
Annals of Mathematics 182 (2015), 327–350

Interlacing families II:
Mixed characteristic polynomials
and the Kadison–Singer problem

By Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava

Abstract

We use the method of interlacing polynomials introduced in our previ-

ous article to prove two theorems known to imply a positive solution to the

Kadison–Singer problem. The first is Weaver’s conjecture KS2, which is

known to imply Kadison–Singer via a projection paving conjecture of Ake-

mann and Anderson. The second is a formulation due to Casazza et al. of

Anderson’s original paving conjecture(s), for which we are able to compute

explicit paving bounds. The proof involves an analysis of the largest roots

of a family of polynomials that we call the “mixed characteristic polyno-

mials” of a collection of matrices.

1. Introduction

In their 1959 paper, R. Kadison and I. Singer [35] posed the following

fundamental question.

Question 1.1 (Kadison–Singer Problem). Does every pure state on the

(abelian) von Neumann algebra D of bounded diagonal operators on `2 have

a unique extension to a pure state on B(`2), the von Neumann algebra of all

bounded operators on `2?

A positive answer to Question 1.1 has been shown to be equivalent to a

number of conjectures spanning numerous fields, including Anderson’s paving

conjectures [4], [5], [6], Weaver’s discrepancy theoretic KSr and KS′r conjec-

tures [49], the Bourgain–Tzafriri Conjecture [20], [25], and the Feichtinger

Conjecture and the Rε Conjecture [23]; and it was known to be implied by

Akemann and Anderson’s projection paving conjecture [3, Conj. 7.1.3]. Many

approaches to these problems have been proposed; and, under slightly stronger
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hypothesis, partial solutions have been found by Berman et al. [12], Bourgain

and Tzafriri [21], [20], Paulsen [43], Baranov and Dyakonov [9], Lawton [37],

Akemann et al. [2], and Popa [45]. For a discussion of the history and a host

of other related conjectures, we refer the reader to [24].

We prove these conjectures by proving Weaver’s [49] conjecture KS2 which,

as amended by [49, Th. 2], says

Conjecture 1.2 (KS2). There exist universal constants η ≥ 2 and θ > 0

so that the following holds. Let w1, . . . , wm ∈ Cd satisfy ‖wi‖ ≤ 1 for all i, and

suppose

(1)
m∑
i=1

|〈u,wi〉|2 = η

for every unit vector u ∈ Cd. Then there exists a partition S1, S2 of {1, . . . ,m}
so that

(2)
∑
i∈Sj

|〈u,wi〉|2 ≤ η − θ

for every unit vector u ∈ Cd and each j ∈ {1, 2}.

Akemann and Anderson’s projection paving conjecture [3, Conj. 7.1.3]

follows directly from KS2 (see [49, p. 229]).

We also give a proof of Anderson’s original paving conjecture, which says

Conjecture 1.3 (Anderson Paving). For every ε > 0, there is an r ∈ N
such that for every n × n Hermitian matrix T with zero diagonal, there are

diagonal projections P1, . . . , Pr with
∑r
i=1 Pi = I such that

‖PiTPi‖ ≤ ε‖T‖ for i = 1, . . . , r.

A similar conjecture is made by Bourgain and Tzafriri [20, Conj. 2.8]. One

difference between the paving conjecture and KS2 is that the paving conjecture

can be extended to infinite operators T ∈ B(`2) by an elementary compactness

argument [4], which then gives an immediate resolution of Kadison–Singer in a

manner described in the original paper [35, Lemma 5]. On the other hand, the

reduction from Kadison–Singer to Akemann and Anderson’s projection paving

conjecture requires nonelementary operator theory.

Our main result follows. Its proof appears at the end of Section 5.

Theorem 1.4. If ε > 0 and v1, . . . , vm are independent random vectors

in Cd with finite support such that

(3)
m∑
i=1

E viv∗i = Id
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and

(4) E ‖vi‖2 ≤ ε for all i,

then

P
[∥∥∥∥∥ m∑

i=1

viv
∗
i

∥∥∥∥∥ ≤ (1 +
√
ε)2
]
> 0.

The above theorem may be compared to the concentration inequalities of

Rudelson [46] and Ahlswede and Winter [1], which imply in our setting that

‖∑m
i=1 viv

∗
i ‖ ≤ C(ε) · log n with high probability. Here we are able to control

the deviation at the much smaller scale (1 +
√
ε)2, but only with nonzero

probability.

Our theorem easily implies the following generalization of Conjecture 1.2.

Corollary 1.5. Let r be a positive integer, and let u1, . . . , um ∈ Cd be

vectors such that
m∑
i=1

uiu
∗
i = I

and ‖ui‖2 ≤ δ for all i. Then there exists a partition {S1, . . . Sr} of [m] such

that

(5)

∥∥∥∥∥∥∑i∈Sj

uiui
∗

∥∥∥∥∥∥ ≤
Ç

1√
r

+
√
δ

å2

for j = 1, . . . , r.

If we set r = 2 and δ = 1/18, this implies Conjecture 1.2 for η = 18

and θ = 2. To see this, set ui = wi/
√
η. Weaver’s condition (1) becomes∑

i uiu
∗
i = I, and δ = 1/η. When we multiply back by η, the result (5)

becomes (2) with η − θ = 16.

Corollary 1.5 also implies Conjecture 1.3 with r = (6/ε)4; we defer the

(slightly more involved) proof to Section 6.

Proof of Corollary 1.5. For each i ∈ [m] and k ∈ [r], define wi,k ∈ Crd to

be the direct sum of r vectors from Cd, all of which are 0d (the 0-vector in Cd)
except for the kth one, which is a copy of ui. That is,

wi,1 =

à
ui
0d

...

