that share two
neighbors. Again, we suggest discarding such graphs. In
general, if one is choosing a relatively small graph, then
there is a reasonable chance that it will have some very
small set of vertices with low expansion. We were always
able to screen these out by'experiment.

« The sequential decoding algorithm presented in Section
V-A can be improved by the same means as many “slope-
descent” algorithms. In experiments, we found that a good
way to escape local minima was to induce some random
errors. The sequential decoding algorithm also benefits
from a little randomness in-the choice of which variable
it flips next. We also found that we could decode more
errors when we allowed the algorithm to make a limited

" 2Computation of the eigenvalues of the graph does not work because Kahale
[14] has proved that the eigenvalues cannot certify expansion greater than d/2.

SIPSER AND SPIELMAN: EXPANDER CODES

1719

1800 T T
¢ '
1600}

8

number errors corrected

4001

200

0

1oy
<

X
0.5 0.55 0.6

1
0.65 0.7 0.76

rate

Fig. 3. Number of errors that some expander codes of length 40 000 could almost always correct. For example, the point in the upper left-hand corner of
the figure indicates that an expander code of rate 1/2 corrected all of the 50000 patterns of 1720 errors on which it was tested.

amount of negative progress. This finding is evidenced
in Fig. 4.

* The parallel decoding algorithm presented in Section V-B
seems better suited for implementation in hardware than
the sequential algorithm. The performance of this parallel
algorithm can be improved by changing the threshold at
which it flips variables. An easy improvement is to start
the threshold high and decrease it only when necessary.
The algorithm performs even better if one only flips the
variables that have the maximum number of unsatisfied
neighbors. Of course, many hardware implementations
will not allow this flexibility.

* One can encode expander codes in quadratic time in the
same way that one can encode any linear code: multiply
the vector of message bits by a matrix so as to produce
their corresponding vector of check bits. One can speed
up this process by not actually solving for all check bits.
The correct values for the remaining check bits can be
found by using one of the decoding algorithms. Since
the decoding algorithm knows which bits are correct and
which bits it needs to compute, it can actually perform
much better than if it were trying to correct errors whose
location is unknown.

These codes really are easy to implement. We implemented
these codes in C after a few hours work and set about
testing their performance. In each test, we chose a random
bipartite graph of the correct size and tested the performance
of various decoding algorithms against random errors. For our
tests, we never performed encoding—it suffices to examine the
performance of the decoding algorithms around the 0 word.
We present some results of our experiments so that the reader
will know what to expect from these codes. However, we

encourage researchers to implement and try them out on the
error patterns that they expect to encounter.

A. Some Experiments

In our experiments, we found that expander codes of the
type discussed in Section V performed best when derived
from a randomly chosen graph with degree 5 at the variables.
We varied the rates of our codes by changing the degrees -
of the graphs at the constraints. In Fig. 3, we present the
results of experiments performed on some expander codes of
length 40 000. We began by choosing an appropriate graph at
random as described in Appendix II. We then implemented a
variation of the sequential decoding algorithm from Section V-
A in which we allowed the algorithm to flip a limited number
of variables even if they appeared in only two unsatisfied
constraints (we call these “negative progress flips”). The
algorithm would only make a negative progress flip if there
were no variable in more unsatisfied than satisfied constraints.
We then tested each code on many error patterns of various
sizes. For each size, we choose 50000 error patterns of this
size uniformly at random. Points in the graph indicate the
number of errors that a code corrected in all 50000 tests. One
can see that the expander codes corrected a remarkably large
number of errors.

The results of these experiments aré much better than one
would expect if one plugged the estimates for the expansion of
random graphs from Appendix IT into Theorem 10. We believe
that there are two principal reasons for this disparity. The first
is that our estimation of the expansion obtained by a random
graph could be improved. The second is that our experiments
analyze the average case performance of these codes, whereas
Theorem 10 is only concerned with the worst case.

1720

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 6, NOVEMBER 1996

o @
) ~
T

probability decoded
&
T

0.4}

03}

0.2}

01f
0 . . :
1700 1750 1800 1850

1900

1950

2000

number of errors

Fig. 4. A rate 1/2 expander code of length 40 000. The points marked by o indicate the probability that the standard sequential decoding algorithm
corrected a given number of errors. The points marked by x indicate the probability when the algorithm was allowed to flip up to 700 variables that

appeared in one more satisfled than unsatisfied constraint.

In Fig. 4, we compare the performance of a version of the
sequential decoding algorithm in which we allow negative
progress flips with a version in which we do not. We chose a
rate 1/2 expander code of length 40 000. For each number of
errors, we performed 2000 tests of each algorithm and counted
the number of times that each successfully corrected the errors.
While. allowing negative progress flips did not seem to have
much impact on the number of errors that the algorithms could
“almost always™ correct, it did greatly increase the chance that
the algorithm could correct a given number of errors.

