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INTERLACING FAMILIES IV: BIPARTITE RAMANUJAN
GRAPHS OF ALL SIZES\ast 
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Abstract. We prove that there exist bipartite Ramanujan graphs of every degree and every
number of vertices. The proof is based on an analysis of the expected characteristic polynomial of
a union of random perfect matchings and involves three ingredients: (1) a formula for the expected
characteristic polynomial of the sum of a regular graph with a random permutation of another regular
graph, (2) a proof that this expected polynomial is real-rooted and that the family of polynomials
considered in this sum is an interlacing family, and (3) strong bounds on the roots of the expected
characteristic polynomial of a union of random perfect matchings, established using the framework
of finite free convolutions introduced recently by the authors.
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1. Introduction. Ramanujan graphs are undirected regular graphs whose
nontrivial adjacency matrix eigenvalues are as small as possible; that is, they are
spectrally optimal expander graphs. In this paper, we prove the existence of bipartite
Ramanujan graphs of every degree and every size. We do this by showing that a ran-
dom m-regular bipartite graph, obtained as a union of m random perfect matchings
across a bipartition of an even number of vertices, is Ramanujan with nonzero prob-
ability. Infinite families of bipartite Ramanujan graphs were shown in [15] to exist
for every degree m\geq 3, but it was not known whether they exist for every number of
vertices.

Our proof is based on the method of interlacing families of polynomials, intro-
duced in [15]. This method allows one to control the eigenvalues of a random matrix
by controlling the roots of its expected characteristic polynomial, and its name refers
to the chain of intermediate polynomials whose interlacing properties provide the
relationship between the two. The technical contributions of this paper are the con-
struction of an interlacing family for the adjacency matrix of a random regular graph
and the derivation of an explicit formula for its expected characteristic polynomial.
The roots of the expected polynomial are then analyzed using a tool which we call the
finite free convolution, developed in our companion paper [14]. This latter technique
is inspired by ideas in free probability theory [19, 24], an area that originally grew out
of operator algebras but which has a number of applications to asymptotic random
matrix theory [1]. This allows us to obtain the optimal Ramanujan bound of 2

\surd 
d - 1

from completely generic considerations involving random matrices.
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1.1. Summary of results. Recall that the adjacency matrix A of an m-regular
graph on d vertices1 has largest eigenvalue \lambda 1(A) = m and smallest eigenvalue \lambda d(A) =
 - m when the graph is bipartite. Following Friedman [9], we will refer to these as the
trivial eigenvalues of A, and we will call a graph Ramanujan if all of its nontrivial
eigenvalues have absolute value at most 2

\surd 
m - 1. Such graphs are asymptotically

best possible in the sense that a theorem of Alon and Boppana in [20] tells us that for
every \epsilon > 0, every infinite sequence of m-regular graphs must contain a graph with a
nontrivial eigenvalue of absolute value at least 2

\surd 
m - 1 - \epsilon .

Our main theorem is that a union of m random perfect matchings across a bipar-
tition of 2d vertices is Ramanujan with nonzero probability.

Theorem 1.1. For m \geq 3, let P1, . . . , Pm be independent uniformly random d\times d
permutation matrices. Then, with nonzero probability the nontrivial eigenvalues of

A =

m\sum 
i=1

\biggl[ 
0 Pi

PT
i 0

\biggr] 
are all less than 2

\surd 
m - 1 in absolute value.

We also prove the following nonbipartite version of this theorem, regarding a
union of m random perfect matchings on d vertices (not bipartite), with d even.

Theorem 1.2. Let d be even, and let M be the adjacency matrix of any fixed
perfect matching on d vertices. For m \geq 3, let P1, . . . , Pm be independent uniformly
random d\times d permutation matrices. Then with nonzero probability,

\lambda 2

\Biggl( 
m\sum 
i=1

PiMPT
i

\Biggr) 
< 2

\surd 
m - 1.

Since we only prove nonzero bounds on the probabilities, the nonbipartite theorem
is a logical consequence of the bipartite one. We describe it here because its proof is
substantially easier and contains essentially the same ideas. Note that Theorem 1.2
does not produce Ramanujan graphs in the nonbipartite case because it provides no
control over the least eigenvalue \lambda d.

As the graphs we produce are unions of independent matchings, they may have
multiple edges between two vertices. Thus, they are (strictly speaking) multigraphs.
One would expect that it should be more difficult to construct Ramanujan graphs
with multiedges than without, but we do not presently know how to prove a theorem
to this effect.

As in our previous work [15], the fact that we can only produce bipartite graphs is
a consequence of the fact that the method of interlacing families can only control one
eigenvalue at a time; in the bipartite case, this automatically yields both upper and
lower bounds, since the eigenvalues are symmetric about zero. In contrast with the
polynomials used in [15], which are \#P hard to compute, it has been shown by Michael
Cohen that the expected characteristic polynomials in this paper can be computed in
polynomial time [5], yielding a polynomial time construction of Ramanujan graphs of
all sizes and degrees.

1.2. Related work and context. Infinite families of Ramanujan graphs were
first shown to exist for m = p + 1, p a prime, in the seminal works of Margulis

1In order to be consistent with our companion paper [14], we will, unconventionally, use m to
denote the degree of a graph and d to denote its number of vertices.
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and Lubotzky, Phillips and Sarnak [17, 12]. The graphs they produce are Cayley
graphs and can be constructed very efficiently. Friedman [9] showed that a random
m-regular graph is almost Ramanujan: specifically, that with high probability all of
the nontrivial eigenvalues of the union of m random perfect matchings have absolute
value at most 2

\surd 
m - 1 + \epsilon for every \epsilon > 0.

More recently, in [15], we proved the existence of infinite families of m-regular
bipartite Ramanujan graphs for every m \geq 3 by proving (part of) a conjecture of Bilu
and Linial [3] regarding the existence of good 2-lifts of regular graphs. Prior to the
present paper, it was not known if there are Ramanujan graphs of every number of
vertices. We refer the reader to [11] and [15] for a more detailed discussion of expander
graphs, Ramanujan graphs, and 2-lifts. Building on the present paper, Hall, Puder,
and Sawin [10] have used related techniques to show that every m-regular graph has
a k-lift which is Ramanujan. Their result subsumes both the results of the present
paper and [15].

In a different vein, it has been known for much longer that the eigenvalue distri-
butions of random m-regular graphs converge weakly in the limit to the spectrum of
the infinite m-regular tree. In particular, McKay showed in 1981 [18] that for every
fixed p, the normalized pth moments of a sequence \{ Ad\} of random m-regular graphs
of increasing size d \rightarrow \infty satisfy

(1) lim
d\rightarrow \infty 

\BbbE 
1

d
tr(Ap

d) =

\int \infty 

 - \infty 
xpd\mu m(x),

where \mu m(x) is a density supported on the interval [ - 2
\surd 
m - 1, 2

\surd 
m - 1] known as

the Kesten--McKay law. Notice that this notion of convergence is too weak to yield
information about the extreme eigenvalues of Ad for any fixed d. We remark that
Friedman's result is based on a much more delicate calculation which controls the
p = O(log d)th moment.

The present work may be seen as connecting the nonasymptotic and asymptotic
(i.e., finite d vs. large d limit) sides of the above story with expected characteristic
polynomials playing the mediating role. In particular, by the method of interlacing
families, we first reduce the existence of Ramanujan graphs for any fixed size and
degree to an analysis of the roots of a single expected characteristic polynomial.
Our result shows that the largest root of the expected characteristic polynomial of a
random m-regular graph of size d lies inside the support of the Kesten--McKay law
\mu m(x). On one hand, the support of this limiting measure can be calculated using
techniques from free probability, and on the other, our bound on the largest root
of the finite polynomials is calculated using analogous tools that we call ``finite free
probability"" (see [13]), which mimick free probability but operate on finite-dimensional
polynomials. Since these bounds coincide, and it is impossible to construct a sequence
of graphs with eigenvalues strictly smaller than the support o \mu m(x), the graphs
produced by our method are necessarily optimal.