0d

í
, wi,2 =

à
0d

ui
...

0d

í
, and so on.

Now let v1, . . . , vm be independent random vectors such that vi takes the values

{
√
rwi,k}rk=1 each with probability 1/r.
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These vectors satisfy

E viv∗i =

à
uiu
∗
i 0d×d . . . 0d×d

0d×d uiu
∗
i . . . 0d×d

...
. . .

...

0d×d 0d×d . . . uiu
∗
i ,

í
and ‖vi‖2 = r ‖ui‖2 ≤ rδ.

So,
m∑
i=1

E viv∗i = Ird,

and we can apply Theorem 1.4 with ε = rδ to show that there exists an

assignment of each vi so that

(1 +
√
rδ)2 ≥

∥∥∥∥∥ m∑
i=1

viv
∗
i

∥∥∥∥∥ =

∥∥∥∥∥∥
r∑

k=1

∑
i:vi=wi,k

Ä√
rwi,k

ä Ä√
rwi,k

ä∗∥∥∥∥∥∥ .
Setting Sk = {i : vi = wi,k}, for all k ∈ [r], we obtain∥∥∥∥∥∥∑i∈Sk

uiui
∗

∥∥∥∥∥∥ =

∥∥∥∥∥∥∑i∈Sk

wi,kwi,k
∗

∥∥∥∥∥∥
≤ 1

r

∥∥∥∥∥∥
r∑

k=1

∑
i:vi=wi,k

Ä√
rwi,k

ä Ä√
rwi,k

ä∗∥∥∥∥∥∥ ≤ Ç 1√
r

+
√
δ

å2

. �

2. Overview

We prove Theorem 1.4 using the “method of interlacing polynomials”

introduced in [41], which we review in Section 3.1. Interlacing families of

polynomials have the property that they always contain at least one polynomial

whose largest root is at most the largest root of the sum of the polynomials in

the family. In Section 4, we prove that the characteristic polynomials of the

matrices that arise in Theorem 1.4 form such a family.

This proof requires us to consider the expected characteristic polynomials

of certain sums of independent rank-1 positive semidefinite Hermitian matrices.

We call such an expected polynomial a mixed characteristic polynomial. To

prove that the polynomials that arise in our proof are an interlacing family,

we show that all mixed characteristic polynomials are real-rooted. Inspired

by Borcea and Brändén’s proof of Johnson’s Conjecture [17], we do this by

constructing multivariate real stable polynomials and then applying operators

that preserve real stability until we obtain the (univariate) mixed characteristic

polynomials.

We then need to bound the largest root of the expected characteristic

polynomial. We do this in Section 5 through a multivariate generalization of

the barrier function argument of Batson, Spielman, and Srivastava [10]. The
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original argument essentially considers the behavior of the roots of a real-rooted

univariate polynomial p(x) under the operator 1− ∂x. It does this by keeping

track of an upper bound on the roots of the polynomial, along with a measure

of how far above the roots this upper bound is. We refer to this measure as

the “barrier function.”

In our multivariate generalization, we consider a vector x to be above the

roots of a real stable multivariate polynomial p(x1, . . . , xm) if p(y1, . . . , ym) is

nonzero for every vector y that is at least as big as x in every coordinate. The

value of our multivariate barrier function at x is the vector of the univariate

barrier functions obtained by restricting to each coordinate. We then show

that we are able to control the values of the barrier function when operators

of the form 1 − ∂xi are applied to the polynomial. Our proof is inspired by a

method used by Gurvits [32] to prove the van der Waerden Conjecture and a

generalization by Bapat [7] of this conjecture to mixed discriminants. Gurvits’s

proof examines a sequence of polynomials similar to those we construct in our

proof, and it amounts to proving a lower bound on the constant term of the

mixed characteristic polynomial.

3. Preliminaries

For an integer m, we let [m] = {1, . . . ,m}. When z1, . . . , zm are variables

and S ⊆ [m], we define zS =
∏
i∈S zi.

We write ∂zi to indicate the operator that performs partial differentiation

in zi, ∂/∂zi. For a multivariate polynomial p(z1, . . . , zm) and a number x,

we write p(z1, . . . , zm)
∣∣∣
z1=x

to indicate the restricted polynomial in z2, . . . , zm

obtained by setting z1 to x. We let Im(z) denote the imaginary part of a

complex number z,

As usual, we write ‖x‖ to indicate the Euclidean 2-norm of a vector x.

For a matrix M , we indicate the operator norm by ‖M‖ = max‖x‖=1 ‖Mx‖.
When M is Hermitian positive semidefinite, we recall that this is the largest

eigenvalue of M .

We write P and E for the probability of an event and for the expectation

of a random variable, respectively.

3.1. Interlacing families. We now recall the definition of interlacing fam-

ilies of polynomials from [41] and its main consequence. We say that a uni-

variate polynomial is real-rooted if all of its coefficients and roots are real.

Definition 3.1. We say that a real-rooted polynomial

g(x) = α0

n−1∏
i=1

(x− αi)
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interlaces a real-rooted polynomial f(x) = β0
∏n
i=1(x− βi) if

β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · · ≤ αn−1 ≤ βn.

We say that polynomials f1, . . . , fk have a common interlacing if there is a

polynomial g so that g interlaces fi for each i.

In [41], we proved the following elementary lemma, which shows the utility

of having a common interlacing.

Lemma 3.2. Let f1, . . . , fk be polynomials of the same degree that are

real-rooted and have positive leading coefficients. Define

f∅ =
k∑
i=1

fi.

If f1, . . . , fk have a common interlacing, then there exists an i so that the

largest root of fi is at most the largest root of f∅.