IX. OPEN QUESTIONS

This paper leaves many questions unanswered. In particular,
we would like to know if one can -obtain better constants
from a construction such as that of Theorem 19. Another
interesting question is whether one can. construct expander
codes with redundant constraints. The bound on the rate of an
expander code in Theorem 7 assumes that all the constraints
are linearly independent. Expander codes with a moderate
amount of redundancy in their constraints could have many
mteresting applications. See [30, ch. 5] for a discussion of
these.

APPENDIX 1
NECESSITY OF EXPANSION

We will now show that the simple sequential decoding
algorithm works only if the graph B is an expander graph.
Note that the level of expansion that we prove necessary in the
following argument is much less than the level of expansion
that we need in the argument of Section V-A.

Theorem 24: Let d > ¢, and let B be a bipartite graph
between n variables of degree ¢ and (c¢/d)n constraints of

degree d such that the simple sequential decoding algorithm
successfully decodes all sets of at most an errors in the code
C(B, P). Then, all sets of an variables must have at least
Coe—1
.2
an| 1+ —ZC{_—

neighbors. .
Proof: We will first deal with the case in which ¢ is
even. In this case, every time a variable is flipped the number
of unsatisfied constraints decreases by at least 2. Consider
the performance of the decoding algorithm on a word of
weight an. Because the algorithm stops when the number
of unsatisfied constraints reaches zero, the algorithm must
decrease the number of unsatisfied constraints by at least
2am as it corrects the an corrupt variables. Thus every word
of weight an must cause at least 2an’ constraints to be
unsatisfied, so every set of an variables must have at least
2an neighbors. Because we assume that d > ¢
9 c—1
2514+ —24
s34t
’ ©2d

and we are done with the case in which c is even. ,

When c is odd, we can only guarantee that the number of
unsatisfied constraints will decrease by 1 at each iteration.
This means that every set of an variables must induce at
least an unsatisfied constraints. Alone, this is insufficient to
demonstrate expansion by a factor greater than 1.

So, let us consider what must happen for the algorithm to
be in a state in which an variables are corrupt; but there is no

SIPSER AND SPIELMAN: EXPANDER CODES

variable that the decoding algorithm can flip that will cause the
number of unsatisfied constraints to decrease by more than 1.
Each corrupt variable must have at least {(¢— 1)/2 of its edges
in satisfied constraints. Because each satisfied constraint can
have at most d incoming edges, this implies that there must be
at least an(c — 1)/2d satisfied neighbors of the an variables.

This, together with the fact that there are at least e unsatisfied

constraints, implies that the an variables must have at least
an(l + (¢ — 1)/2d) neighbors.

On the other hand, if the algorithm decreases the number of
unsatisfied constraints by more than 1, then it must decrease
the number by at least 3. For some word of weight an, assume
that the algorithm flips Jan variables before it flips a variable
that decreases the number of unsatisfied constraints by only 1.

- The original set of an variables must have had at least

3fan + (1 - Blan

neighbors.> On the other hand, once the algorithm flips a
variable that causes the number of unsatisfied constraints
to decrease by 1, we can apply the bound of the previous
paragraph to see that the variables must have at least

(1 ~ﬂ)om(1+ c—z’d—1>

neighbors. We note that this bound is strictly decreasing in
(3, while the previous bound is strictly increasing in 3, so the
lower bound that we can obtain on the expansion occurs when
[is chosen so that

3Ban+ (1 — fan = (1 + %)(1 — Ban =

c—1
v 1+2ﬂ_(1—ﬂ)(1+—ﬁ_) =
c—1 c—1
ﬂ(” 2d) = %4 =
c—1
= __2d
5~—3+c—r
2d

When we plug (3 back in, we find that the set of an variables
must have at least

c—1 c—1
an | 3 2cd—1 +|1- 2Cd_1
3+———2d 3+ 5d
c~—1
3+3
=an 2d
3+ 1
2d
2c—l
=an|l+ 2d
Cay]
2d ,
neighbors. (|

30One might be tempted to assume a bound of 38an + (1 — B)an(l +
(¢ — 1)/2d); but, there could be overlap between the 3Ban constraints that
were flipped previously and the extra (1 — B)an(c— 1)/2d.

1721

APPENDIX 11
THE EXPANSION OF RANDOM GRAPHS

In this appendix, we will prove upper and lower bounds on
the expansion factors achieved by random graphs that become
tight as the degrees of the graphs become large.

