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Spectral Sparsification of Graphs: 
Theory and Algorithms
By Joshua Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng

abstract
Graph sparsification is the approximation of an arbitrary 
graph by a sparse graph.

We explain what it means for one graph to be a spectral 
approximation of another and review the development of 
algorithms for spectral sparsification. In addition to being 
an interesting concept, spectral sparsification has been 
an important tool in the design of nearly linear-time algo-
rithms for solving systems of linear equations in symmetric, 
diagonally dominant matrices. The fast solution of these 
linear systems has already led to breakthrough results in 
combinatorial optimization, including a faster algorithm 
for finding approximate maximum flows and minimum cuts 
in an undirected network.

1. intRoDuction
A sparse graph is one whose number of edges is reason-
ably viewed as being proportional to its number of verti-
ces. In contrast, the complete graph on n vertices, with 
about n2/2 edges, is the paradigmatic dense graph. Sparse 
graphs are often easier to handle than dense ones. Most 
graph algorithms run faster, sometimes by orders of mag-
nitude, when there are fewer edges, and the graph itself 
can be stored more compactly. By approximating a dense 
graph of interest by a suitable sparse one, one can save 
time and space.

We will work with weighted graphs, where the weights 
might represent capacities, conductance, similarity, or 
just coefficients in a linear system. In a sparse graph, all 
of the edges can be important for a graph’s structure. In a 
tree, for example, each edge provides the only path between 
its endpoints. Not so in a dense graph, where some edges 
will serve similar functions. A collection of low-weight 
edges connecting two clusters of vertices in a graph might 
be approximable by a single high-weight edge connecting 
vertices representative of those clusters. Sparsification can 
be viewed as a procedure for finding a set of representative 
edges and weighting them appropriately.

What exactly do we mean by sparse? We would certainly 
consider a graph sparse if its average degree were less than 
10, and we would probably consider a graph sparse if it had 
one billion vertices and average degree one hundred. We 
formalize the notion of sparsity in the usual analysis-of-
algorithms way by considering infinite families of graphs, 
and proclaiming sparse those whose average degrees are 
bounded by some constant, or perhaps by a polynomial in 
the logarithm of their number of vertices.

One may at first think that sparsification is unnecessary, 
as common wisdom holds that all large real-world graphs 

are sparse. While this may be true of natural graphs such as 
social networks, it is not true of the graphs that arise inside 
algorithms. Many algorithms involve the construction of 
graphs that are dense, even when solving problems on 
graphs that are sparse. Moreover, the common wisdom may 
be an artifact of the difficulty of storing and manipulating a 
large dense graph. Improvements in sparsification may one 
day ameliorate these difficulties.

The use of sparse graphs to approximate dense ones 
is not unique to algorithm design. In a parallel computer, 
for instance, information needs to be able to flow from any 
processor to any other. Hardwiring all those pairwise con-
nections would be physically difficult, so a sparse graph sim-
ulating the connectivity properties of the complete graph is 
needed. The hypercube graph plays this role in the CM5, 
built by Thinking Machines.25 Intuitively, the hypercube has 
no “bottlenecks.” Formally, the (weighted) hypercube is a 
good spectral sparsifier for the complete graph defined on 
its nodes. We have shown that every graph has a very sparse 
spectral approximation, with constant average degree.

2. notions of similaRity
A few conventions: we specify a weighted graph by a 
3-tuple, G = (V, E, w), with vertex set V = {1, …, n}, edge set 
E ⊆ {(u, v) | u, v ∈ V}, and weights w(u, v) > 0 for each (u, v) ∈ E.  
All graphs will be undirected and weighted, unless other-
wise stated. We sometimes express a graph simply by G = (V, w), 
as E can be defined implicitly by setting w(u, v) = 0 for all 
(u, v) ∉ E. We will always write n for the number of  vertices in 
a graph and m for the number of edges. When measuring 
the similarity between two graphs, we will always assume 
that they have the same set of vertices.