In many cases of interest, we are faced with polynomials that are indexed

naturally by a cartesian product, and it is beneficial to apply Lemma 3.2

inductively to subcollections of the polynomials rather than at once. This

inspires the following definition from [41].

Definition 3.3. Let S1, . . . , Sm be finite sets, and for every assignment

s1, . . . , sm ∈ S1×· · ·×Sm, let fs1,...,sm(x) be a real-rooted degree n polynomial

with positive leading coefficient. For a partial assignment s1, . . . , sk ∈ S1 ×
· · · × Sk with k < m, define

fs1,...,sk
def
=

∑
sk+1∈Sk+1,...,sm∈Sm

fs1,...,sk,sk+1,...,sm

as well as

f∅
def
=

∑
s1∈S1,...,sm∈Sm

fs1,...,sm .

We say that the polynomials {fs1,...,sm} form an interlacing family if for

all k = 0, . . . ,m− 1 and all s1, . . . , sk ∈ S1 × · · · × Sk, the polynomials

{fs1,...,sk,t}t∈Sk+1

have a common interlacing.

Theorem 3.4. Let S1, . . . , Sm be finite sets, and let {fs1,...,sm} be an inter-

lacing family of polynomials. Then, there exists some s1, . . . , sm ∈ S1×· · ·×Sm
so that the largest root of fs1,...,sm is at most the largest root of f∅.

Proof. From the definition of an interlacing family, we know that the poly-

nomials {ft} for t ∈ S1 have a common interlacing and that their sum is f∅.

Lemma 3.2 therefore guarantees that one of the polynomials ft has largest root
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at most the largest root of f∅. We now proceed inductively. For any s1, . . . , sk,

we know that the polynomials {fs1,...,sk,t} for t ∈ Sk+1 have a common inter-

lacing and that their sum is fs1,...,sk . So, for some choice of t (say sk+1), the

largest root of the polynomial fs1,...,sk+1
is at most the largest root of fs1,...,sk .

�

We will prove that the polynomials {fs} defined in Section 4 form an

interlacing family. According to Definition 3.3, this requires establishing the

existence of certain common interlacings. There is a systematic way to show

that polynomials have common interlacings by proving that their convex com-

binations are real-rooted. In particular, the following result seems to have

been discovered a number of times. It appears as Theorem 2.1 of Dedieu [27],

(essentially) as Theorem 2′ of Fell [29], and as (a special case of) Theorem 3.6

of Chudnovsky and Seymour [26].

Lemma 3.5. Let f1, . . . , fk be (univariate) polynomials of the same degree

with positive leading coefficients. Then f1, . . . , fk have a common interlacing if

and only if
∑k
i=1 λifi is real-rooted for all values of λi≥0 such that

∑k
i=1 λi=1.

3.2. Stable polynomials. Our results employ tools from the theory of

stable polynomials, a generalization of real-rootedness to multivariate polyno-

mials. We recall that a polynomial p(z1, . . . , zm) ∈ C[z1, . . . , zm] is stable if

it is identically zero or if whenever Im(zi) > 0 for all i, p(z1, . . . , zm) 6= 0. A

polynomial p is real stable if it is stable and all of its coefficients are real. A

univariate polynomial is real stable if and only if it is real-rooted (as defined

at the beginning of Section 3.1).

To prove that the polynomials we construct in this paper are real stable,

we begin with an observation of Borcea and Brändén [17, Prop. 2.4].

Proposition 3.6. If A1, . . . , Am are positive semidefinite Hermitian ma-

trices, then the polynomial

det

(∑
i

ziAi

)
is real stable.

We will generate new real stable polynomials from the one above by ap-

plying operators of the form (1 − ∂zi). One can use general results, such as

Theorem 1.3 of [16] or Proposition 2.2 of [39], to prove that these operators

preserve real stability. It is also easy to prove it directly using the fact that the

analogous operator on univariate polynomials preserves stability of polynomi-

als with complex coefficients. The following well-known fact is a consequence

of (for instance) Corollary 18.2a in Marden [42], but we include a short proof

for completeness.
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Proposition 3.7. Suppose q ∈ C[z] is stable. Then q(z) − q′(z) is also

stable.

Proof. It suffices to handle the case when q and q′ have no common roots

since any common roots are also roots of q−q′ and must lie in the closed lower

half plane because q is stable.

Assume without loss of generality that q is monic, and let λ1, . . . , λd ∈ C
be the (distinct) roots of q. Observe that the roots of q(z) − q′(z) are simply

the zeros of the rational function

q(z)− q′(z)
q(z)

= 1− q′(z)

q(z)
= 1−

d∑
i=1

1

z − λi

= 1−
d∑
i=1

1

z − λi
· z − λi
z − λi

= 1−
d∑
i=1

z − λi
|z − λi|2

.

Rearranging and taking conjugates, we find that any zero z must satisfy

z
∑
i

1

|z − λi|2
= 1 +

∑
i

λi
|z − λi|2

,

whence Im(z) ≤ 0 since 1
|z−λi|2 > 0 and Im(λi) ≤ 0 for all i. �

Corollary 3.8. If p ∈ R[z1, . . . , zm] is real stable, then

(1− ∂z1)p(z1, . . . , zm).

is real stable.

Proof. Let x2, . . . , xm be numbers with positive imaginary part. Then,

the univariate polynomial

q(z1) = p(z1, z2, . . . , zm)
∣∣∣
z2=x2,...,zm=xm

is stable, and Proposition 3.7 tells us that (1 − ∂z1)q(z1) is also stable. This

implies that (1− ∂z1)p has no roots in which all of the variables have positive

imaginary part. �

We will also use the fact that real stability is preserved under setting

variables to real numbers (see, for instance, [48, Lemma 2.4(d)]). This is a

simple consequence of the definition and Hurwitz’s theorem.

