Finding Good LDPC Codes

Daniel A. Spielman*

Dept. of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139
spielman@math.mit.edu

Abstract
We develop heuristics for finding good distributions of irregular low density
parity check (LDPC) codes. Using these heuristics, we construct rate 1/2 LDPC
codes that have lower bit error rates than Turbo Codes at very low signal-to-noise
ratios.

1 Introduction

In 1993, the debut of turbo codes [1] along with experiments demonstrating their re-
markably low bit-error-rates at very low signal-to-noise ratios excited the coding theory
community. A few years later, low density parity check codes [2] reemerged through
experiments demonstrating [7, 8] that they too allow low bit-error-rates at low signal-
to-noise ratios, although not as low at turbo codes. Since then, LDPC codes have been
catching up. Improvements over Gallager’s initial construction were made by using care-
fully chosen irregular graphs [6] and by using fields other than GF(2) [9]. Recently, Davey
and MacKay [10] have constructed irregular rate 1/4 LDPC codes over GF(8) that beat
Turbo Codes at very low SNRs. In this work, we construct rate 1/2 irregular LDPC
codes that beat Turbo Codes at very low SNRs. Our codes are designed to work over
GF(2), so we expect to see better performance after we incorporate larger fields into our
techniques.

Our codes were constructed by heuristic algorithms designed to find good degree
sequences for irregular LDPC codes. These algorithms are a generalization of those used
in [5]. As our present implementations of these algorithms are quite slow, we have not
yet had enough time to understand their full potential. We expect such understanding
to occur only after we have optimized the implementations of the heuristics. The codes
presented in this paper were the result of applying one heuristic once, and another twice.
This took several days.

All results in this paper are presented for the Gaussian channel.

1.1 Irregular Codes

A LDPC code is specified by a bipartite graph between a set of n symbol nodes and a
set of (1 —r)n check nodes, where n is the block length of the code and r is the designed

*Supported in part by NSF CAREER Award CCR-9701304, an Alfred P. Sloan Foundation Fellow-
ship, and a Sloan/Cabot Award from the M.I.T. School of Science

rate! Each symbol node is associated with a bit to be transmitted, and the check nodes
impose linear constraints upon those bits.

When Gallager|[2] introduced LDPC codes, he proposed using bipartite graphs in
which the degrees of nodes on each side of the graph were uniform (e.g., all the symbol
nodes could could have degree 3 and all the check nodes could have degree 6). We will
call such LDPC codes “regular”.

For this work, we will build LDPC codes from the types of irregular graphs suggested
in [4, 5]. These graphs are specified by a symbol node degree sequence (A1, A2, A3, .- .)
and a check node degree sequence (p1, pa, p3, - -.), where \; (p;) specifies the proportion
of symbol nodes (check nodes) of degree i, and

=1 > p=L1

(3

Given two degree sequences, we form a LDPC code by choosing a random bipartite graph
in which the proportions of nodes of each degree is given by the appropriate term in one
of the degree sequences.

In [4], we proved that, by carefully choosing the degrees of nodes on each side of the
graph, it was possible to produce LDPC codes that quickly approached the capacity of
the erasure channel. In [6], we presented experiments which showed that some irregu-
lar LDPC codes from [4] performed better under belief propagation decoding than any
regular LDPC codes. In [5], we analyzed the performance of a discretized version of
belief propagation, and showed that irregular LDPC codes performed better than regu-
lar LDPC codes when decoded using this algorithm. The main tool of [5] was a linear
programing based algorithm that, given a degree sequence for the check nodes, would
find an optimal degree sequence for the symbol nodes, and wvice versa. In this work, we
adapt this approach to full belief propagation. However, to make this adaptation, we
must sacrifice guarantees of optimality.

1.2 Belief Propagation

In this section, we sketch how the belief propagation algorithm works. In this description,
we assume that all codewords are equally likely and we only associate one bit with each
symbol node. We refer readers desiring a more complete description to [7, 12].

The belief propagation algorithm (a.k.a. the sum-product algorithm) begins by con-
sidering the received symbols and computing, for each symbol node, the probability that
the associated bit is 0 given the received symbol for that bit. Each edge in the graph is
then assigned the value of the symbol node to which it is attached. After this initializa-
tion, the algorithm proceeds by alternating between check passes and message passes.

We understand a check pass by imagining a random 0/1 variable associated with each
edge, with the value of the edge being the probability its variable is zero. During a check
pass, each edge is assigned the value of the probability that the sum of the variables
associated with the other edges connected to its check has parity zero, assuming that the
variables are independent. In particular, the value an edge is assigned during a check
pass is not a function of the value of that edge before the check pass. To make this
explicit, consider a check node with values p1,...,pg on its edges. After the check pass,
these edges will carry the values

Tt is possible for the rate of the code to be higher than (1 —7)n if there are redundancies among the
constraints imposed by the check nodes.