2.1. cut similarity
The notion of cut similarity of graphs was first considered 
by Benczúr and Karger8 as part of an effort to develop fast 
algorithms for the minimum cut and maximum flow prob-
lems. In these problems, one is interested in the sum of the 
weights of edges that are cut when one divides the vertices of 
a graph into two pieces. Two weighted graphs on the same 
vertex set are cut-similar if the sum of the weights of the 
edges cut is approximately the same in each such division.

To write this symbolically, we first observe that a division 
of the vertices into two parts can be specified by identifying 

A previous version of the paper, “Twice-Ramanujan 
Sparsifiers,” was published in the Proceedings of the 
41st Annual ACM Symposium on the Theory of Computing 
(2009), 255–262.
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properties. For example, the effective resistance distances 
between all pairs of vertices are similar in spectrally similar 
graphs. The effective resistance distance is defined by view-
ing each edge in a graph as a resistor: an edge of weight w 
becomes a resistor of resistance 1/w. The entire graph is 
then viewed as a resistive circuit, and the effective resistance 
between two vertices is just the electrical resistance in the 
network between them. It equals the potential difference 
induced between the vertices when a unit current is injected 
at one and extracted at the other. In terms of the Laplacian 
quadratic form, the effective resistance between vertices u 
and v may be written as

an identity which follows from the well-known energy mini-
mizing property of electrical flows.

The Laplacian quadratic form provides a natural way to 
solve regression problems on graphs. In these problems, 
one is told the values of x on some subset of the nodes S and 
is asked to infer the values on the remaining nodes. One 
approach to solving these problems is to view the known 
values as voltages that have been fixed, and the values at the 
other nodes as the induced voltages. That is, one seeks the 
vector x that minimizes QG(x) while agreeing with the known 
values.36 One can show that if two graphs are spectrally simi-
lar, then the solutions to all such regression problems on 
the graphs will be similar as well.

The problems of regression and computing effective 
resistances are special cases of the problem that motivated 
the definition of spectral similarity: the solution of linear 
equations in Laplacian matrices. The Laplacian quadratic 
form can be written as

QG (x) = xT LGx,

where LG is the Laplacian matrix of G. The Laplacian matrix 
of a graph G = (V, w) is defined by

The problem of solving systems of linear equations in 
Laplacian matrices arises in many areas of computational 
science and optimization. In fact, the spectral similarity 
measure is identical to the concept of relative condition num-
ber in numerical linear algebra. If two graphs are spectrally 
similar, then through the technique of preconditioning 
one can use solutions to linear equations in the Laplacian 
matrix of one graph to solve systems of linear equations in 
the Laplacian of the other.

2.3. spectral similarity of matrices
For two symmetric matrices A and B in Rn × n, we write A  B 
to indicate that

We say A and B are σ-spectrally similar if

the subset of vertices in one part. For a weighted graph 
G = (V, w) and a subset of vertices S ⊂ V, we define

We say that G = (V, w) and  = (V, ) are σ-cut similar if

for all S ⊂ V. Surprisingly, every graph is cut-similar to a 
graph with average degree O(log n), and that graph can be 
computed in polylogarithmic time.

Theorem 1 (Benczúr-Karger). For all ε > 0, every G = (V, E, w)  
has a (1 + ε)-cut similar graph  such that  ⊆ E 
and | | = O(n log n/ε2). Moreover  can be computed in  
O(m log3 n + m log n/ε2) time.

The sizes of cuts in a graph tell us a lot about its structure—
for starters, the weighted degrees of vertices are given by cuts 
of size |S| = 1. Most ways of defining a cluster of vertices in 
a graph involve comparing the number of edges in the cut 
defined by the set of vertices to the number of edges internal 
to that set.

2.2. spectral similarity
Motivated by problems in numerical linear algebra and spec-
tral graph theory, Spielman and Teng34 introduced a notion 
of spectral similarity for two graphs. We will first describe it 
as a generalization of cut similarity.

Given a weighted graph G = (V, w), we define the 
Laplacian quadratic form of G to be the function QG from 
RV to R given by

If S is a set of vertices and x is the characteristic vector of S 
(1 inside S and 0 outside), then it is easy to see that

QG (x) = cutG (S).

We say two graphs G = (V, w) and  = (V, ) are σ-spectrally 
similar if

  (1)

Thus, cut similarity can be viewed as the special case of 
spectral similarity in which we only consider vectors x that 
take values in {0, 1}.