Proposition 3.9. If p ∈ R[z1, . . . , zm] is real stable and a ∈ R, then

p|z1=a = p(a, z2, . . . , zm) ∈ R[z2, . . . , zm] is real stable.

3.3. Facts from linear algebra. For a matrix M ∈ Cd×d, we write the

characteristic polynomial of M in a variable x as

χ [M ] (x) = det (xI −M) .
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The following identity is sometimes known as the matrix determinant

lemma or the rank-1 update formula.

Lemma 3.10. If A is an invertible matrix and u, v are vectors, then

det (A+ uv∗) = det (A) (1 + v∗A−1u).

We will utilize Jacobi’s formula for the derivative of the determinant of a

matrix, which can be derived from Lemma 3.10.

Theorem 3.11. For an invertible matrix A and another matrix B of the

same dimensions,

∂t det (A+ tB) = det (A) Tr
Ä
A−1B

ä
.

We require two standard facts about traces. The first is that for a k × n
matrix A and an n× k matrix B,

Tr (AB) = Tr (BA) .

The second is

Lemma 3.12. If A and B are positive semidefinite matrices of the same

dimension, then

Tr (AB) ≥ 0.

One can prove this by decomposing A and B into sums of rank-1 positive

semidefinite matrices, using linearity of the trace, and then the first fact about

traces.

4. The mixed characteristic polynomial

Theorem 4.1. Let v1, . . . , vm be independent random column vectors in

Cd with finite support. For each i, let Ai = E viv∗i . Then

(6) Eχ
[
m∑
i=1

viv
∗
i

]
(x) =

(
m∏
i=1

1− ∂zi

)
det

(
xI +

m∑
i=1

ziAi

) ∣∣∣∣
z1=···=zm=0

.

In particular, the expected characteristic polynomial of a sum of indepen-

dent rank-1 Hermitian matrices is a function of the covariance matrices Ai. We

call this polynomial the mixed characteristic polynomial of A1, . . . , Am, and we

denote it by µ [A1, . . . , Am] (x).

The proof of Theorem 4.1 relies on the following simple identity, which

shows that random rank-1 updates of determinants correspond in a natural

way to differential operators.

Lemma 4.2. For every square matrix A and random vector v, we have

(7) Edet (A− vv∗) = (1− ∂t) det
(
A+ tE vv∗

) ∣∣∣
t=0

.
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Proof. First, assume A is invertible. By Lemma 3.10, we have

Edet (A− vv∗) = Edet (A) (1− v∗A−1v)

= Edet (A) (1− Tr
Ä
A−1vv∗

ä
)

= det (A)− det (A)ETr
Ä
A−1vv∗

ä
= det (A)− det (A) Tr

(
A−1 E vv∗

)
.

On the other hand, by Theorem 3.11, we have

(1− ∂t) det
(
A+ tE vv∗

)
= det

(
A+ tE vv∗

)
− det (A) Tr

(
A−1 E vv∗

)
.

The claim follows by setting t = 0.

If A is not invertible, we can choose a sequence of invertible matrices that

approach A. Since identity (7) holds for each matrix in the sequence and the

two sides are polynomials in the entries of the matrix, a continuity argument

implies that the identity must hold for A as well. �

We prove Theorem 4.1 by applying this lemma inductively.

Proof of Theorem 4.1. We will show by induction on k that for any matrix

M ,

Edet

(
M −

k∑
i=1

viv
∗
i

)
=

(
k∏
i=1

1− ∂zi

)
det

(
M +

k∑
i=1

ziAi

) ∣∣∣∣
z1=···=zk=0

.

The base case k = 0 is trivial. Assuming the claim holds for i < k, we have

Edet

(
M −

k∑
i=1

viv
∗
i

)

= E
v1,...,vk−1

E
vk

det

(
M −

k−1∑
i=1

viv
∗
i − vkv∗k

)
by independence

= E
v1,...,vk−1

(1− ∂zk) det

(
M −

k−1∑
i=1

viv
∗
i + zkAk

) ∣∣∣
zk=0

by Lemma 4.2

= (1− ∂zk) E
v1,...,vk−1

det

(
M + zkAk −

k−1∑
i=1

viv
∗
i

) ∣∣∣
zk=0

by linearity

= (1− ∂zk)

(
k−1∏
i=1

1− ∂zi

)
det

(
M + zkAk +

k−1∑
i=1

ziAi

) ∣∣∣
z1=···=zk−1=0

∣∣∣
zk=0

=

(
k∏
i=1

1− ∂zi

)
det

(
M +

k∑
i=1

ziAi

) ∣∣∣
z1=···=zk=0

,

as desired. �
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Remark 4.3. The proof of Theorem 4.1 given here (using induction and

Lemma 4.2) was suggested to us by James Lee. The slightly longer proof that

appeared in our original manuscript was not inductive; rather, it utilized the

Cauchy–Binet formula to show the equality of each coefficient.

Now it is immediate from Proposition 3.6 and Corollary 3.8 that the mixed

characteristic polynomial is real-rooted.

Corollary 4.4. The mixed characteristic polynomial of positive semi-

definite matrices is real-rooted.