We remark that all comments regarding the relationship between polynomial con-
volutions and free probability in the present paper are intended to draw attention to
conceptual parallels only, and that the results themselves do not require any formal
knowledge of free probability. For those interested in such a relationship, we refer the
reader to [13], where a more formal connection is established.

1.3. Outline of the paper. The proofs of both of our theorems follow the same
strategy and consist of three steps. In each step we present the simpler nonbipartite
case first and then indicate the modifications required for the bipartite case.
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First, we show that the expected characteristic polynomials of the random graphs
we are interested in are real-rooted and form ``interlacing families"" (reviewed in section
2.1). By an argument introduced in [15], this reduces the problem of proving the
existence of Ramanujan graphs to an analysis of the roots of these polynomials. The
required real-rootedness and interlacing properties are established in section 3, by
decomposing the random permutations used to generate these expected polynomials
into random swaps acting on two coordinates at a time and showing that such random
swaps preserve real-rootedness. Theorem 3.3, which may be of independent interest,
says that if A and B are any symmetric matrices, then the expected characteristic
polynomial of A+PBPT is real-rooted for a uniformly random permutation matrix P .
We remark that this argument is completely elementary and self-contained and, unlike
[15, 16], does not appeal to any results from the theory of real stable or hyperbolic
polynomials.

Next, in section 4, we derive a useful closed-form formula for the expected charac-
teristic polynomial of a sum of randomly permuted regular graphs, which includes our
random m-regular graphs as a special case. We begin by proving that, in the case of
adjacency matrices, the expected characteristic polynomials taken over random per-
mutations match the expected characteristic polynomials taken over random orthog-
onal matrices. This may be seen as a ``quadrature"" (or derandomization) statement,
which says that these characteristic polynomials are not able to distinguish between
the set of permutation matrices and the set of orthogonal matrices; essentially this
happens because determinants are multilinear, which causes certain restrictions of
them to have very low degree Fourier coefficients. This component of the proof may
also be of independent interest.

To obtain the formula, we appeal to machinery developed in our companion paper
[14], which studies the structure of expected characteristic polynomials over random
orthogonal matrices. In particular, it is shown there that such polynomials may be
expressed in terms of a simple (and explicitly computable) convolution operation on
characteristic polynomials, which we call the finite free additive convolution. In this
framework, the expected characteristic polynomial of a union of m random match-
ings decouples as an m-fold convolution of the characteristic polynomial of a single
matching, yielding the formula.

Finally, we apply new bounds derived in [14] on the roots of such convolutions to
obtain the desired Ramanujan bound of 2

\surd 
m - 1. The requisite material regarding

free convolutions is introduced in sections 2.2 and 2.3. These ingredients are combined
in section 5 to complete the proofs of Theorems 1.1 and 1.2.

2. Preliminaries.

2.1. Interlacing families. Showing that a random matrix has all small eigen-
values with nonzero probability is a special case (by considering characteristic poly-
nomials) of the more generic problem of showing that some polynomial from a collec-
tion must have all small roots. The method of interlacing families is a device which
allows one to reach the latter conclusion by studying the roots of the average of the
polynomials in such a collection. The power of the method stems from the fact that
averaging the coefficients is easier and amenable to different algebraic tools than aver-
aging the roots (which are highly nonlinear in the coefficients) directly and sometimes
yields significantly sharper bounds.

The known sufficient conditions for the method to apply all involve real-rootedness
properties of certain convex combinations of the polynomials under consideration. We
recall the following theorem from [16], stated here in the slightly different language
of product distributions.
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Theorem 2.1 (interlacing families). Suppose \{ f\omega (x)\} \omega \in \{ 0,1\} m is a family of
real-rooted polynomials of the same degree d with positive leading coefficient, such
that

E\mu (x) := \BbbE \omega \sim \mu f\omega (x)

is real-rooted for every product distribution \mu = \mu 1 \otimes \cdot \cdot \cdot \otimes \mu m on \Omega = \{ 0, 1\} m. Then
for every k = 1, . . . , d and every such \mu , there is some \omega k \in \Omega such that

\lambda k(f\omega k
) \leq \lambda k(E\mu ),

where \lambda k denotes the kth largest root of a real-rooted polynomial.

The above theorem is relevant to this paper because our random graphs are
generated from independent random permutations, which are in turn generated by
independent random swaps, yielding product distributions in a natural way.

In order to apply Theorem 2.1 in our setting, we will need to appeal to interlacing
properties of the polynomials on hand. Recall that real-rooted polynomials f =\prod d

i=1(x  - \lambda i) and g =
\prod d - 1

i=1 (x  - \mu i) interlace if \lambda 1 \leq \mu 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \mu d - 1 \leq \lambda d.
There are two ways that two real-rooted polynomials f and g of the same degree can
interlace; we write g  - \rightarrow f if the roots of f and g interlace and the largest root of f
is at least as big as the largest root of g.

We will use the following well-known relationship between interlacing and real-
rootedness of convex combinations, which appears as Theorem 2.1 of Dedieu [6], as
Theorem 2\prime of Fell [7], and as a special case of Theorem 3.6 of Chudnovsky and
Seymour [4].

Lemma 2.2. If f1 and f2 are real-rooted of the same degree and have positive
leading coefficients, then f1 + \alpha f2 is real-rooted for all \alpha \geq 0 if and only if f1 and f2
have a common interlacer (a third polynomial interlacing both of them).

We will also use the following elementary facts about interlacing and real-rootedness,
which may be found in [8].

Lemma 2.3. If g has degree one less than f and both are real-rooted, then
1. g  - \rightarrow f if and only if f + \alpha g is real-rooted for all \alpha \in \BbbR .

If, in addition, both f and g have positive leading coefficients, then
2. g  - \rightarrow f implies that f  - \rightarrow f  - g.

We refer the interested reader to [15] for a more thorough introduction to inter-
lacing families. Part 1 of the above lemma is known as Obreschkoff's theorem [21],
and a proof written in English may be found in [22, Theorem 6.3.8].

2.2. Finite free convolutions of polynomials. To analyze the expected char-
acteristic polynomials of the random graphs we consider, we will need the notion of
a finite free convolution of two polynomials, developed in our companion paper [14].
One way to motivate this notion is the following.

Recall that the distribution of the sum of two independent scalar random variables
X +Y is the convolution of the individual distributions. Similarly, one can ask about
the eigenvalue distribution of a sum of independent random matrices A+B; the latter
problem does not have a simple answer in general, since the eigenvalues of a sum of
matrices depend in a nonlinear way on the relative positions of their eigenvectors.

The critical observation in our context is that nonetheless, the expected character-
istic polynomials of certain special sums of independent random matrices,
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prototypically of type A +QBQT where Q is a random orthogonal matrix,2 depend
linearly on the expected characteristic polynomials of their summands, in a way that
is not that different from the convolution of scalar random variables. The finite free
convolution is the bilinear operation that implements this fact.

We remark that the finite free convolution was inspired by Voiculescu's free con-
volution [24] in free probability theory (hence the name). The connection lies in the
fact that free probability provides precise descriptions of the the limiting spectral dis-
tribution of random matrix ensembles of type \{ Ad +QdBdQ

T
d \} \infty d=1, where the Qd are

random orthogonal matrices as the dimension d tends to infinity. In particular, if the
limiting spectral distributions of the \{ Ad\} and \{ Bd\} are \mu A and \mu B , then the limiting
spectral distribution of this model is given by \mu A \boxplus \mu B , where \boxplus is an operation on
measures called the free convolution.

Our corresponding operation on polynomials will mimic this setup in finite di-
mensions. We denote the characteristic polynomial of a matrix A by

\chi x (A) := det(xI  - A).

Definition 2.4 (symmetric additive convolution). Let p(x) = \chi x (A) and q(x) =
\chi x (B) be two real-rooted polynomials for some symmetric d \times d matrices A and B.
The symmetric additive convolution of p and q is defined as

p(x) d q(x) = \BbbE 
Q
\chi x

\bigl( 
A+QBQT

\bigr) 
,

where the expectation is taken over random orthogonal matrices Q sampled according
to the Haar measure on \scrO (d), the group of d-dimensional orthogonal matrices.