It is possible to construct graphs that have very simi-
lar cuts, but which are highly dissimilar from the spectral 
perspective; for instance, the n-vertex path is 2-cut similar 
but only n-spectrally similar to the n-vertex cycle. Although 
spectral similarity is strictly stronger than cut similar-
ity, it is easier to check if two graphs are spectrally simi-
lar. In particular, one can estimate the spectral similarity 
of two graphs to precision ε in time polynomial in n and 
log(1/ε), but it is NP-hard to approximately compute the 
cut- similarity of two graphs.

Graphs that are spectrally similar share many algebraic 
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  (2)

We have named this relation spectral similarity because it 
implies that the two matrices have similar eigenvalues. The 
Courant-Fisher Theorem tells us that

Thus, if λ1, …, λn are the eigenvalues of A and  
~
λ1, …, 

~
λn are the 

eigenvalues of B, then for all i, λi /σ ≤ 
~
λi ≤ σ ⋅ λi.

Using this notation, we can now write inequality (1) as

  (3)

That is, two graphs are σ-spectrally similar if their 
Laplacian matrices are. We remark that the Laplacian 
matrix of a graph is (i) symmetric, that is, , (ii) posi-
tive semi-definite, that is, all eigenvalues of LG are non-neg-
ative, and (iii) (weakly) diag onally dominant, that is, for all i, 

. From consideration of the Laplacian 
quadratic form, it is easy to verify that if G is connected, 
then the null space of LG is just the span of the all 1’s vec-
tor. Thus all connected graphs have the same Laplacian 
null space and exactly one zero eigenvalue.

2.4. Distance similarity
It is worth mentioning an interesting alternative to cut- and 
spectral-similarity. If one assigns a length to every edge in 
a graph, then these lengths induce a shortest-path distance 
between every pair of vertices. We say that two different 
graphs on the same vertex set are σ-distance similar if the 
distance between each pair of vertices in one graph is within 
a multiplicative factor of σ of the distance between the cor-
responding pair of vertices in the other graph. Formally, 
if G and  are the graphs and if distG(u, v) is the distance 
between vertices u and v in G, then G and  are σ-distance 
similar if for all u, v ∈ V,

When  is a subgraph of G, the inequality distG(u, v) ≤ dist (u, v) is 
automatically satisfied. Peleg and Ullman29 defined a t-spanner 
of a graph G to be a subgraph such that for all u, v ∈ V,

They were interested in finding sparse t-spanners. It has been 
shown4 that every weighed graph has a (2t + 1)-spanner with 
O(n1 + 1/t) edges. The most extreme form of a sparse span-
ner is the low stretch spanning tree, which has only n − 1 
edges, but which only approximately preserves distances 
on  average,1 up to polylogarithmic distortion.

3. finDinG sPaRsE suBstitutEs
A (σ, d)-spectral sparsifier of a graph G is a graph  satisfying

1.  is σ-spectrally similar to G
2. The edges of  consist of reweighted edges of G
3.  has at most d|V| edges

Since spectral similarity implies that the total edge weight 
of a graph is preserved, the spectral sparsifier can only have 
fewer edges than G if those edges have larger weights.

In this section, we begin by discussing sparsifiers of the 
complete graph, which have been known for some time. We 
then describe a sequence of ever-stronger existence theo-
rems, culminating in the statement that any graph G has a 
(1 + ε, 4/ε2)-spectral sparsifier for every ε ∈ (0, 1).

3.1. cliques have constant-degree sparsifers
To warm up, let us first examine the quality of the hypercube 
as a spectral sparsifier of the complete graph. Assume for 
convenience that n is a power of two. Let G be the complete 
graph on n vertices. All the non-zero eigenvalues of LG equal n, 
so for every unit vector x orthogonal to the all-1s vector,

xTLGx = n.

The non-zero eigenvalues of the Laplacian of the hyper-
cube with n vertices in which every edge has weight 1 are  
(2, …, 2 log n). Let H be this hypercube, but with edge weights 

. The non-zero eigenvalues of the Laplacian of H 
are then

which implies that for every unit vector x orthogonal to the 
all-1s vector,

Thus, H is a -spectral sparsifier of the 
n-clique.