Proof. Proposition 3.6 tells us that

det

(
xI +

m∑
i=1

ziAi

)
is real stable. Corollary 3.8 tells us that(

m∏
i=1

1− ∂zi

)
det

(
xI +

m∑
i=1

ziAi

)
is real stable as well. Finally, Proposition 3.9 shows that setting all of the zi
to zero preserves real stability. As the resulting polynomial is univariate, it is

real-rooted. �

Finally, we use the real-rootedness of mixed characteristic polynomials to

show that every sequence of independent finitely supported random vectors

v1, . . . , vm defines an interlacing family. Let li be the size of the support of the

random vector vi, and let vi take the values wi,1, . . . , wi,li with probabilities

pi,1, . . . , pi,li . For j1 ∈ [l1], . . . , jm ∈ [lm], define

qj1,...,jm =

(
m∏
i=1

pi,ji

)
χ

[
m∑
i=1

wi,jiw
∗
i,ji

]
(x) .

Theorem 4.5. The polynomials qj1,...,jm form an interlacing family.

Proof. For 1 ≤ k ≤ m and j1 ∈ [l1], . . . , jk ∈ [lk], define

qj1,...,jk(x) =

(
k∏
i=1

pi,ji

)
E

vk+1,...,vm
χ

 k∑
i=1

wi,jiw
∗
i,ji +

m∑
i=k+1

viv
∗
i

 (x) .

Also, let

q∅(x) = E
v1,...,vm

χ

[
m∑
i=1

viv
∗
i

]
(x) .

We need to prove that for every partial assignment j1, . . . , jk (possibly empty),

the polynomials

{qj1,...,jk,t(x)}t=1,...,lk+1
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have a common interlacing. By Lemma 3.5, it suffices to prove that for every

nonnegative λ1, . . . , λlk+1
summing to one, the polynomial

lk+1∑
t=1

λtqj1,...,jk,t(x)

is real-rooted. To show this, let uk+1 be a random vector that equals wk+1,t

with probability λt. Then the above polynomial equals(
k∏
i=1

pi,ji

)
E

uk+1,vk+2,...,vm
χ

 k∑
i=1

wi,jiw
∗
i,ji + uk+1u

∗
k+1 +

m∑
i=k+2

viv
∗
i

 (x) ,

which is a multiple of a mixed characteristic polynomial and is thus real-rooted

by Corollary 4.4. �

5. The multivariate barrier argument

In this section we will prove an upper bound on the roots of the mixed

characteristic polynomial µ [A1, . . . , Am] (x) as a function of the Ai, in the case

of interest
∑m
i=1Ai = I. Our main theorem of the section is

Theorem 5.1. Suppose A1, . . . , Am are Hermitian positive semidefinite

matrices satisfying
∑m
i=1Ai = I and Tr (Ai) ≤ ε for all i. Then the largest

root of µ [A1, . . . , Am] (x) is at most (1 +
√
ε)2.

We begin by deriving a slightly different expression for µ [A1, . . . , Am] (x)

that allows us to reason separately about the effect of each Ai on its roots.

Lemma 5.2. Let A1, . . . , Am be Hermitian positive semidefinite matrices.

If
∑
iAi = I , then

(8) µ [A1, . . . , Am] (x) =

(
m∏
i=1

1− ∂yi

)
det

(
m∑
i=1

yiAi

) ∣∣∣∣
y1=···=ym=x

.

Proof. For any differentiable function f , we have

∂yif(yi)
∣∣∣
yi=zi+x

= ∂zif(zi + x).

The lemma then follows by substituting yi = zi + x into expression (8) and

observing that it produces the expression on the right-hand side of (6). �

Let us write

(9) µ [A1, . . . , Am] (x) = Q(x, x, . . . , x),

where

Q(y1, . . . , ym) =

(
m∏
i=1

1− ∂yi

)
det

(
m∑
i=1

yiAi

)
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is the multivariate polynomial on the right-hand side of (8). The bound on

the roots of µ [A1, . . . , Am] (x) will follow from a “multivariate upper bound”

on the roots of Q, defined as follows.

Definition 5.3. Let p(z1, . . . , zm) be a multivariate polynomial. We say

that z ∈ Rm is above the roots of p if

p(z + t) > 0 for all t = (t1, . . . , tm) ∈ Rm, ti ≥ 0,

i.e., if p is positive on the nonnegative orthant with origin at z.

We will denote the set of points that are above the roots of p by Abp. To

prove Theorem 5.1, it is sufficient by (9) to show that (1 +
√
ε)2 · 1 ∈ AbQ,

where 1 is the all-ones vector. We will achieve this by an inductive “barrier

function” argument. In particular, we will construct Q by iteratively applying

operations of the form (1 − ∂yi), and we will track the locations of the roots

of the polynomials that arise in this process by studying the evolution of the

functions defined below.

Definition 5.4. Given a real stable polynomial p ∈ R[z1, . . . , zm] and a

point z = (z1, . . . , zm) ∈ Abp, the barrier function of p in direction i at z is

Φi
p(z) =

∂zip(z)

p(z)
= ∂zi log p(z).

Equivalently, we may define Φi
p by

(10) Φi
p(z1, . . . , zm) =

q′z,i(zi)

qz,i(zi)
=

r∑
j=1

1

zi − λj
,

where the univariate restriction

(11) qz,i(t) = p(z1, . . . , zi−1, t, zi+1, . . . , zm)

has roots λ1, . . . , λr, which are real by Proposition 3.9.

Although the Φi
p are m-variate functions, the properties that we require

of them may be deduced by considering their bivariate restrictions. We estab-

lish these properties by exploiting the following powerful characterization of

bivariate real stable polynomials. It is stated in the form we want by Borcea

and Brändén [16, Cor. 6.7] and is proved using an adaptation of a result of

Helton and Vinnikov [34] by Lewis, Parrilo and Ramana [38].

Lemma 5.5. For all bivariate real stable polynomials p(z1, z2) of degree

exactly d, there exist d× d symmetric positive semidefinite matrices A,B and

a symmetric matrix C such that

p(z1, z2) = ±det (z1A+ z2B + C) .