We use the following procedure to choose a random graph:

How to Choose a Random (c, d)-Regular Graph:

To choose a random (¢, d)-regular bipartite graph, we first
choose a random matching between dn “left” nodes and dn
“right” nodes. We collapse consecutive sets of d left nodes
to form the n c-regular vertices, and we collapse consecutive
sets of d right nodes to form the (c/d)n d-regular vertices. It
is possible that this graph will have multiedges that should be
thrown aWay, but this does not hurt the lower bound on the
expansion of this graph that we will prove.

We now prove a simple upper bound on the expansion any
graph can achieve.

Theorem 25: Let B be a bipartite graph between n c-regular
vertices and (¢/d)n d-regular vertices. Forall 0 < a < 1, there
exists a set of an c-regular vertices with at most

n 2 (1-(1-a)®)+0(1) neighbors.

Proof: Choose a set X of an c-regular vertices uniformly
at random. Now, consider the probability that a given d-regular
vertex is not a neighbor of the set of c-regular vertices. Each
neighbor of the d-regular vertex is in the set X with probability
«. Thus the probability that the d-regular vertex is not a
neighbor of X is

d-1

11

=0

n—oan—1
n—1

which tends to (1—)? as n grows large. This implies that the
expected number of nonneighbors tends to n(c/d)(1 — «)¢.0]

This simple upper bound becomes tight as ¢ grows large.

For convenience, we will call the c-regular vertices “vari-
ables” and the d-regular vertices “constraints.”

Theorem 26: Let B be a randomly chosen (¢, d)-regular
bipartite graph between n variables and (c¢/d)n constraints.
Then, for all 0 < « < 1, with exponentially high probability
all sets of an variables in B have at least

n (2 (1-(1—a)%) - \/2caH(a) /logye)

neighbors, where H(-) is the binary entropy function.

Proof: First, we fix a set of an variables, V', and esti-
mate the probability that V’s set of neighbors is small. The
probability that a given constraint is a neighbor of V' is aﬁleast
1 — (1 — @)?. Thus the expected number of neighbors of V is
at least n (c¢/d) (1 — (1 — a)?). Alon suggested that we form
a martingale (see [7]) to bound the probability that the size of
the set of neighbors deviates from this expectation.

Each node in V will have ¢ outgoing edges. We wiil
consider the process in which the destinations of these edges
are revealed one at a time. We will let X; be the random
variable equal to the expected size of the set of neighbors of

1722

V' given that the first ¢ edges leaving V' have been revealed.

X1, -+, Xon form a martingale such that
| Xip1 — X <1
for all 0 < ¢ < can. Thus by Azuma’s Inequality (see [7])
Prob [E[X can) can| < e N2,

"Xcom >)\

But, E[X sn] is just the expected number of neighbors of V.
Moreover, X .on is the expected size of the set of neighbors of
V' given that all edges leaving V have been revealed, which
is exactly the size of the set of neighbors of V.

Since there are only () choices for the set V, it suffices

to choose A\ so that
(n)6_/\2/2 < 1.
an .

By Stirling’s formula, this holds for large n if A satisfies

2
nfl (o) % = \/2nH(a)/log,, < . O

log, e

ACKNOWLEDGMENT

The authors wish to thank the many people who made
helpful comments after reading early drafts of this paper.
Among them, they would especially like to thank N. Alon,
O. Goldreich, M. Luby, L. Schulman, and S.-H. Teng. The
authors wish to thank J. Kilian for asking whether he could
use table lookups to speed up the decoding algorithms—the
answer led to the material in Section VII. The authors would
also like to thank N. Alon for supplying them with the material
that appears in Section VI-A and for Theorem 26.

REFERENCES

[11 N. Alon, J. Bruck, J. Naor, M. Naor, and R. M. Roth, “Construction
of asymptotically good low-rate error-correcting codes through pseudo-
random graphs,” IEEE Trans. Inform. Theory, vol. 38, no. 2, pp.
509-516, Mar. 1992.

[2] N. Alon and F. R. K. Chung, “Explicit construction of linear sized
tolerant networks,” Discr. Math., vol. 72, pp. 15-19, 1988.

[3] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman, “Derandomized
graph products,” Comput. Complexity, pp. 60-75, 1995.

[4] A.V. Aho,J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms (Addison-Wesley series in computer science and
information processing). -Reading, MA: Addison-Wesley, 1974.

[S] M. Ajtai, J. Komlés, and E. Szémerédi, “Deterministic simulation in
logspace,” in Proc. 19th Ann. ACM Symp. on Theory of Computing,
1987, pp. 132-139.

[6] N. Alon, “Eigenvalues and expanders,”
pp. 83-96,. 1986.