In fact, the complete graph has much better spectral 
sparsifiers. Consider the Ramanujan graphs,26, 27 which are 
d- regular graphs all of whose non-zero Laplacian eigenval-
ues lie between  and . If we let  be a 
Ramanujan graph with edge weight n/d, then for every unit 
vector x orthogonal to the all-1s vector,

Thus,  is a -spectral sparsifier of 
the complete graph G.

3.2. sampling and decomposition: every graph  
has a good sparsifier
Ramanujan graphs are members of the family of expander 
graphs. These are sparse graphs in which every subset of ver-
tices has a significant fraction of its edges connecting to ver-
tices outside the subset (see below for details). As with the 
hypercube and Ramanujan graphs, we can show that every 
expander can be rescaled to be a good spectral sparsifier of 
the complete graph.

It is well known that random sparse graphs are usually 
good expanders (see Bollobás9 and Friedman17). Therefore, 
one can obtain a good spectral sparsifier of the complete 
graph by random sampling. Spielman and Teng34 took this 
view one step further to show that graph sampling can be 
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The following two theorems (see Spielman and Teng34) 
together imply that for all ε, every graph has a ( (1 + ε),  
O(ε−2 log7 n) )-spectral sparsifier.
Theorem 3 (Spectral Decomposition). Every G has an  
Ω (log−2 n)-spectral  decomposition with boundary size at most 
|E|/2.

Theorem 4 (Sampling works for Expanders). Suppose 
ε ∈ (0, 1/2) and G = (V, E) is an unweighted graph with small-
est non-zero normalized Laplacian eigenvalue at least λ. Let  

 = (V, , ) be a graph obtained by sampling the edges of G  
with probabilities

pe = min (1,C/min(du, dv))  for each edge e = (u,v),

where
C = Θ ((log n)2 (ελ)-2)

and setting weights (e) = 1/pe  for e ∈ . Then, with probability 
at least 1/2,  is a (1 + ε)-spectral approximation of G, and the 
average degree of  is O( (log n)2 (ελ)−2)

To construct a spectral sparsifier of an arbitrary unweigh-
ted graph, we first apply Theorem 3 to find a W   -spectral 
decomposition of the graph in which the boundary has at 
most half the edges. We then sparsify each of the compo-
nents by random sampling, and we sparsify the graph formed 
by the boundary edges recursively. Adding the sparsifiers 
obtained yields a sparsifier for the original graph, as desired.

3.3. sampling by effective resistance
By using effective resistances to define the edge sampling 
probabilities pe, Spielman and Srivastava32 proved that 
every graph has a ( (1 + ε), O(log n/ε2) )-spectral sparsifier. 
These spectral sparsifiers have a similar number of edges 
to the cut sparsifiers described in Theorem 1, and many 
fewer edges than those produced by Spielman and Teng34. 
We define Re, the effective resistance of an edge e, to be the 
effective resistance between its endpoints. It is well-known 
that Re is proportional to the commute time between the 
end-vertices of e,10 and is equal to the probability that e 
appears in a random spanning tree of G. Spielman and 
Srivastava proved that sampling with edge probability pe 
proportional to weRe is the “right” distribution for creating 
spectral sparsifiers.

Theorem 5 (Sampling by Effective Resistance). For any 
weighted graph G = (V, E, w) and 0 < ε ≤ 1, let  be the graph 
obtained by the following random process:

Set q = 8n log n/ε2. Choose a random edge of G with probability 
pe proportional to weRe, and add e to the edge set of  with 
weight we/qpe. Take q samples independently with replacement, 
summing weights if an edge is chosen more than once.

Then with probability at least 1/2,  is a (1 + ε)-spectral 
 approximation of G.

The proof of Theorem 5 is matrix-analytic. We begin by 
observing that the Laplacian matrix of G can be expressed as 
a sum of outer products of vectors:

used to obtain a good spectral sparsifier for every graph. 
Their construction was strongly motivated by the work of 
Benczúr and Karger8 and Achlioptas and McSherry.2

The sampling procedure involves assigning a probabil-
ity pu, v to each edge (u, v) Î G, and then selecting edge (u, v) 
to be in the graph  with probability pu, v. When edge (u, v) 
is chosen to be in the graph, we multiply its weight by 1/pu, v.