Remark 5.6. We can also conclude that for every z1, z2 > 0, z1A + z2B

must be positive definite. If this were not the case, then there would be a

nonzero vector that is in the nullspace of both A and B. This would cause the

degree of the polynomial to be lower than d.



340 ADAM W. MARCUS, DANIEL A. SPIELMAN, and NIKHIL SRIVASTAVA

Remark 5.7. Lemma 5.5 guarantees the existence of real symmetric A,B,

and C. It is somewhat easier to obtain a representation with complex Hermit-

ian matrices — this was shown earlier by Dubrovin [28] and more recently by

Kummer, Plaumann, and Vinzant [36] — and it is worth noting that such a

representation is also sufficient for our application.

The two analytic properties of the barrier functions that we use are that,

above the roots of a polynomial, they are nonincreasing and convex in every

coordinate.

Lemma 5.8. Suppose p ∈ R[z1, . . . , zm] is real stable and z ∈ Abp. Then

for all i, j ∈ [m] and δ ≥ 0,

Φi
p(z + δej) ≤ Φi

p(z) (monotonicity)(12)

and

Φi
p(z + δej) ≤ Φi

p(z) + δ · ∂zjΦi
p(z + δej) (convexity).(13)

Proof. If i = j, then we consider the real-rooted univariate restriction

qz,i(zi) =
∏r
k=1(zi − λk) defined in (11). Since z ∈ Abp, we know that zi > λk

for all k. Monotonicity follows immediately by considering each term in (10),

and convexity is easily established by computing

∂2zi

Å
1

zi − λk

ã
=

2

(zi − λk)3
> 0 as zi > λk.

In the case i 6= j, we fix all variables other than zi and zj and consider

the bivariate restriction

qz,ij(zi, zj) = p(z1, . . . , zm).

By Lemma 5.5 there are symmetric positive semidefinite Bi, Bj and a symmet-

ric matrix C such that

qz,ij(zi, zj) = ±det(ziBi + zjBj + C).

Remark 5.6 allows us to conclude that the sign is positive: for sufficiently

large t, t(Bi + Bj) + C is positive definite and for t ≥ max(zi, zj), we have

qz,ij(t, t) > 0.

The barrier function in direction i can now be simply expressed as

Φi
p(z) =

∂zi det(ziBi + zjBj + C)

det(ziBi + zjBj + C)

=
det(ziBi + zjBj + C)Tr

(
(ziBi + zjBj + C)−1Bi

)
det(ziBi + zjBj + C)

by Theorem 3.11

= Tr
Ä
(ziBi + zjBj + C)−1Bi

ä
.

Let M = (ziBi + zjBj + C). As z ∈ Abp and Bi + Bj is positive definite, we

can conclude that M is positive definite: if it were not, there would be a t ≥ 0
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for which det (M + t(Bi +Bj)) = 0. We now write

Φi
p(z + δej) = Tr

Ä
(M + δBj)

−1Bi
ä

= Tr
Ä
M−1(I + δBjM

−1)−1Bi
ä

= Tr
Ä
(I + δBjM

−1)−1BiM
−1
ä
.

For δ sufficiently small, we may expand (I + δBjM
−1)−1 in a power series as

I − δBjM−1 + δ2(BjM
−1)2 +

∑
ν≥3

(−δBjM−1)ν .

Thus,
∂zjΦ

i
p(z) = −Tr

Ä
BjM

−1BiM
−1
ä
.

To see that this is nonpositive, and thereby prove (12), observe that both Bj
and M−1BiM

−1 are positive semidefinite, and recall from Lemma 3.12 that

the trace of the product of positive semidefinite matrices is nonnegative. To

prove convexity, observe that the second derivative is nonnegative because

∂2zjΦ
i
p(z) = Tr

Ä
(BjM

−1)2BiM
−1
ä

= Tr
Ä
(BjM

−1Bj)(M
−1BiM

−1)
ä

is also the trace of the product of positive semidefinite matrices.

Inequality (13) is equivalent to convexity in direction ej and may be ob-

tained by observing that f(x+ δ) ≤ f(x) + δf ′(x+ δ) for any convex differen-

tiable f . �

Remark 5.9. It is worth noting that once the determinantal representation

is established, convexity and monotonicity also follow directly from the fact

that the function X 7→ X−1 is operator monotone and operator convex [13].

There are other ways of proving Lemma 5.8 that go through more elemen-

tary techniques than those used by Helton and Vinnikov [34]. James Renegar

has pointed out that it follows from Corollary 4.6 of [11]. Terence Tao [47] has

also presented a more elementary proof.

Recall that we are interested in finding points that lie in AbQ, where Q is

generated by applying several operators of the form 1− ∂zi to the polynomial

det(
∑m
i=1 ziAi). The purpose of the “barrier functions” Φi

p is to allow us to

reason about the relationship between Abp and Abp−∂zip; in particular, the

monotonicity property alone immediately implies the following statement.

Lemma 5.10. Suppose that p ∈ R[z1, . . . , zm] is real stable, that z ∈ Abp,

and that Φi
p(z) < 1. Then z ∈ Abp−∂zip.

Proof. Let t be a nonnegative vector. As Φi
p is nonincreasing in each

coordinate, we have Φi
p(z + t) < 1, whence

∂zip(z + t) < p(z + t) =⇒ (p− ∂zip)(z + t) > 0,

as desired. �
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Lemma 5.10 allows us to prove that a vector is above the roots of p−∂zip.
However, it is not strong enough for an inductive argument because the barrier

functions can increase with each 1 − ∂zi operator that we apply. To remedy

this, we will require the barrier functions to be bounded away from 1, and we

will compensate for the effect of each 1 − ∂zj operation by shifting our upper

bound away from zero in direction ej . In particular, by exploiting the convexity

properties of the Φi
p, we arrive at the following strengthening of Lemma 5.10.