Note that this is a well-defined operation on polynomials because, as is shown in
[14], the distribution of the eigenvalues of A+QBQT depends only on the eigenvalues
of A and the eigenvalues of B, which are the roots of p and q.

In the case that the matrices of interest are not symmetric (as will happen in
bipartite adjacency matrices), we will require the following two-sided variant of the
above, which yields singular values rather than eigenvalues.3

Definition 2.5 (asymmetric additive convolution). Let p(x) = \chi x

\bigl( 
AAT

\bigr) 
and

q(x) = \chi x

\bigl( 
BBT

\bigr) 
be two real-rooted polynomials with nonnegative roots for some

arbitrary (not necessarily symmetric) d \times d matrices A and B. The asymmetric
additive convolution of p and q is defined as

p(x) d q(x) = \BbbE 
Q,R

\chi x

\bigl( 
(A+QBRT )(A+QBRT )T

\bigr) 
,

where Q and R are independent random orthogonal matrices sampled uniformly from
\scrO (d).

When dealing with a possibly asymmetric d \times d matrix M , we will frequently
consider the dilation \biggl[ 

0 M
MT 0

\biggr] 
,

which is by construction a symmetric 2d\times 2d matrix. We will refer to a matrix of this
type as a bipartite matrix. It is easy to see that its eigenvalues are symmetric about

2More generally, those for which the eigenvectors of the two matrices in the sum are independent
and ``as random as possible.""

3The asymmetric additive convolution can be used with rectangular matrices as well, but we will
not need such generality in this paper.
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0 and are equal to \pm \lambda 1(MMT )1/2, . . . ,\pm \lambda d(MMT )1/2, i.e., in absolute value to the
singular values of M . This correspondence also gives the useful identity

(2) \BbbS \chi x

\bigl( 
MMT

\bigr) 
= \chi x

\biggl( \biggl[ 
0 M

MT 0

\biggr] \biggr) 
,

where the operator \BbbS is defined by

(\BbbS p)(x) := p(x2).

With this notation in hand, we can alternately express the asymmetric additive con-
volution as

(3) \BbbS (p(x) d q(x)) = \BbbE 
Q,R

\chi x

\Biggl( \biggl[ 
0 A
AT 0

\biggr] 
+

\biggl[ 
Q 0
0 R

\biggr] \biggl[ 
0 B
BT 0

\biggr] \biggl[ 
Q 0
0 R

\biggr] T\Biggr) 
.

Explicit, closed-form formulas for the additive convolutions in terms of the co-
efficients of p and q may be found in Theorems 1.1 and 1.3 of [14]. The results in
this paper only require the following important consequences of these formulas, also
established in [14]. We will occasionally drop the subscripts in d and d when they
are clear from context.

Lemma 2.6 (properties of and ). Let p and q be degree-d polynomials.
1. If p(x) and q(x) are real-rooted, then p(x) d q(x) is also real-rooted.
2. If p(x) and q(x) are real-rooted with all roots nonnegative, then p(x) d q(x)

is also real-rooted with all roots nonnegative.
3. The operations d and d are bilinear (in the coefficients of the polynomials

on which they operate) and associative.

Proof. (1) and (2) are Theorems 1.2 and 1.4 of [14], and bilinearity follows immedi-
ately from Theorems 1.1 and 1.3 of [14]. To see associativity, let p(x) = \chi x (A) , q(x) =
\chi x (B), and r(x) = \chi x (C), and observe that

(p(x) q(x)) r(x) =

\biggl( 
\BbbE 
Q
\BbbE 
R
\chi x

\bigl( 
QAQT +RBRT

\bigr) \biggr) 
\chi x (C)

= \BbbE 
Q
\BbbE 
R

\bigl( 
\chi x

\bigl( 
QAQ+RBRT

\bigr) 
\chi x (C)

\bigr) 
by bilinearity

= \BbbE 
Q
\BbbE 
R
\BbbE 
W

\chi x

\bigl( 
QAQ+RBRT +WCWT

\bigr) 
for random orthogonal matrices Q,R,W . The same argument shows that this is also
equal to p(x) (q(x) r(x)).

An analogous argument using the formula (3) shows that is also associative.

Applying the above lemma inductively allows one to unambiguously write

(4) \BbbE 
Q1,...,Qm

\chi x

\Biggl( 
m\sum 
i=1

QiAiQ
T
i

\Biggr) 
= \chi x (A1) \chi x (A2) \cdot \cdot \cdot \chi x (Am)

for m \geq 3 matrices A1, . . . , Am.

2.3. Cauchy transforms. The device that we use to analyze the roots of finite
free convolutions of polynomials is the Cauchy transform. This is the same (up to
normalization) as the Stieltjes transform and the ``barrier function"" of [2, 15, 16]. The
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methods below are different from those used to study the mixed characteristic poly-
nomials of [16], and the bounds we obtain are strictly stronger than those produced
by the original ``barrier method"" argument introduced in [2] (which is off by a factor
of about

\surd 
2 in this setting).

Definition 2.7 (Cauchy transform). The Cauchy transform of a polynomial p(x)
with roots \lambda 1, . . . , \lambda d is defined to be the rational function

\scrG p (x) =
1

d

d\sum 
i=1

1

x - \lambda i
=

1

d

p\prime (x)

p(x)
.

We define the inverse Cauchy transform of p to be

\scrK p (w) = max \{ x : \scrG p (x) = w\} ,

where w > 0 is a real parameter.

Note that the Cauchy transform has poles at the roots \lambda i of p, and when all of the
roots are real, \scrG p (x) is monotone decreasing for x greater than the largest root. Thus,
\scrK p (w) is the unique value of x that is larger than all the \lambda i for which \scrG p (x) = w. In
particular, it is an upper bound on the largest root of p and approaches the largest
root as w \rightarrow \infty .

Our bounds on the expected characteristic polynomials of random graphs are a
consequence of the following two theorems, which are proved in [14].

Theorem 2.8 (see [14, Theorem 1.7]). For real-rooted degree d polynomials p
and q and w > 0,

\scrK p dq (w) \leq \scrK p (w) +\scrK q (w) - 1/w.

The above theorem is a strengthening of the univariate barrier function argument
for characteristic polynomials introduced in [2]. This may be seen by taking q(x) =
\chi x (B) = xd - 1(x - d), which corresponds to a rank 1 matrix B = vvT with trace equal
to d. It is easy to check that in this case p(x) q(x) = p(x) - p\prime (x). We remark that
bounds of this type are generally much better than the trivial triangle inequality on
\lambda max. This is due to the fact that \scrK p (w) takes into account the location of all roots
(rather than just the largest one), creating what can be viewed as a ``soft maximum""
on the roots.

We remark that the inequality in Theorem 2.8 is inspired by an equality regarding
inverse Cauchy transforms of limiting spectral distributions of certain random matrix
models arising in free probability theory; we refer the interested reader to [14, 13]
for more details. To analyze the case of bipartite random graphs, we will need the
corresponding inequality for the asymmetric convolution.

Theorem 2.9 (see [14, Theorem 1.8]). For degree d polynomials p and q having
only nonnegative real roots,

\scrK \BbbS (p dq) (w) \leq \scrK \BbbS p (w) +\scrK \BbbS q (w) - 1/w.

3. Interlacing for permutations. In this section, we show that the expected
characteristic polynomials obtained by averaging over certain random permutation
matrices form interlacing families. The class of random permutations which have this
property are those that are products of independent random swaps, which we now
formally define.
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Definition 3.1 (random swap). A random swap is a matrix-valued random vari-
able which is equal to a transposition of two (fixed) indices a, b with probability \alpha and
equal to the identity with probability (1 - \alpha ) for some \alpha \in [0, 1].

Definition 3.2 (realizability by swaps). A matrix-valued random variable P sup-
ported on permutation matrices is realizable by swaps if there are random swaps
S1, . . . , SN such that the distribution of P is the same as the distribution of the prod-
uct SNSN - 1 . . . S2S1.