@k—l(pZ: e 'pk)a@k—l(plap& e 'pk)7 e '7®k—1(p17 s 7pk—1)7

respectively, where

1+T1L(2pi — 1)
5 .

To understand a message pass, we imagine that each edge carries a random variable
obtained by sending the bit associated with its symbol node through some channel, with
the value of the edge being the probability that the bit was 0 zero given that the variable
was received. During a message pass, each edge is assigned the probability that the bit
associated with its symbol node is 0, assuming that the received symbol for that bit
and the values carried by the other edges of that symbol node represent independent
observations of the bit. For a symbol node, if py is the probability that the bit associated
with the node is zero given the received symbol for that bit, and if the values on the
edges connected to that symbol node are py, ... pg, then the values on those edges after
the message pass will be

®k—1(p1a ... 1pk—1) ==

®k(p0ap2a R 7pk)a®k(p0ap1ap3a R 7pk)a o Ok (p()apla s >pk—1)1

where
L pi

Dk = [Lpi + 1L —pi)

It will later be useful to note that

Qk(Po; P1s - - - Pr) = Q2(Po, Pr—1(P1, - - - Pr—1))-

After some number of rounds, the algorithm is stopped after a check pass. The output
of the algorithm is obtained by assigning each symbol node the best estimate of its bit’s
value that can be obtained from the symbol received for that bit and the values of the
edges connected to that symbol node, assuming that each of these values comes from an
independent measurement. In the language of the previous paragraph, this quantity is
®k+1(Po, D1, - - - Dk)-

Unless the graph underlying the LDPC code is a tree, the above independence as-
sumptions can be false. When the graph is a tree, this algorithm is known to converge
to the best a posteriori estimate for each bit[11, 12]. In experiments with randomly gen-
erated LDPC codes, it has been observed that this algorithm converges to a very good
estimate for each bit, even though the underlying graph is not a tree. This observation
has led to the conjecture that the performance of the belief propagation algorithm on
LDPC codes derived from random graphs is almost identical to the performance of the
belief propagation algorithm on an infinite tree, and that it becomes more similar as the
block size of the LDPC code grows. One justification for this conjecture is that the ex-
pected girth of a random graph with fixed degree sequences grows logarithmically in the
number of nodes in the graph. Thus, the first few rounds of belief propagation decoding
do accurately reflect the performance of belief propagation decoding in an infinite tree.

While it is known that the belief propagation algorithm does converge on infinite
trees, we are unaware of any simple formula for what it converges to. That is, given the
structure of the infinite tree, given an initial SNR, and given a number of rounds, we
know of no simple way of determining the bit error rate after that number of rounds. In

fact, we are unable to do this for any non-trivial? pair of degree sequences even as n goes
to infinity!

However, given a pair of degree sequences, an initial SNR and a number of rounds,
we can sample the distribution of values on edges after that number of rounds. For
convenience, we assume that the all-0 codeword was transmitted. Let M, denote the
distribution of values on edges after the initialization of the belief propagation algorithm.
Let C; denote the distribution after the first check pass, M; denote the distribution after
the first message pass, and so on. We can sample M, by simulating the Gaussian channel.
We can sample C; by performing check passes on samples from M;_;, and we can sample
M; by performing message passes on samples from C;_;, and so on.

To make this precise, it helps to first consider the infinite tree corresponding to a
regular graph. Assume that every symbol node has degree [and that every check node
has degree r. Then, we sample from C; by drawing r — 1 samples from M; ;, say
P1,---Pr_1, and computing

®r—1(p17 .- -pr—l)-
Similarly, we sample from M; by drawing [— 1 samples from C;_q, say p1,...p—1 and

one sample from M, say py, and computing

®i(po, 1, - - -Pi-1)-

We will overload our notation by expressing these relations between distributions as

r—1

A

Ci = @(Mi—la ey MZ'_D, and

r—1
-1

l

If we apply this approach to sampling precisely, then we are actually simulating
the process on a very large tree. As this requires immense amounts of time, we instead
approximate these distributions by generating a large set of samples from each. Whenever
we need a sample from a distribution, we just pick one at random from the pre-sampled
set. Naturally, we form our set of samples corresponding to C; before those corresponding
to M;, and so on. For convenience, we will assume that our set of samples for each space
approximates that which we would get if we chose independent samples from that space.