This procedure guarantees that

The key step in this approach is to determine the sampling 
probability pu, v for each edge; there is a tension between 
choosing small pu, v to generate a sparser  and choosing 
larger pu, v to more accurately approximate G. Spielman and 
Teng recognized that some edges are more essential than 
others, and used a graph decomposition process to implic-
itly identify these edges and set the sampling probabilities 
accordingly.

Conductance and graph decomposition. For an un-
weighted graph G = (V,  E) and disjoint subsets S, T ⊂ V, we 
let E(S, T) denote the set of edges in E connecting one vertex 
of S with one vertex of T. We define Vol (S) = ∑i∈S  di and ob-
serve that Vol (V) = 2|E|. We define the conductance of a set S 
of vertices to be

and we define

The normalized Laplacian matrix of a graph (see [14]), is 
defined to be

1/2 1/2,G GD L D− −=L

where D is the diagonal matrix whose u-th entry is du. The 
discrete version3, 31 of Cheeger’s11 inequality (Theorem 2) 
relates the second eigenvalue of the normalized Laplacian 
to the conductance of a graph.

Theorem 2 (Discrete Cheeger Inequality).

We define a decomposition of G to be a partition of V into 
sets (A1, …, Ak), for some k. The boundary of a decomposition 
(A1, …, Ak) is then the set of edges between different vertex 
sets in the partition:

We say that the decomposition is a f -decomposition if 
 for all i, where G(Ai) denotes the subgraph induced 

on Ai. It is a λ-spectral decomposition if the smallest non-zero 
normalized Laplacian eigenvalue of G(Ai) is at least λ, for 
all i. By Cheeger’s inequality, every f -decomposition is a 
(f 2/2)-spectral decomposition.
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To optimize the application of Rudelson’s theorem, we 
choose the {p(u, v)} so that all possible values of Y have the 
same norm, that is,

for some fixed γ, for all (u, v) ∈ E. An elementary calculation 
reveals that the value of γ that causes the sum of the prob-
abilities to be one is . Thus if we sample according to 
probabilities

then we can take  in Theorem 6. This tells us 
that q = O(n log n/ε2) samples are sufficient to obtain a  
(1 + ε)-spectral approximation with high probability, from 
which Theorem 5 follows.

As stated earlier, the probabilities we have chosen for 
sampling edges have a natural meaning:

where

is the effective resistance between the vertices u and v.

3.4. twice-Ramanujan sparsifiers

In a nutshell, Spielman and Srivastava first reduced the spar-
sification of G = (V, E, w) to the following algebraic problem: 
compute scalars {su, v ≥ 0|(u, v) ∈ E} such that  = {e|su, v > 0} 
has small cardinality, and

They then applied sampling, based on effective resistances, 
to generate the {su, v} and .

Batson et al.7 gave a deterministic polynomial-time algo-
rithm for computing {se} and  , and obtained the following 
theorem, which is essentially the best possible result for 
spectral sparsification.

Theorem 7 (Batson-Spielman-Srivastava). For every d > 1, 
every undirected, weighted n-node graph G = (V, E, w) has a

In particular, G has a ( (1 + 2ε), 4/ε2)-spectral sparsifier, for every 
0 < ε < 1.

At the heart of their construction is the following purely 
linear algebraic theorem, which may be shown to imply 
Theorem 7 by an argument similar to that in Section 3.3.

Theorem 8. Suppose d > 1 and v1, …, vm ∈ Rn satisfy  
 where In is the n × n identity matrix. Then, there 

exist scalars si ≥ 0 with |{i : si ≠ 0}| ≤ dn such that

where eu denotes the elementary unit vector in direction u. 
Since the edges in  are a subset of the edges in G, its 
Laplacian may also be expressed as a (differently weighted) 
sum of the same outer products:

Suppose the non-zero eigenvalue-and-eigenvector pairs of 
LG are (λ1, u1), …, (λn−1, un−1). Then we can write

Let  be the Moore-Penrose Pseudoinverse of LG, that is,

Then  is the projection matrix onto 
the span of {ui}.