For example, we show in Lemma 3.5 below that a uniformly random permutation
matrix is realizable by swaps.

The main result of this section is that expected characteristic polynomials over
products of random swaps are always real-rooted. These polynomials play a role
analogous to that of mixed characteristic polynomials in [15, 16].

Theorem 3.3. Let A1, . . . , Am be symmetric d\times d matrices, and let \{ Sij\} i\leq m,j\leq N

be independent (not necessarily identical) random swaps. Then the expected charac-
teristic polynomial

(5) \BbbE det

\left(  tI  - 
m\sum 
i=1

\left(  1\prod 
j=N

Sij

\right)  Ai

\left(  N\prod 
j=1

ST
ij

\right)  \right)  
is real-rooted.

An immediate consequence of Theorems 3.3 and 2.1, applied to the family of
polynomials indexed by all possible values of the swaps Sij , is the following existence
result.

Theorem 3.4 (interlacing families for permutations). Suppose A1, . . . , Am are
symmetric d\times d matrices, and P1, . . . , Pm are independent random permutations re-
alizable by swaps. Then, for every k \leq d,

\lambda k

\Biggl( 
m\sum 
i=1

PiAiP
T
i

\Biggr) 
\leq \lambda k

\Biggl( 
\BbbE \chi x

\Biggl( 
m\sum 
i=1

PiAiP
T
i

\Biggr) \Biggr) 
with nonzero probability.

Theorem 3.4 is useful because the uniform distribution on permutations and its
bipartite version, which we use to generate our random graphs, are realizable by
swaps.

Lemma 3.5. Let P and R be uniformly random d\times d permutation matrices. Both
P and P \oplus R are realizable by swaps, where P \oplus R = ( P 0

0 R ) is the direct sum of P
and R.

Proof. We will establish the claim for P first. We proceed inductively. Let M2

be a random swap which swaps e1 and e2 with probability 1/2, and for k > 2 let

Mk = Mk - 1S1kMk - 1,

where S1k swaps e1 and ek with probability 1/k.
Let v = (1, 2, 3, . . . , d)T . By induction, assume that the first k  - 1 coordinates

of Mk - 1v are in uniformly random order; in particular, that (Mk - 1v)(1) is a random
element of \{ 1, . . . , k  - 1\} . This means that

\bullet with probability 1/k, (Mk - 1S1kMk - 1v)(k) = k, and the remaining indices
contain a random permutation of \{ 1, . . . , k  - 1\} ;
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\bullet with probability 1 - 1/k, (Mk - 1S1kMk - 1v)(k) is a uniformly random element
j \in \{ 1, . . . , k  - 1\} , and the remaining indices contain a random permutation
of \{ 1, . . . , k\} \setminus \{ j\} .

Thus, Mk is uniformly random on \{ 1, . . . , k\} , and by induction Md = P .
For P \oplus R, we use the above argument to realize P \oplus I and I \oplus R separately and

then multiply them.

The rest of this section is devoted to proving Theorem 3.3. The proof we present
here is a simplification of our original proof inspired by the proof of [10, Lemma 4.3].
Similar techniques may be used to prove the real-rootedness of the mixed characteristic
polynomials that appeared in [15, 16] (see [23]).

Definition 3.6 (real-rooted distributions). We say that a tuple of independent
(not necessarily identically distributed) d-dimensional random permutation matrices
(P1, . . . , Pm) is real-rooted if for all d \times d symmetric matrices A1, . . . , Am, the poly-
nomial

\BbbE \chi x

\Biggl( 
m\sum 
i=1

PiAiP
T
i

\Biggr) 
is real rooted.

For example, if each Pi is always the identity, then (P1, . . . , Pm)
is real-rooted. Given this, Theorem 3.3 follows immediately from the following lemma.

Lemma 3.7. If S is a random swap and if (P1, . . . , Pm) is real-rooted, then (P1S,
. . . , Pm) is also real-rooted.

The proof of Lemma 3.7 will rely on two auxiliary lemmas.

Lemma 3.8. If \sigma is a transposition and A is symmetric, then A - \sigma A\sigma T has rank
2 and trace 0. Thus, we can write \sigma A\sigma T = A - uuT + vvT for some vectors u and v.

Proof. Assume without loss of generality that \sigma swaps the first two coordinates.
Then by symmetry the difference A - \sigma A\sigma T has entries\left[      

a11  - a22 a12  - a21 a13  - a23 a14  - a24 . . .
a21  - a12 a22  - a11 a23  - a13 a24  - a14 . . .
a31  - a32 a32  - a31 0 . . .
a41  - a42 a42  - a41 0 . . .

. . .

\right]      =

\left[  \alpha 0 vT

0  - \alpha  - vT

v  - v 0n - 2

\right]  

for some number \alpha and some column vector v of length d  - 2. If \alpha \not = 0, then the
sum of the first two rows is equal to (\alpha , - \alpha , 0, . . . , 0), and every other row is a scalar
multiple of this. On the other hand, if \alpha = 0, then the first two rows are linearly
dependent, and all of the other rows are multiples of (1, - 1, 0, . . . , 0).

Lemma 3.9. Let A be a d-dimensional symmetric matrix, and let v be a vector.
Let

pt(x) = \chi x(A+ tvvT ).

Then there is a degree d - 1 polynomial with positive leading coefficient q(x) so that

pt(x) = \chi x(A) - tq(x).

Proof. Consider the case in which v is the elementary unit vector in the first
coordinate. It suffices to consider this case as determinants, and thus characteristic
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polynomials, are unchanged by multiplication by rotation matrices. The matrix tvvT

is zeros everywhere except for the element t in the upper left entry. So,

\chi x(A+ tvvT ) = det(xI  - A - tvvT ) = det(xI  - A) - tdet(xI(1)  - A(1))

= \chi x(A) - t\chi x(A
(1)),

where A(1) is the submatrix of A obtained by removing its first row and column.

Proof of Lemma 3.7. Let S be equal to the transposition \sigma with probability \alpha 
and the identity with probabilty 1  - \alpha . Let A1, . . . , Am be arbitrary d-dimensional
symmetric matrices. Lemma 3.8 tells us that there exist vectors u and v so that

\sigma A1\sigma 
T = A1  - uuT + vvT .

We will now show that

(6) \BbbE \chi x

\Biggl( 
m\sum 
i=1

PiAiP
T
i

\Biggr) 
\rightarrow \BbbE \chi x

\Biggl( 
P1(A1 + vvT )PT

1 +
m\sum 
i=2

PiAiP
T
i

\Biggr) 
.

Lemma 3.9 tells us that for every fixed tuple of permutation matrices (Q1, . . . , Qm),
there exists a degree d - 1 polynomial q(x) with positive leading coefficient so that

\chi x

\Biggl( 
Q1(Ai + tvvT )QT

1 +

m\sum 
i=2

QiAiQ
T
i

\Biggr) 
= \chi x

\Biggl( 
m\sum 
i=1

QiAiQ
T
i

\Biggr) 
 - tq(x).

Thus, averaging over all (Q1, . . . , Qm) in the support of (P1, . . . , Pm), there exists a
degree d - 1 polynomial p(x) with positive leading coefficient so that

pt(x)
def
= \BbbE \chi x

\Biggl( 
P1(A1 + tvvT )PT

1 +

m\sum 
i=2

PiAiP
T
i

\Biggr) 
= \BbbE \chi x

\Biggl( 
m\sum 
i=1

PiAiP
T
i

\Biggr) 
 - tp(x).

As (P1, . . . , Pm) is real-rooted and A + tvvT is symmetric, the polynomial pt(x) is
real-rooted for every t. By parts 1 and 2 of Lemma 2.3, this implies p0(x) \rightarrow p1(x), a
statement that is identical to (6). The same argument implies that

\BbbE \chi x

\Biggl( 
P1(A1 + vvT  - uuT )PT

1 +

m\sum 
i=2

PiAiP
T
i

\Biggr) 

\rightarrow \BbbE \chi x

\Biggl( 
P1(A1 + vvT )PT

1 +

m\sum 
i=2

PiAiP
T
i

\Biggr) 
.