Lemma 5.11. Suppose that p(z1, . . . , zm) is real stable, that z ∈ Abp, and

that δ > 0 satisfies

(14) Φj
p(z) ≤ 1− 1

δ
.

Then for all i,

Φi
p−∂zj p

(z + δej) ≤ Φi
p(z).

Proof. We will write ∂i instead of ∂zi to ease notation. We begin by

computing an expression for Φi
p−∂jp in terms of Φj

p,Φ
i
p, and ∂jΦ

i
p:

Φi
p−∂jp =

∂i(p− ∂jp)
p− ∂jp

=
∂i
Ä
(1− Φj

p)p
ä

(1− Φj
p)p

=
(1− Φj

p)(∂ip)

(1− Φj
p)p

+
(∂i(1− Φj

p))p

(1− Φj
p)p

= Φi
p −

∂iΦ
j
p

1− Φj
p

.

= Φi
p −

∂jΦ
i
p

1− Φj
p

,

as ∂iΦ
j
p = ∂jΦ

i
p. We would like to show that Φi

p−∂jp(z + δej) ≤ Φi
p(z). By the

above identity this is equivalent to

−
∂jΦ

i
p(z + δej)

1− Φj
p(z + δej)

≤ Φi
p(z)− Φi

p(z + δej).

By part (13) of Lemma 5.8,

δ · (−∂jΦi
p(z + δej)) ≤ Φi

p(z)− Φi
p(z + δej),

and so it suffices to establish that

(15) −
∂jΦ

i
p(z + δej)

1− Φj
p(z + δej)

≤ δ · (−∂jΦi
p(z + δej)).
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From part (12) of Lemma 5.8, we know that (−∂jΦi
p(z+δej)) ≥ 0; so (15)

is implied by

(16)
1

1− Φi
p(z + δej)

≤ δ.

Applying Lemma 5.8 once more we observe that Φj
p(z + δej) ≤ Φj

p(z), and we

conclude that (16) is implied by

1

1− Φj
p(z)

≤ δ,

which is implied by (14). �

We now have the necessary tools to prove the main theorem of this section.

Proof of Theorem 5.1. Let

P (y1, . . . , ym) = det

(
m∑
i=1

yiAi

)
.

Let t > 0 be a parameter, to be set later. As all of the matrices Ai are positive

semidefinite and

det

(
t
∑
i

Ai

)
= det (tI) > 0,

the vector t1 is above the roots of P .

By Theorem 3.11,

Φi
P (y1, . . . , ym) =

∂iP (y1, . . . , ym)

P (y1, . . . , ym)
= Tr

Ñ(
m∑
i=1

yiAi

)−1
Ai

é
.

So,

Φi
P (t1) = Tr (Ai) /t ≤ ε/t,

which we define to be φ. Set

δ = 1/(1− φ).

For k ∈ [m], define

Pk(y1, . . . , ym) =

(
k∏
i=1

1− ∂yi

)
P (y1, . . . , ym).

Note that Pm = Q.

Set x0 to be the all-t vector, and for k ∈ [m], define xk to be the vector

that is t+δ in the first k coordinates and t in the rest. By inductively applying

Lemmas 5.10 and 5.11, we prove that xk is above the roots of Pk and that for

all i,

Φi
Pk

(xk) ≤ φ.
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It follows that the largest root of

µ [A1, . . . , Am] (x) = Pm(x, . . . , x)

is at most

t+ δ = t+
1

1− ε/t
.

This is easily seen to be minimized at t =
√
ε+ ε, yielding the required bound

t+ δ =
√
ε+ ε+ 1 +

√
ε = (1 +

√
ε)2. �

Proof of Theorem 1.4. Let Ai = E viv∗i . We have

Tr (Ai) = ETr (viv
∗
i ) = E v∗i vi = E ‖vi‖2 ≤ ε

for all i.

The expected characteristic polynomial of the
∑
i viv

∗
i is the mixed char-

acteristic polynomial µ [A1, . . . , Am] (x). Theorem 5.1 implies that the largest

root of this polynomial is at most (1 +
√
ε)2.

For i ∈ [m], let li be the size of the support of the random vector vi, and let

vi take the values wi,1, . . . , wi,li with probabilities pi,1, . . . , pi,li . Theorem 4.5

tells us that the polynomials qj1,...,jm are an interlacing family. So, Theorem 3.4

implies that there exist j1, . . . , jm so that the largest root of the characteristic

polynomial of
m∑
i=1

wi,jiw
∗
i,ji

is at most (1 +
√
ε)2. �

6. The paving conjecture

The main result of this section is the following quantitative version of

Conjecture 1.3. Following [22], we will say that a square matrix T can be (r, ε)-

paved if there are coordinate projections P1, . . . , Pr such that
∑r
i=1 Pi = I and

‖PiTPi‖ ≤ ε‖T‖ for all i.

Theorem 6.1. For every ε > 0, every zero-diagonal Hermitian matrix T

can be (r, ε)-paved with r = (6/ε)4.

To prove this theorem, we rely on the following result of Casazza et al.,

which says that paving arbitrary Hermitian matrices can be reduced to paving

certain projection matrices. Its short proof is based on elementary linear alge-

bra.