The key to the analysis of Theorem 5, and the improved 
construction of Section 3.4, is the observation that

where  is the square root of LG
+. We will show that the 

sampling procedure described is likely to satisfy this latter 
condition. To this end, define random variables {se}e ∈E to 
capture the outcome of the sampling procedure:

  (4)

Then

and e [s(u, v)] = 1 for all (u, v) ∈ E, whence e [ ] = LG. We now write:

where the Yi are i.i.d. random vectors sampled from the 
distribution

Notice that e [YY T] = Π so the expectation of each term is cor-
rect. To analyze the sum, we apply the following concentra-
tion theorem for sums of independent rank one matrices 
due to Rudelson.30

Theorem 6 (Rudelson). Let p be a probability distribution 
over Ω ⊂ Rd such that supy∈Ω  y  2≤ M and  e [yyT]   ≤ 1. Let  
y1, …, yq be independent samples drawn from p with replace-
ment. Then,
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Theorem 10 (Kolla, Makarychev, Saberi, Teng). 
For each positive integer κ, every n-vertex graph has an 

-spectral approximation with at 
most (n − 1 + κ)-edges.

Ultra-sparsifiers have so few edges that they have a large num-
ber of vertices of degree 1 or 2. They are a key component of the 
algorithms for solving linear equations described in Section 4.1.

4. alGoRithmic aPPlications
4.1. numerical algorithms: laplacian systems
One of the most fundamental computational problems 
is that of solving a system of linear equations. One is 
given an n × n matrix A and an n-dimensional vector b, 
and is asked to find a vector x such that Ax = b. It is well 
known that every linear system can be solved by the clas-
sic Gaussian elimination method in polynomial time. 
However, Gaussian elimination usually takes super-linear 
or even super-quadratic time in the number of non-zero 
entries of A, making its use impractical for large matrices.

In many real-world applications, the matrix A is 
sparse and one only requires an approximate solution 
to the linear system. For example, given a precision 
parameter ε, we may be asked to produce an x̃  such that 
    Ax̃  − b2 ≤ ε    b2. For sparse positive semi-definite lin-
ear systems the fastest general purpose algorithm is the 
Conjugate Gradient (CG). It essentially solves Ax = b by 
multiplying a sequence of vectors by A. As the multipli-
cation of a vector by A takes time proportional to the 
number of non-zero entries in A, CG can run quickly 
when A is sparse The number of matrix-vector products 
performed by CG depends on the condition number κ(A) 
of A, the ratio of its largest eigenvalue to its smallest 
eigenvalue. It is well-known in numerical analysis19 that 
it is sufficient to compute O ( log(1/ε)) matrix-vec-
tor products to find a solution of accuracy ε.

Preconditioning is the strategy of finding a relatively 
easily invertible matrix B which is σ−spectrally similar to 
A, and solving the related system B−1Ax = B−1b. In each iteration, 
the preconditioned CG algorithm solves a linear system in 
B and performs a matrix-vector product in A, and only  
O (  log(ε -1)) = O(s log (ε -1)) iterations are required. 
If it is easy to solve systems of linear equations in B, then 
the cost of each iteration is small and this algorithm will 
run quickly.

In 1990, Vaidya brought graph theory into the picture. 
Using preconditioners consisting of a maximum span-
ning tree of a graph plus a small number of carefully 
chosen edges, Vaidya obtained an O(m1.75 log(1/ε) )-time 
algorithm for solving linear systems in Laplacian matri-
ces with m non-zero entries. The exponent was still too 
large to be practical, but the idea was powerful. Spielman 
and Teng33 were able to enhance Vaidya’s approach with 
spectral sparsifiers and low-stretch spanning trees to 
obtain the first nearly linear time algorithm for solving 
Laplacian linear systems.

Theorem 11 (Spielman-Teng). Linear systems in a graph Lapla-
cian LG can be solved to precision ε in time O(m logO(1) n log(1/ε) ).