Thus, both the polynomials \BbbE \chi x

\bigl( \sum m
i=1 PiAiP

T
i

\bigr) 
and

\BbbE \chi x

\Biggl( 
P1(A1 + vvT  - uuT )PT

1 +

m\sum 
i=2

PiAiP
T
i

\Biggr) 
= \BbbE \chi x

\Biggl( 
P1\sigma A1\sigma 

TPT
1 +

m\sum 
i=2

PiAiP
T
i

\Biggr) 

interlace

\BbbE \chi x

\Biggl( 
P1(A1 + vvT )PT

1 +

m\sum 
i=2

PiAiP
T
i

\Biggr) 
.

So, we may use Lemma 2.2 to conclude that
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\BbbE \chi x

\Biggl( 
P1SA1S

TPT
1 +

m\sum 
i=2

PiAiP
T
i

\Biggr) 

= \alpha \BbbE \chi x

\Biggl( 
P1\sigma A1\sigma 

TPT
1 +

m\sum 
i=2

PiAiP
T
i

\Biggr) 
+ (1 - \alpha )\BbbE \chi x

\Biggl( 
m\sum 
i=1

PiAiP
T
i

\Biggr) 

is real-rooted.

4. Quadrature. In this section, we show how finite free convolutions (which
are expectations over orthogonal matrices) can be applied to polynomials from the
previous section (which are expectations over permutation matrices). In short, we
will see that the expected characteristic polynomials we are interested in will become
finite free convolutions when the original matrices are projected orthogonally to the
all-ones vector. This will give us explicit formulas for these polynomials and, more
importantly, a way to bound for their roots. We begin by showing how to do this for
the symmetric case, which is more transparent and contains all the main ideas. In
section 4.2 we derive the result for the bipartite case as a corollary of the result for
the symmetric case.

4.1. Quadrature for symmetric matrices. The following theorem gives an
explicit formula for the expected characteristic polynomial of the sum of two sym-
metric matrices with constant row sums when the rows and columns of one of the
matrices is randomly permuted. This can be used to compute the expected char-
acteristic polynomial of the Laplacian matrix of the sum of two graphs when one
is randomly permuted. In this paper, we use the result to compute the expected
characteristic polynomial of the adjacency matrix when both graphs are regular.

We will use 1 to denote the all-ones vector.

Theorem 4.1. Suppose A and B are symmetric d \times d matrices with A1 = a1
and B1 = b1. Let \chi x (A) = (x - a)p(x) and \chi x (B) = (x - b)q(x). Then,

(7) \BbbE P\chi x

\bigl( 
A+ PBPT

\bigr) 
= (x - (a+ b))p(x) d - 1 q(x),

where P is a uniformly random permutation.

We begin by writing (7) in a more concrete form. Observe that all of the matrices
A,B, P have 1 as a left and right eigenvector, which means that there is an orthogonal
change of basis V that simultaneously block diagonalizes all of them (for concreteness,
we use the one mapping 1 to the standard basis vector en):

(8) V AV T = \^A\oplus a, V BV T = \^B \oplus b, V PV T = \^P \oplus 1,

where \^A\oplus a denotes the direct sum \biggl[ 
\^A 0
0 a

\biggr] 
.

Since the determinant is invariant under change of basis, we may write

\BbbE P det(xI  - A - PBPT ) = \BbbE P det(xI  - V AV T  - (V PV T )(V BV T )(V PTV T ))

= \BbbE \^P det(xI  - ( \^A\oplus a) - ( \^P \oplus 1)( \^B \oplus b)( \^PT \oplus 1))

= (x - a - b)\BbbE \^P det(xI  - \^A - \^P \^B \^PT ).(9)
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Notice also that p(x) = \chi x

\Bigl( 
\^A
\Bigr) 
and q(x) = \chi x

\Bigl( 
\^B
\Bigr) 
, so

p(x) d - 1 q(x) = \BbbE Q det(xI  - \^A - Q \^BQT ),

where Q is a (Haar) random (d - 1)\times (d - 1) orthogonal matrix. Thus, (7) is equivalent
to showing that

(10) \BbbE \^P det(xI  - \^A - \^P \^B \^PT ) = \BbbE Q det(xI  - \^A - Q \^BQT )

for all (d - 1)\times (d - 1) symmetric matrices \^A, \^B.
Note that for any permutation P , the orthogonal transformation \^P correspond-

ingly permutes \^e1, . . . , \^ed, the projections orthogonal to 1 of the standard basis vectors
e1, . . . , ed, embedded in \BbbR d - 1. Since these are the vertices of a regular simplex with d
vertices in \BbbR d - 1 centered at the origin, we will interpret each \^P as an element of the
symmetry group of this simplex. We denote this subgroup of \scrO (d - 1) by \scrA d - 1.

Since there is no longer any assumption on \^A or \^B other than symmetry, we may
absorb the xI term into \^A in (10), and we see that it is sufficient to establish the
following.

Theorem 4.2 (quadrature theorem). For symmetric d\times d matrices A and B,

(11) \BbbE 
P\in \scrA d

det(A+ PBPT ) = \BbbE 
Q\in \scrO (d)

det(A+QBQT ).

It is easy to see that the theorem will follow if we can show that the left-hand side of
(11) is invariant under right multiplication of P by orthogonal matrices.

Lemma 4.3 (invariance implies quadrature). Let f be a function from \scrO (d) to
\BbbR , and let H be a finite subgroup of \scrO (d). If

(12) \BbbE 
P\in H

f(P ) = \BbbE 
P\in H

f(PQ0)

for all Q0 \in \scrO (d), then

(13) \BbbE 
P\in H

f(P ) = \BbbE 
Q\in \scrO (d)

f(Q),

where Q is chosen according to Haar measure and P is uniform on H.

Proof.

\BbbE 
Q\in \scrO (d)

f(Q) = \BbbE 
Q\in \scrO (d)

\BbbE 
P\in H

f(PQ) = \BbbE 
P\in H

\BbbE 
Q\in \scrO (d)

f(PQ)

= \BbbE 
P\in H

\BbbE 
Q\in \scrO (d)

f(P ) = \BbbE 
P\in H

f(P ),

as desired.

We will prove Theorem 4.2 by showing that f(P ) = det(A+PBPT ) satisfies (12).
We will achieve this by demonstrating that f is invariant under certain elementary
orthogonal transformations acting on 3-faces of the regular simplex, which generate
all orthogonal transformations. Let us fix some notation to precisely describe these
elementary transformations.

Given three vertices \^ei, \^ej , \^ek of the regular simplex, let \scrA i,j,k denote the subgroup
of \scrA d consisting of permutations of \^ei, \^ej , \^ek which leave all of the other vertices fixed.
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Let \scrO i,j,k denote the subgroup of \scrO (d) acting on the two-dimensional linear subspace
parallel to the affine subspace through these three vertices and leaving the orthogonal
subspace fixed. Note that \scrA i,j,k is a subgroup of \scrO i,j,k and that these groups are
isomorphic to \scrA 2 and \scrO (2), respectively.

The heart of the proof lies in the following lemma, which implies by Lemma 4.3
that the polynomials we are interested in are not able to distinguish between the
uniform distributions on \scrA 2 and \scrO (2). The reason for this is that these polynomials
have very low degree (at most two) in the entries of any orthogonal matrix Q acting
on a two-dimensional subspace, a fact which is essentially a consequence of the mul-
tilinearity of the determinant. The argument below is similar to the proof of Lemma
2.7 in [14].