[7] N. Alon and J. H. Spencer, The Probabzlzstzc Method. New York:
Wiley, 1992.

[8] F. Bien, “Constructions of telephone networks by group representa-
tions,” Notices Amer. Math. Soc., vol. 36, no. 1, pp. 5-22, 1989.

Combinatorica,. vol. 6, no. 2,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 6, NOVEMBER 1996

[9] R. Boppana and M. Sipser, “The combplexity of finite functions,”
in Handbook of Theoretical. Computer Science, Volume A: Algorithms
and Complexity, J. van Leeuwen, Ed. " Cambridge, MA: MIT Press;
Amsterdam, The Netherlands: Elsevier, 1990, pp. 757-804..

[10] R. G. Gallager, Low Density Parity-Check Codes. -Cambridge, MA:
MIT Press, 1963.

[11] Y. Gurevich, “Kolmogorov machines and related issues,” Bull Europ.
Assoc. for Theor. Clop. Sci., vol. 35, pp. 71-82, JTune 1988.

[12] H. Imai, Essentials of Error-Control Coding Techniques.
CA: Academic Press, 1990.

[13] N. Kahale, “On the second eigenvalue - and linear expansion of regular
graphs,” in Proc. 33rd IEEE Symp on Foundations of Computer Science,
1992, pp. 296-303.

, “Expander graphs,” Ph.D. dissertation, MIT, Cambridge, MA,
Sept. 1993

[15] A. Kolmogorov and V. Uspenskn “On the definition of an algorithm,”
Usp. Mat. Nauk, vol. 13, no. 4, pp. 3-28, 1958 (English translation in

[16D. ,
, “On the definition of an algorithm,” Amer. Math. Soc. Transl.,
vol. 29, no. 217-245, 1963.

[17] A. V. Kuznetsov, “Information storage in a memory assembled from
unreliable components,” Probl. Inform: Transm., vol. 9, no. 3, pp
254-264, 1973.

[18] L. Levin, “Theory of computation: How to start,” SIGACT News, vol
22, no. 1, pp. 47-56, 1991.

[19] A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs " Combi-
natorica, vol. 8, no. 3, pp. 261-277, 1988.

[20] G. A. Margulis, Expl1c1t constructions of coneentrators,” ‘Probl. Pered.

- Inform., vol. 9, no. 4, pp. 71-80, Oct.-Dec. 1973 (English translation

San Diego,

14

(16}

in [21]).

[21] , “Explicit constructions - of concentrators,” Probl. Inform.
Transm., vol. 9, pp. 325-332, 1975.

[22] , “Explicit group theoretical constructions of combinatorial

schemes and their application to the design of expanders and
concentrators,” Probl. Inform. Transm., vol. 24, no. 1, pp. 39-46,
July 1988.

[23] M. Morgenstern, “Existance and explicit constructions of g -- 1 regular
Ramanujan graphs for every prime power ¢,” J. Comb. Theory, Ser. B,
vol, 62, pp. 44-62, 1994 .

[24] ., “Natural bounded concentrators,”
1, pp. 111—122, 1995.

[25] F.J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North Holland, 1977.

[26] N. Pippenger, “The memory-refresh problem,” Adv. Res. in VLSI, vol.
6, p. 69, 1988, (abstract of talk).

[27] ———, 1994, personal communications.

[28] I. E. Savage, The Complexity of Computing. New York Wlley, 1976.

[29] A. Schonhage, “Storage modification machines,” SIAM J. Comput., vol.
9, no. 3, pp. 490-508, 1980.

[30] D. A. Spielman, Computat1onally efficient error—correctmg codes and

" holographic proofs,” Ph.D. dissertation, MIT, Cambridge, MA, May

1995 [Online.] Available-WWW: http://theory.lcs.mit.edu/~spielman.

. “Linear-time encodable and decodable error-correcting codes,”
this issue, pp. 1723-1731. :

[32] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
“Trans. Inform. Theory, vol. IT-27, no. 5, pp. 533-547, Sept. 1981.

, “Explicit concentrators from generalized n-gons,” SIAM J. Alg.
Disc. Meth., vol. 5, no. 3, pp. 287-293, Sept. 1984.

[34] J. H. van Lint, Introduction to Coding Theory. New York: Springer-
Verlag, 1992.

[35] V. V. Zyablov and M. S. Pinsker, “Estimation of the error-correction
complexity of Gallager low-density codes,” Probl. Inform. Transm., vol.
11, no. 1, pp. 18-28, May 1976.

[36] V. V. Zyablov, “An estimate of the complexity of constructing binary
linear cascade codes,” Probl. Inform. Transm., vol. 7, pp. 3-10, 1971.

Combinatorica, vol. 15, no.

[31]

{331