The proof for Theorem 8 builds the sum ∑i si vi vi
T

 itera-
tively, by adding one vector at a time. For  = dn, it chooses 
a sequence of vectors π(1), …, π( ) and weights sπ(1), …, sπ(m̃ ), 
which in turn defines a sequence of matrices 0 = A0, …, Am̃ , 
where . Observe that  
and we always have At  At−1. The goal is to control the 
eigenvalues of At at each step and guarantee that they grow 
with t  in a steady manner, so that the final matrix Am̃  = Adn 
has all eigenvalues within a constant factor  of each 
other and is hence a good approximation to the identity.

Batson, Spielman, and Srivastava use two “barrier” 
potential functions to guide their choice of π(i) and sπ(i) 
and ensure steady progress. Specifically, for u, l ∈ R, and A 
a symmetric matrix with eigenvalues λ1, …, λn, they define

When l · In ≺ A ≺ u · In, small values of these potentials indi-
cate that the eigenvalues of A do not cluster near u or l. This 
turns out to be a sufficient induction hypothesis to sustain 
the following iterative process:

(1) Begin by setting the lower barrier l, to −n and the 
upper barrier, u to n. It can be checked that both poten-
tials are bounded by 1. (2) At each step, increase the upper 
barrier u by a fixed constant δu and the lower barrier l by 
another fixed constant δl < δu. It can then be shown that as 
long as the potentials remain bounded, there must exist 
at every time t a choice of a vector vπ(i) and a weight sπ(i) so 
that the addition of  to At−1 and the increments 
l → l + δl and u → u + δu do not increase either potential 
and keep all the eigenvalues λi(At) between the barriers. 
Iterating the above process ensures steady growth of all 
the eigenvalues and yields Theorem 8.

3.5. some extensions
In a recent work, de Carli Silva et al.15 extended spectral spar-
sification to the sums of positive semidefinite matrices that 
have arbitrary rank. They proved the following theorem.

Theorem 9. Let B1, …, Bm be symmetric (or Hermitian) posi-
tive semidefinite n × n matrices and  Then for any 
ε Î (0, 1), there exist nonnegative s1, …, sm, at most O(n/ε2) of 
which are nonzero, such that

Moreover, {s1, …, sm} can be computed in O(mn3/ε2) time.
Another extension is subgraph spectral sparsification,22 

in which one is given a union of two graphs G and W and 
an integer κ, and asked to find a κ-edge graph Wκ such that  
G + Wκ is a good spectral sparsifier of G + W. When combined 
with the best-known construction of low-stretch spanning 
trees,1 this provides nearly optimal ultra-sparsifiers.
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Electrical Flows13, 32, 33: Input: G = (V, E, w) where weights 
are resistances, s, t ∈ V, and ε > 0. Output: an ε -approxima-
tion of the electrical flows over all edges when 1 unit of flow 
is injected into s and extracted from t.

Effective Resistance Approximation32: Input: G = (V, E, w)  
where weights are resistances and ε > 0. Output: a data 
structure for computing an ε-approximation of the effec-
tive resistance of any pair of vertices in G. Data Structure:  
O (n log n/ε2) space, and O(log/ε2n) query time, and O (m log2 n 
log log2 n/ε2) preprocessing time.

Learning from labeled data on a graph35: Input a strongly 
connected (aperiodic) directed graph G = (V, E) and a labeling 
function y, where y assigns a label from a label set Y = {1, −1} 
to each vertex of a subset S ⊂ V and 0 to vertices in V − S, and 
a parameter µ. Output the function f : V → R that minimizes

W ( f  ) + m || f - y ||2,
where

and π is the stationary distribution of the random walk on 
the graph with transition probability function p.

Cover Time of Random Walk16: Input: G = (V, E), Output: a 
constant approximation of the cover time for random walks.

The algorithm for Electrical Flows led to a breakthro-
ugh for the following fundamental combinatorial optimiza-
tion problem, for which the best previously known algorithm 
ran in time Õ(mn1/2/ε), Õ(mn2/3 log ε−1) and Õ(m3/2 log ε−1).

Maximum Flows and Minimum Cuts13: Input: G = (V, E, w)  
where w are capacities, s, t ∈ V, and ε > 0, Output: an 
ε-approximation of s-t maximum flow and minimum cut. 
Algorithm: Õ(mn1/3 · poly (1/ε) ) time.