Lemma 4.4 (invariance for \scrA 2). If A and B are symmetric d\times d matrices, then
for every Q0 \in \scrO (2),

\BbbE 
P\in \scrA 2

det(A+ (P \oplus Id - 2)B(P \oplus Id - 2)
T )

= \BbbE 
P\in \scrA 2

det(A+ (PQ0 \oplus Id - 2)B(PQ0 \oplus Id - 2)
T ).(14)

Proof. Let S\scrO (2) be the subgroup of \scrO (2) consisting of rotation matrices

R\theta =

\biggl[ 
cos \theta  - sin \theta 
sin \theta cos \theta 

\biggr] 
,

and let Z3 be the subgroup of \scrA 2 consisting of the three rotations R\tau , \tau \in T :=
\{ 0, 2\pi /3, 4\pi /3\} . We begin by showing that

(15) \BbbE 
P\in Z3

det(A+ (P \oplus I)B(P \oplus I)T ) = \BbbE 
P\in Z3

det(A+ (PR\theta \oplus I)B(PR\theta \oplus I)T )

for every \theta , where I is the (d - 2)-dimensional identity. Since the elements of Z3 are
themselves rotations, we can rewrite thrice the right-hand side of (15) as\sum 

\tau \in T

det(A+ (R\tau R\theta \oplus I)B(R\tau R\theta \oplus I)T )

=
\sum 
\tau \in T

det(A+ (R\tau +\theta \oplus I)B(R\tau +\theta \oplus I)T )

=
\sum 
\tau \in T

2\sum 
k= - 2

cke
ik(\tau +\theta ) for some coefficients ck, by Lemma 4.5

=

2\sum 
k= - 2

cke
ik\theta 
\Bigl( 
eik0 + eik2\pi /3 + eik4\pi /3

\Bigr) 
= 3c0 since the terms with | k| = 1, 2 vanish.

As this quantity is independent of \theta , we can assume \theta = 0, which gives the left-hand
side of (15).

To finish the proof, we observe that

\BbbE 
P\in \scrA 2

det(A+ (P \oplus Id - 2)B(P \oplus Id - 2)
T )

= \BbbE 
D\in F

\BbbE 
P\in Z3

det(A+ (PD \oplus I)B(PD \oplus I)T )

= \BbbE 
D\in F

\BbbE 
P\in Z3

det(A+ (P \oplus I)(D \oplus I)B(D \oplus I)T (P \oplus I)T ),
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where F consists of the identity and the reflection across the horizontal axis,

F :=

\biggl\{ \biggl[ 
1 0
0 1

\biggr] 
,

\biggl[ 
1 0
0  - 1

\biggr] \biggr\} 
,

and D is chosen uniformly from F .
Thus, the left-hand side of (14) is invariant under conjugation of B with the

matrices D \oplus I,D \in F . Since every Q0 \in \scrO (2) can be written as R\theta D for some
D \in F , and we have already established invariance under R\theta \oplus I in (15), the lemma
is proved.

Lemma 4.5 (determinants are low degree in rank 2 rotations). Let A,B be d\times d
symmetric matrices. Then there are numbers ck for k \in \{  - 2, - 1, 0, 1, 2\} so that

det
\bigl( 
A+ (R\theta \oplus Id - 2)B(R\theta \oplus Id - 2)

T
\bigr) 
=
\sum 
k

cke
ik\theta .

Proof. Recall that all 2\times 2 rotations may be diagonalized as

R\theta =

\biggl[ 
cos \theta  - sin \theta 
sin \theta cos \theta 

\biggr] 
= U

\biggl[ 
ei\theta 0
0 e - i\theta 

\biggr] 
U\dagger ,

where

U =
1\surd 
2

\biggl[ 
1 1
 - i i

\biggr] 
is independent of \theta . This implies that (R\theta \oplus Id - 2) = V DV \dagger for diagonal D containing
ei\theta and e - i\theta in the upper right 2 \times 2 block and ones elsewhere, with V independent
of \theta . Thus, we see that

det
\bigl( 
A+ (R\theta \oplus Id - 2)B(R\theta \oplus Id - 2)

T
\bigr) 
= det (A(R\theta \oplus Id - 2) + (R\theta \oplus Id - 2)B)

= det
\bigl( 
AVDV \dagger + V DV \dagger B

\bigr) 
= det

\bigl( 
V \dagger AVD +DV \dagger BV

\bigr) 
.

Notice that the matrix M = V \dagger AVD+DV \dagger BV depends linearly on ei\theta , e - i\theta and that
the ei\theta (resp., e - i\theta ) terms appear only in the first (resp., second) row and column of
M . Since each monomial in the expansion of the determinant contains at most one
entry from each row and each column and ei\theta \cdot e - i\theta = 1, this implies that no terms of
degree higher than two in ei\theta or e - i\theta appear.

Corollary 4.6 (invariance for \scrA i,j,k). For every i, j, and k,

\BbbE 
P\in \scrA i,j,k

det(A+ PBPT ) = \BbbE 
Q\in \scrO i,j,k

det(A+QBQT ).

Proof. Let V be the orthogonal transformation that maps the affine subspace
spanned by the vertices \^ei, \^ej , \^ek to the first two coordinates of \BbbR 2, with any one
vertex mapped to a multiple of e1. Conjugation by V maps \scrA i,j,k to \scrA 2 \oplus Id - 2

and \scrO i,j,k to \scrO (2) \oplus Id - 2, abusing notation slightly in the natural way. Since the
determinant is invariant under change of basis, Lemma 4.4 tells us that

\BbbE 
P\in \scrA i,j,k

det(A+ PBPT ) = \BbbE 
P2\in \scrA 2

det(V AV T + (P2 \oplus I)V BV T (P2 \oplus I)T )

= \BbbE 
Q2\in \scrO (2)

det(V AV T + (Q2 \oplus I)V BV T (Q2 \oplus I)T )

= \BbbE 
Q\in \scrO i,j,k

det(A+QBQT ),

as desired.
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Lemma 4.7 (\scrO i,j,k generates \scrO (d)). Given a regular simplex in \BbbR d, the union
over i, j, and k of \scrO i,j,k generates \scrO (d). In particular, every matrix in \scrO (d) may be
written as a product of a finite number of these matrices.

Proof. Let \Gamma h be the subgroup of \scrO (d) generated by
\bigcup 

i,j,k\leq h \scrO i,j,k. Let \^e0, . . . , \^ed
be the vertices of the regular simplex. For 1 \leq h \leq d, let Eh be the linear subspace
parallel to the affine subspace through \^e0, . . . , \^eh. We will prove by induction on h
that \Gamma h contains the action of the orthogonal group on Eh. The base case is h = 2,
for which \scrO 0,1,2 is precisely the action of the orthogonal group on E2.

Assuming that we have proved this result for h  - 1, we now prove it for h. To
this end, let uh = \^eh, and let u1, . . . , uh - 1 be arbitrary orthonormal vectors in Eh

that are orthogonal to uh. We will prove that for every orthonormal basis w1, . . . , wh

of Eh, there is a Q \in \Gamma h such that Qwi = ui for 1 \leq i \leq h.
We first consider the case in which wT

h \^eh \geq 0. Let Fh denote the two-dimensional
affine subspace spanned by \{ \^eh, \^eh - 1, \^eh - 2\} , and observe that there must be a unit
vector p \in Eh \cap Fh with pT \^eh = wT

h \^eh. This follows because the intersection of
Fh with the unit sphere in Eh is a circle containing \{ \^eh, \^eh - 1, \^eh - 2\} , p \mapsto \rightarrow pT \^eh is
a continuous function, and we have \^eTh \^eh = 1 and \^eTh - 1\^eh = \^eTh - 2\^eh < 0. As \^eh is
orthogonal to Eh - 1 and \^eh is invariant under \Gamma h - 1, the induction hypothesis implies
that there must be a T \in \Gamma h - 1 so that Twh = p. Moreover, there is an element T2 of
\scrO h - 2,h - 1,h that maps p to \^eh. So, their composition W = T2T sends wh to \^eh. Since
W is orthogonal, it must send w1, . . . , wh - 1 to Eh - 1, and so by induction may be
composed with a map in \Gamma h - 1 that sends Ww1, . . . ,Wwh - 1 to u1, . . . , uh - 1 without
moving \^eh. The resulting map is the desired Q.

In the case that wT
h \^eh < 0, we begin by applying a map in \Gamma h that sends wh to a

vector that is orthogonal to \^eh so that we can then apply the previous argument. For
example, we can do this by defining p to be one of the two unit vectors in Fh with
pT \^eh =  - wT

h \^eh. We then apply a map in \Gamma h - 1 that sends wh to  - p and then a map
in \scrO h - 2,h - 1,h that maps p, and thus also  - p, to a vector orthogonal to \^eh.