As the correct definition of the infinite tree corresponding to an irregular graph spec-
ified by a pair of degree sequences is not transparent to the author, we will settle for
an explanation of how to sample from the corresponding distributions C; and M;. First,
note that the probability that a randomly chosen edge is connected to a symbol node of

degree i is
(A -)

Zj()‘j -J)
It is important to note that this probability is very different from the probability that a

randomly chosen symbol node has degree 7. For convenience, set A} = (i);)/(X; jA;) and
p; = (ip:)/ (3, jp;). Tosample from M; we, with probability A%, compute ®;(po, p1, - .., pj-1),

2We would consider the graphs in which symbol nodes have degree 3 and check nodes have degree 6
to be non-trivial.

where pg is drawn from M, and p,...p;—1 are drawn from C;. We write this relation as:

j—1

Mi = Z/\I®M0, ,...,Cj), and (1)
i1

Cz' = zp]@ j— la"':Mj—l‘)v (2)

j—1

where by a linear combination of probability spaces with coefficient sum one, we mean
that each is sampled with probability according to its coefficient.

2 The LP Technique

The goal of the linear programming technique[5] is, given one degree sequence and an
initial noise level, to find a complementary degree sequence for which the probability of
bit error goes to zero as the number of decoding rounds increases. In[5] this task was
simplified by the fact that the distributions M; and C; produced by the discretized belief
propagation algorithm could be completely specified by one parameter. Moreover, the
parameter specifying the distribution M; (C;) could be obtained from a simple formula
in the parameter specifying the distribution C; (M;_;).

In our case, we cannot simply characterize the distributions M; and C; encountered
in the belief propagation algorithm. Instead, we work with sets of samples believed to
approximate these distributions as described in the previous section.

Given a check node degree sequence and an initial signal-to-noise ratio, we want to
set up a linear program that will find a symbol node degree sequence such that the
distribution M; is better than the distribution M;_; for all 7, if such a distribution exists.
To measure the quality of a distribution, we use the objective function:

F(M;) = — / log(p)dpsi(p), (3)

where p; is the measure associated with distribution M;. The smaller F'(M;) is, the better
we consider M; to be. We work with (3) because it is easy to approximate from our set
of samples and because it is clearly respects formula (1). That is,

—/log()dpi(p Z/\’ /log Vs j(p
p

where p; ; is the measure corresponding to the distribution

—f

Mi,j = ®(M0, Ci, ceey Cz)
J
It is almost possible to construct a linear program that, given M, and a check node
degree sequence, will solve for ;s so that F'(M;) < F(M;_,) for all i. Unfortunately,

the dependence of M; upon M;_; through C; prevents us from solving these inequalities
simultaneously.

3

Our Heuristics

We tried two approaches to finding good degree sequences. These were:

(a)

ignore the dependencies: In this approach, we fix symbol and check degree
sequences, generate the corresponding distributions My, ... My_; and Cy,...Cy for
some k, and then try to find a symbol (check) degree sequence that would do better
than the original one with input distributions C,...,Cy (My,... M_1). That is,
given (\)); and (p});, we try to find (a}); so that

i—1 i—1
——

Z)\I ®M0,C,... >ZOZF®M0,C,...,CJ')),

for all 7, while keeping the rate of the resulting code the same.

Pretend that all distributions are like the input distribution: For any
initial signal-to-noise ratio, we get an initial distribution M,. Construct many
such initial distributions M ; corresponding to increasing signal-to-noise ratios as
[grows. For some check degree sequence (p});, use linear programming to find a
degree sequence (A}); such that

i—1

Z)‘I ® Mo, Cy,...C)) < F(®(M05 My,)),

2

where
i1

= ZIO; @(MO,la ey MO,l)-
i i—1

That is, we just try to find symbol degree sequences such that if the distributions
after message passes looked like the initial distributions, each successive round
would have better distributions.

4 Results

The experiments reported here were done on LDPC codes built from degree se-
quences obtained by combining approaches (a) and (b). We first used approach
(b) to find a good symbol degree sequence given the check degree sequence pg = 1.
We then used approach (a) to refine this symbol degree sequence, keeping the same
check degree sequence. We then refined the symbol degree sequence once more.

The symbol node degree sequence we settled on was (Ae = .4804, A3 = .2797, \¢ =

in Figure 1 and Figure 2, we show the data obtained in simulations of rate 1/2 codes
of lengths 15824 and 32242 respectively. In Figure 4, we compare the performance
of these two codes with that of Turbo codes reported in [3]. The points on the
lowest curve at .6 and .7 db should be viewed with suspicion until we have the
results of more simulations. The same holds for the highest point at 8 db. We
expect that when we perform more simulations with more decoding rounds in each
trial, the middle columns of Figures 1 and 2 will better resemble the last columns
of these Figures.