Lemma 6.2 (Theorem 3 of [22]). Suppose there is a function r : R+ → N
so that every 2n×2n projection matrix Q with diagonal entries equal to 1/2 can

be (r(ε), 1+ε2 )-paved for all ε > 0. Then every n × n Hermitian zero-diagonal

matrix T can be (r2(ε), ε)-paved for all ε > 0.



INTERLACING FAMILIES II 345

Proof of Theorem 6.1. Let Q be an arbitrary 2n × 2n projection matrix

with diagonal entries equal to 1/2. Then Q = (u∗iuj)i,j∈[2n] is the Gram matrix

of 2n vectors u1, . . . , u2n ∈ Cn with ‖ui‖2 = 1/2 = δ and
∑
i uiu

∗
i = In. Ap-

plying Corollary 1.5 to these vectors for a given r yields a partition S1, . . . , Sr
of [2n]. Letting Pk be the projection onto the indices in Sk, we have for each

k ∈ [r],

(17) ‖PkQPk‖ =
∥∥∥(u∗iuj)i,j∈Sk

∥∥∥ =

∥∥∥∥∥∥∑i∈Sk

uiui
∗

∥∥∥∥∥∥ ≤
Ç

1√
r

+
1√
2

å2

<
1

2
+

3√
r
.

Thus every Q can be (r, 1+ε2 )-paved for r = 36/ε2. Applying Lemma 6.2 yields

Theorem 6.1. �

It is well known that Theorem 6.1 can be extended to arbitrary matrices

T with zero diagonal at the cost of a further quadratic loss in parameters:

simply decompose T = A+ iB for Hermitian zero-diagonal matrices A,B, and

take a product of pavings of A and B.

We have not made any attempt to optimize the dependence of r on ε in

Theorem 6.1 and leave this as an open question. It is known [22] that it is not

possible to do better than r = 1/ε2.

7. Conclusion

7.1. Ramanujan graphs, matching polynomials, and optimality. In [41],

we introduced interlacing families of polynomials and used them to prove the

existence of infinitely many bipartite Ramanujan graphs of every degree, via

a conjecture of Bilu and Linial [14]. These are d-regular graphs whose adja-

cency matrices have nontrivial eigenvalues bounded by 2
√
d− 1. The relevant

expected characteristic polynomials in our proof turn out to be the matching

polynomials introduced by Heilmann and Lieb [33], and a simple combinatorial

argument in their original paper [33] shows that the roots of these polynomials

are bounded by 2
√
d− 1, which is exactly what we need.

Matching polynomials are a special case of mixed characteristic polynomi-

als (this follows from an identity of Godsil and Gutman [30]), and it turns out

that the arguments in this paper, despite being more general, yield a bound

on the largest root that is almost as tight as the combinatorial one. In par-

ticular, applying Theorem 1.4 in the setting of [41] immediately implies the

existence of infinite families of d-regular bipartite graphs with nontrivial eigen-

values at most 2
√

2d+o(
√
d), which is a factor of about

√
2 off from the correct

“Ramanujan” bound. On the other hand, A result of Alon and Boppana [15]

implies that sufficiently large d-regular graphs must have nontrivial eigenval-

ues with absolute value at least 2
√
d− 1− o(1). Thus the dependence on ε in

Theorem 1.4 cannot be made smaller than 1 +
√

2
√
ε + o(

√
ε). We refer the

interested reader to [40, §6] for details.
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There is also a second and more direct way in which matching polyno-

mials may be seen as mixed characteristic polynomials. When the matrices

A1, . . . , Ad are diagonal, µ [A1, . . . , Ad] (x) is the matching polynomial of the

bipartite graph with d vertices on each side in which the edge (i, j) has weight

Ai(j, j). When all the matrices have the same trace and their sum is the

identity, the graph is regular and our bound on the largest root of the mixed

characteristic polynomial agrees to the first order with that obtained by Heil-

mann and Lieb [33].

7.2. Mixed discriminants. When m = d, the constant coefficient of the

mixed characteristic polynomial of A1, . . . , Ad is the mixed discriminant of

A1, . . . , Ad. The mixed discriminant has many definitions, among them

D(A1, . . . , Ad) =

(
d∏
i=1

∂zi

)
det

(∑
i

ziAi

)
.

See [31] or [8].

When k < d, we define

D(A1, . . . , Ak) = D(A1, . . . , Ak, I, . . . , I)/(d− k)!,

where the identity matrix I is repeated d − k times. For example, D(A1) is

just the trace of A1. With this notation, we can write

µ [A1, . . . , Am] (x) =
d∑

k=0

xd−k(−1)k
∑

S∈([m]
k )

D((Ai)i∈S).

We conjecture that among the families of matrices A1, . . . , Am with∑
iAi = I and Tr (Ai) ≤ ε, the largest root of the mixed characteristic poly-

nomial is maximized when as many of the matrices as possible equal εI/d,

another is a smaller multiple of the identity, and the rest are zero. When all

of the matrices have the same trace, d/m, this produces a scaled associated

Laguerre polynomial Lm−dd (mx). The bound that we prove on the largest root

of the mixed characteristic polynomial agrees asymptotically with the largest

root of Lm−dd (mx) as d/m is held constant and d grows. Evidence for our con-

jecture may be found in the work of Gurvits [31], [32], who proves that when

m = d, the constant term of the mixed polynomial is minimized when each Ai
equals I/d.

Two natural questions arise from our work. The first is whether one

can design an efficient algorithm to find the partitions and pavings that are

guaranteed to exist by Corollary 1.5. The second is broader. There are many

operations that are known to preserve real stability and real-rootedness of poly-

nomials (see [39], [16], [18], [19], [44, 48]). For a technique like the method of

interlacing polynomials it would be useful to understand what these operations

do to the roots and the coefficients of the polynomials.
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