Theorem 4.8 (invariance for \scrA d). Let A and B be d\times d matrices, and let

fA,B(Q) = det
\bigl( 
A+QBQT

\bigr) 
.

Then, for all Q0 \in \scrO (d),

\BbbE 
P\in \scrA d

fA,B(P ) = \BbbE 
P\in \scrA d

fA,B(PQ0).

Proof. We will use the fact that

\BbbE 
P\in \scrA d

fA,B(P ) = \BbbE 
P\in \scrA d

\BbbE 
P2\in \scrA i,j,k

fA,B(PP2) = \BbbE 
P\in \scrA d

\BbbE 
P2\in \scrA i,j,k

fPTAP,B(P2).

Applying Corollary 4.6 reveals that for every Q2 \in \scrO i,j,k,

\BbbE 
P\in \scrA d

\BbbE 
P2\in \scrA i,j,k

fPTAP,B(P2) = \BbbE 
P\in \scrA d

\BbbE 
P2\in \scrA i,j,k

fPTAP,B(P2Q2)

= \BbbE 
P\in \scrA d

\BbbE 
P2\in \scrA i,j,k

fA,B(PP2Q2)

= \BbbE 
P\in \scrA d

fA,B(PQ2).

Thus, we conclude that

\BbbE 
P\in \scrA d

fA,B(P ) = \BbbE 
P\in \scrA d

fA,B(PQ2)

for every Q2 \in \scrO i,j,k, for every i, j, k.
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Let Q0 \in \scrO (d). By Lemma 4.7, there is a sequence of matrices Q1, . . . , Qm, each
of which is in \scrO i,j,k for some i, j, and k, so that

Q0 = Q1Q2 \cdot \cdot \cdot Qm.

By applying the previous equality m times, we obtain

\BbbE 
P\in \scrA d

f(PQ0) = \BbbE 
P\in \scrA d

f(PQ1 \cdot \cdot \cdot Qm) = \BbbE 
P\in \scrA d

f(P ).

Proof of Theorem 4.2. The proof follows from Theorem 4.8 and Lemma 4.3.

Proof of Theorem 4.1. The proof follows from Theorem 4.2, (8), and (9).

We conclude the section by recording the obvious extension of Theorem 4.1 to
sums of m matrices.

Corollary 4.9. Let A1, . . . , Am be symmetric d \times d matrices with Ai1 = ai1
and \chi x (Ai) = (x - ai)pi(x). Then,

(16) \BbbE 
P1,...,Pm

\chi x

\Biggl( 
m\sum 
i=1

PiAiP
T
i

\Biggr) 
=

\Biggl( 
x - 

m\sum 
i=1

ai

\Biggr) 
p1(x) \cdot \cdot \cdot pm(x),

where P1, . . . , Pm are independent uniformly random permutation matrices.

Proof. Apply a change of basis so that each Ai = \^Ai \oplus ai, divide out the (x  - \sum m
i=1 ai) term as in (9), and apply Theorem 4.2 inductively (m - 1) times, replacing

each \^Pi with a random orthogonal Qi (this requires conditioning on the other \^Pj and

Qj , but by independence the distribution of each \^Pi is still uniform on \scrA d). Finally,
appeal to the identity (4) to write this as an m-wise additive convolution.

4.2. Quadrature for bipartite matrices.

Theorem 4.10. Suppose A and B are (not necessarily symmetric) d\times d matrices
such that A1 = AT1 = a1 and B1 = BT1 = b1. Let \chi x

\bigl( 
AAT

\bigr) 
= (x  - a2)p(x) and

\chi x

\bigl( 
BBT

\bigr) 
= (x - b2)q(x). Then,

\BbbE 
P,S

\chi x

\biggl( \biggl[ 
0 A
AT 0

\biggr] 
+ (P \oplus S)

\biggl[ 
0 B
BT 0

\biggr] 
(P \oplus S)T

\biggr) 
= \BbbS 

\bigl( 
(x - (a+ b)2)p(x) d - 1 q(x)

\bigr) (17)

= (x2 - (a+b)2)\BbbS (p(x) d - 1 q(x)),(18)

where P and S are independent uniform random permutation matrices.

As in the nonbipartite case, we begin by applying a change of basis V that isolates
the common all ones eigenvector and block diagonalizes our matrices as:

(19) V AV T = \^A\oplus a, V BV T = \^B \oplus b, V PV T = \^P \oplus 1, V SV T = \^S \oplus 1.

Conjugating the left-hand side of (17) by (V \oplus V ), we see that it is the same as
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\BbbE 
P,S

\chi x

\biggl( \biggl[ 
0 ( \^A\oplus a)

( \^A\oplus a)T 0

\biggr] 
+ (( \^P \oplus 1)\oplus ( \^S \oplus 1))

\biggl[ 
0 ( \^B \oplus b)

( \^B \oplus b)T 0

\biggr] 
(( \^P \oplus 1)\oplus ( \^S \oplus 1))T

\biggr) 
= \BbbE 

P,S
\chi x

\biggl( \biggl[ 
0 ( \^A+ \^P \^B \^ST \oplus (a+ b))

( \^A+ \^P \^B \^ST \oplus (a+ b))T 0

\biggr] \biggr) 
= \BbbE 

P,S
\BbbS \chi x

\Bigl( 
( \^A+ \^P \^B \^ST \oplus (a+ b))( \^A+ \^P \^B \^ST \oplus (a+ b))T

\Bigr) 
= (x2  - (a+ b)2) \BbbE 

P,S
\BbbS \chi x

\Bigl( 
( \^A+ \^P \^B \^ST )( \^A+ \^P \^B \^ST )T

\Bigr) 
= (x2  - (a+ b)2) \BbbE 

P,S
\chi x

\biggl( \biggl[ 
0 \^A
\^AT 0

\biggr] 
+ ( \^P \oplus \^S)

\biggl[ 
0 \^B
\^BT 0

\biggr] 
( \^P \oplus \^S)T

\biggr) 
.(20)

As in the previous section, the matrices \^P and \^S are random elements of the group
\scrA d - 1. Observe that

p(x) = \chi x

\Bigl( 
\^A \^AT

\Bigr) 
and q(x) = \chi x

\Bigl( 
\^B \^BT

\Bigr) 
.

Recalling from (3) that

\BbbS (p(x) d - 1 q(x)) = \BbbE Q,R\in \scrO (d - 1)\chi x

\biggl( \biggl[ 
0 A
AT 0

\biggr] 
+ (Q\oplus R)

\biggl[ 
0 B
BT 0

\biggr] 
(Q\oplus R)T

\biggr) 
and removing all the \^\cdot s as before to ease notation, we see that the conclusion (17) of
Theorem 4.10 is implied by the following more general quadrature statement.

Theorem 4.11. For all symmetric 2d\times 2d matrices C and D,
(21)

\BbbE 
P,S\in \scrA d

\chi x

\bigl( 
C + (P \oplus S)D(P \oplus S)T

\bigr) 
= \BbbE 

Q,R\in \scrO (d)
\chi x

\bigl( 
C + (Q\oplus R)D(Q\oplus R)T

\bigr) 
.

This theorem is an immediate consequence of two applications of the following
corollary of Theorem 4.2.

Corollary 4.12. If C and D are symmetric 2d\times 2d matrices,

\BbbE 
P\in \scrA d

det(C + (P \oplus I)D(P \oplus I)T ) = \BbbE 
Q\in \scrO (d)

det(C + (Q\oplus I)D(Q\oplus I)T ).

Proof. The proof is identical to the proof of Theorem 4.2, except we replace
P \in \scrA d with P \oplus I and Q \in \scrO (d) with Q\oplus I at each step.

Specifically, let

fC,D(Q) := det(C + (Q\oplus I)D(Q\oplus I)T ).