| SRN Db | rounds | trials |

BER | < 15700 | < 13K | < 11K | < 10K |

4
45
)
.6
e
.8

250
250
150
150
120
120

200
1500
3000
2000
6000
6000

1627
.0918
.0505
.0098
.00104
1.29e-04

298
956
694
111
52
8

243
402
429
95
12
0

146
227
233
29
7

0

%)
83
89
11
3
0

Figure 1: This code has block length 15842. For each signal-to-noise level,
we list the number of rounds of belief propagation that were used to pro-
duce these results, the number of trials at this noise level, the bit error rate
over all these trials, and the number of times the decoding algorithm got
less that 15700, 13000, 11000, and 10000 of the bits correct.

| SRN Db | rounds | trials | BER | < 32K | < 27K | < 24K | < 20K

4 250 | 500 .0831 183 134 81 8
45 250 | 1500 .0371 265 175 103 6
) 150 | 1200 .00849 68 28 16 3
.6 150 | 2000 | 3.38e-04 3 1 1 0
7 120 | 7400 | 1.04e-04 6 0 0 0
7 150 | 4000 | 1.94e-04 3 1 1 1

Figure 2: This code has block length 32242. For each signal-to-noise level,
we list the number of rounds of belief propagation that were used to pro-
duce these results, the number of trials at this noise level, the bit error rate
over all these trials, and the number of times the decoding algorithm got
less that 32000, 27000, 24000, and 20000 of the bits correct.

5 Failed Attempts

We also tried to use approach (a) to obtain better check degree sequences. While
the linear program did return more interesting check degree sequences, these did
not appear to perform as well in our simulations. In fact, we observed problematic
behavior: some of the codes we produced would make quick progress initially, but
then slow down to a crawl and occasionally get stuck with very few errors remaining.

However, we should note that we only made a few attempts at finding good check
degree sequences, and it might be that if we tried a few more times we would have
better luck.

6 Conclusions and Future Work

At the moment, we are unsure whether this approach can be used to find sub-
stantially better LDPC codes over GF'(2). So far, the work has progressed slowly

.
oI

[N
oI

Empirical Bit—Error Probability
JL w

=
o

107

10‘6 I I I I
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

SNR/db

Figure 3: The leftmost two curves were generated from the data in Fig-
ures 1 and 2. The other curve is from the 1/2 rate Turbo code of [3] The
points on the lowest curve at .6 and .7 db should be viewed with suspi-
cion until we have the results of more simulations. The same holds for the
highest point at 8 db.

because we implemented our algorithms in Matlab. This was quite slow: just ob-
taining data for approach (a) or (b) with reasonable numerical accuracy could take
a whole day. We are presently translating the algorithms to C, and are observing a
dramatic speedup. This should make it possible to explore these approaches more
fully.

The obvious next step in this research is to apply these techniques to the con-
struction of codes over fields other than GF'(2). We will do this as soon as we
have completed our faster implementation. Given how much better regular LDPC
codes over GF(8) are than regular codes over GF(2), and given how much better
these irregular LDPC codes over GF'(2) are than the regular codes over GF'(2), we
presume that terrific results will result from combining the two appraoches.

References

[1] C. Berrou, A Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo-Codes”, Proceedings of IEEE International
Communications Conference, 1993.

[2] R. G. Gallager, Low-Density Parity-Check Codes, MIT Press, 1963.

[3] JPL. Turbo code performance. Available from
http://www331.jpl.nasa.gov/public/ TurboPerf.html, September 1998.

[4] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann,
“Practical Loss-Resilient Codes”, Proc. 29" ACM Symposium on Theory of Com-
puting, 1997, pp. 150-159.

[6] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Analysis of
Low Density Codes and Improved Designs Using Irregular Graphs”, Proceedings of
the 30" ACM Symposium on Theory of Computing, 1998, pp. 249-258.

[6] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Improved
Low Density Parity Check Codes Using Irregular Graphs and Belief Propagation”,
submitted to the 1998 International Symposium on Information Theory.

[7] D. J. C. MacKay and R. M. Neal, “Good Error Correcting Codes Based on Very
Sparse Matrices”, to appear in IEEFE Transactions on Information Theory. Available
from http://wol.ra.phy.cam.ac.uk/mackay.

[8] D. J. C. MacKay and R. M. Neal, “Near Shannon Limit Performance of Low Density
Parity Check Codes”, to appear in Electronic Letters.

[9] M. C. Davey and D. J. C. MacKay, “Low Density Parity Check Codes over GF(q)”,
early manuscript, 1997.

[10] M. C. Davey and D. J. C. MacKay, “Low Density Parity Check Codes over GF(q)”,
Information Theory Workshop 1998, Killarney, Ireland.

[11] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, Morgan Kaufmann Publishers, 1988.

[12] N. Wiberg, “Codes and decoding on general graphs” Ph.D. dissertation, Dept. Elec.
Eng, U. Linkoping, Sweeden, April 1996.