Spectral graph sparsification also played a role in under-
standing other network phenomena. For example, Chierichetti 
et al.12 discovered a connection between rumor spreading in a 
network and the spectral sparsification procedure of Spielman 
and Teng,34 and applied this connection to bound the speed of 
rumor spreading that arises in social networks.

5. oPEn quEstion
The most important open question about spectral sparsifica-
tion is whether one can design a nearly linear time algorithm 
that computes (σ, d)-spectral sparsifiers for any constants 
σ and d. The algorithms based on Theorem 7 are polynomial 
time, but slow. All of the nearly-linear time algorithms of which 
we are aware produce sparsifiers with d logarithmic in n.

6. conclusion
Spectral sparsification has proved to be a remarkably use-
ful tool in algorithm design, linear algebra, combinatorial 

In spite of its strong asymptotic behavior, the large 
exponent on the log factor makes this algorithm slow in 
practice. The Spielman-Srivastava sparsification algorithm 
offered no improvement—effective resistances do give 
the ideal probabilities with which to sample edges for a 
sparsifier, but computing them requires solving yet more 
Laplacian linear systems.

Koutis et al.24 removed this dependency problem by using 
low-stretch trees to compute less aggressive sampling proba-
bilities which are strictly greater than those suggested by effec-
tive resistances. This can be done more quickly, and along with 
some other elegant ideas and fast data structures, is sufficient 
to yield a Laplacian linear system solver which runs in time

O (m log n log log2 n log (1/ε)).

4.2. fast sparsification algorithms
The algorithms from Section 3 certified the existence of 
good sparsifiers, but run quite slowly in practice. Those 
techniques have been significantly refined, and now there 
are three major ways to produce sparsifiers quickly.

First, the bottleneck in sampling via effective resistances 
is approximating the effective resistances themselves. 
The Laplacian system solver of Koutis, Miller, and Peng 
described above can be used to calculate those resistances, 
which can then be used to sample the graph. The best analy-
sis is given by Koutis et al.23 who give an O (m log n log log 
n log (1/ε) ) time algorithm for generating ( (1 + ε), O(log3 n/
ε2) )-spectral sparsifiers.

Second, the decomposition-and-sampling algorithm of 
Spielman and Teng34 can be sped up by improving the local 
clusterings used to create a decomposition. In the local 
clustering problem, one is given a vertex and cluster size 
as input, and one tries to find a cluster of low conductance 
near that vertex of size at most the target size, in time pro-
portional to the target cluster size. Faster algorithms for 
local clustering have been developed by Andersen et al.5 
and by Andersen and Peres.6

Third, unions of random spanning trees of a graph G 
can make good cut-sparsifiers: the union of two random 
 spanning trees is (log n)-cut similar to G,20 while the union 
of O(log2 n/ε2)  random spanning trees, reweighed propor-
tionally to effective resistance, is (1 + ε)-cut similar to G.18 
Although it remains to be seen if the union of a small num-
ber of random spanning trees can produce a spectral spar-
sifier, Kapralov and Panigrahy showed that one can build a 
(1 + ε)-spectral sparsifier of a graph from the union of span-
ners of O(log4 n/ε4) random subgraphs of G.21

4.3. network algorithms
Fast algorithms for spectral sparsification and Laplacian 
systems provide a set of powerful tools for network analysis. 
In particular, they lead to nearly-linear time algorithms for 
the following basic graph problems:

Approximate Fiedler Vectors33: Input: G = (V, E, w) and ε > 0. 
Output: an ε-approximation of the second smallest eigenvalue, 
λ2(LG), (also known as the Fiedler value) of LG, along with a vector 
v orthogonal to the all 1s vector such that vT LGv ≤ (1 + ε)λ2(LG).
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optimization, machine learning, and network analysis. 
Theorem 8 has already been applied many times within pure 
mathematics (see, e.g., Naor28). We hope this body of work 
will encourage more exchange of ideas between numerical 
analysis, pure mathematics and theoretical computer sci-
ence, and inspire and enable the development of faster algo-
rithms and novel analyses of network phenomena. 
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