Applying Corollary 4.6 as before reveals that for every i, j, k \leq d and everyQ2 \in \scrO i,j,k,

\BbbE 
P\in \scrA d

fC,D(P ) = \BbbE 
P\in \scrA d

\BbbE 
P2\in \scrA i,j,k

fC,D(PP2) = \BbbE 
P\in \scrA d

\BbbE 
P2\in \scrA i,j,k

fC,D(PP2Q2)

= \BbbE 
P\in \scrA d

fC,D(PQ2).

Since an arbitrary Q0 \in \scrO (d) is a finite product of such Q2 by Lemma 4.7, this means
that

\BbbE 
P\in \scrA d

fC,D(PQ0) = \BbbE 
P\in \scrA d

fC,D(P )

for all Q0 \in \scrO (d). Lemma 4.3 completes the proof.
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Proof of Theorem 4.11. Since P and S are independent, we have

\BbbE 
P,S\in \scrA d

\chi x

\bigl( 
C + (P \oplus S)D(P \oplus S)T

\bigr) 
= \BbbE 

S\in \scrA d

\BbbE 
P\in \scrA d

det(xI + C + (P \oplus I)(I \oplus S)D(I \oplus S)T (P \oplus I)T )

= \BbbE 
S\in \scrA d

\BbbE 
Q\in \scrO (d)

det(xI + C + (Q\oplus I)(I \oplus S)D(I \oplus S)T (Q\oplus I)T ) by Corollary 4.12

= \BbbE 
Q\in \scrO (d)

\BbbE 
S\in \scrA d

det(xI + (Q\oplus I)TC(Q\oplus I) + (I \oplus S)D(I \oplus S)T )

= \BbbE 
Q\in \scrO (d)

\BbbE 
R\in \scrO (d)

det(xI+(Q\oplus I)TC(Q\oplus I)+(I \oplus R)D(I \oplus R)T ) by Corollary 4.12

= \BbbE 
Q,R\in \scrO (d)

det(xI + C + (Q\oplus R)D(Q\oplus R)T ),

as desired.

Proof of Theorem 4.10. The proof follows from Theorem 4.11, (19), and (20).

Like Theorem 4.1, Theorem 4.10 extends effortlessly to the case of many matrices.

Corollary 4.13. If A1, . . . , Am are matrices with Ai1=AT
i 1=ai and \chi x

\bigl( 
AiA

T
i

\bigr) 
= (x - a2i )pi(x), then

\BbbE 
P1,...,Pm,S1,...,Sm

\chi x

\Biggl( 
m\sum 
i=1

(Pi \oplus Si)

\biggl[ 
0 Ai

AT
i 0

\biggr] 
(Pi \oplus Si)

T

\Biggr) 

=

\left(  x2  - 

\Biggl( \sum 
i

ai

\Biggr) 2
\right)  \BbbS [p1(x) \cdot \cdot \cdot pm(x)] ,

where the Pi and Si are independent uniformly random permutations.

We omit the proof, which is identical to the proof of Corollary 4.9.

5. Ramanujan graphs. We now combine the Cauchy transform, interlacing,
and quadrature results of the previous sections to establish Theorems 1.1 and 1.2.
We start with the (less complicated) Theorem 1.2.

Proof of Theorem 1.2. Let M be the adjacency matrix of a fixed perfect matching
on d vertices, with d even. Since the uniform distribution on permutations is realizable
by swaps (Lemma 3.5), Theorem 3.4 tells us that with nonzero probability,

\lambda 2

\Biggl( 
d\sum 

i=1

PiMPT
i

\Biggr) 
\leq \lambda 2

\Biggl( 
\BbbE \chi x

\Biggl( 
m\sum 
i=1

PiMPT
i

\Biggr) \Biggr) 
.

Corollary 4.9 reveals that the polynomial in the right-hand expression may be
written as an m-wise symmetric additive convolution

E(x) := \BbbE 
P1,...,Pm

\chi x

\Biggl( 
m\sum 
i=1

PiAiP
T
i

\Biggr) 
= (x - m)[p d - 1 \cdot \cdot \cdot d - 1 p\underbrace{}  \underbrace{}  

m times

](x),

where

p(x) =
\chi M (x)

x - 1
= (x - 1)d/2 - 1(x+ 1)d/2
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is the characteristic polynomial of a single matching with the trivial root at 1 removed.
Our goal is therefore to bound the largest root of p(x) d - 1 \cdot \cdot \cdot d - 1 p(x), which is the
second largest root of E(x). We do this using the inverse Cauchy transform described
in section 2.3. The Cauchy transform of p(x) is given by

\scrG p (x) =
d/2 - 1

d - 1

1

x - 1
+

d/2

d - 1

1

x+ 1
.

Notice that for every x > 1, putting the trivial root at 1 back only increases the
Cauchy transform:

(22) \scrG p (x) <
d/2

d

1

x - 1
+

d/2

d

1

x+ 1
=

x

x2  - 1
= \scrG \chi (M) (x) .

Since both functions are decreasing for x > 1, this implies that the inverse Cauchy
transform of p is upper bounded by that of \chi (M):

\scrK p (w) < \scrK \chi (M) (w)

for every w > 0.
Applying the convolution inequality in Theorem 2.8 (m  - 1) times yields the

following upper bound on the inverse Cauchy transform of the m-wise convolution of
interest.

(23) \scrK p \cdot \cdot \cdot p (w) \leq m \cdot \scrK p (w) - 
m - 1

w
< m \cdot \scrK \chi (M) (w) - 

m - 1

w
.

Recalling from (22) that

\scrK \chi (M) (w) = x \Leftarrow \Rightarrow w =
x

x2  - 1
,

the right-hand side of (23) may be written as

mx - m - 1

w
= mx - (m - 1)(x2  - 1)

x
=

x2 + (m - 1)

x
,

which is easily seen to be minimized at x =
\surd 
m - 1 with value 2

\surd 
m - 1. Thus, the

second largest root of E(x) is at most 2
\surd 
m - 1.

Proof of Theorem 1.1. Let

M =

\biggl[ 
0 I
IT 0

\biggr] 
be the adjacency matrix of a perfect matching on 2d vertices, across the natural
bipartition. Then, for independent uniformly random d \times d permutation matrices
P1, . . . , Pm, S1, . . . , Sm, the random matrix

A =

m\sum 
i=1

(Pi \oplus Si)M(Pi \oplus Si)
T =

m\sum 
i=1

\biggl[ 
0 (PiS

T
i )

(PiS
T
i )

T 0

\biggr] 
is the adjacency matrix of a union ofm random matchings across the same bipartition.
Since the distribution of the (Pi \oplus Si) is realizable by swaps (Lemma 3.5), Theorem
3.4 implies that

\lambda 2(A) \leq \lambda 2

\Biggl( 
\BbbE \chi x

\Biggl( 
m\sum 
i=1

(Pi \oplus Si)M(Pi \oplus Si)

\Biggr) \Biggr) 
,
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with nonzero probability. Since I1 = 1, Corollary 4.13 implies that the polynomial
on the right-hand side is equal to

(x2  - m2)\BbbS [p d - 1 \cdot \cdot \cdot d - 1 p\underbrace{}  \underbrace{}  
m times

](x),

where

p(x) = \chi x

\bigl( 
Id - 1I

T
d - 1

\bigr) 
= (x - 1)d - 1.

We upper bound the inverse Cauchy transform of this m-wise convolution using
Theorem 2.9:

\scrK \BbbS (p \cdot \cdot \cdot p) (w) \leq m \cdot \scrK \BbbS p (w) - 
m - 1

w
= m \cdot \scrK (x2 - 1)d - 1 (w) - m - 1

w
.

Since

\scrG (x2 - 1)d - 1 (w) =
x

x2  - 1
,

this is now identical to the calculation (23), so we obtain again the bound 2
\surd 
m - 1.

Thus, we conclude that \lambda 2(A) \leq 2
\surd 
m - 1 with nonzero probability. Since A is

bipartite, its spectrum is symmetric about zero, so we must also have \lambda d - 1(A) \geq 
 - 2

\surd 
m - 1, whence A is Ramanujan.
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