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A CHEEGER INEQUALITY FOR THE GRAPH CONNECTION
LAPLACIAN∗
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Abstract. The O(d) synchronization problem consists of estimating a set of n unknown orthog-

onal d × d matrices O1, . . . , On from noisy measurements of a subset of the pairwise ratios OiO
−1
j .

We formulate and prove a Cheeger-type inequality that relates a measure of how well it is possible
to solve the O(d) synchronization problem with the spectra of an operator, the graph connection
Laplacian. We also show how this inequality provides a worst-case performance guarantee for a
spectral method to solve this problem.
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1. Introduction. While the graph Laplacian is used to encode similarities be-
tween connected vertices, the graph connection Laplacian endows the edges with
transformations that describe the nature of the similarity. For example, consider a
collection of two-dimensional photos of a three-dimensional object that are taken from
many angles as it spins in mid-air. We could form a graph with one vertex for each
photo by connecting photos that are similar. By applying simple transformations,
such as in-plane rotations, we will discover similarities between photos that are not
apparent when we merely treat them as vectors of pixels. In this case, we may also
wish to keep track of the transformation under which a pair of photos is similar.
Singer and Wu [27] defined the connection Laplacian to encode this additional infor-
mation. The problem of using this information to assign a viewpoint to each picture
is an instance of a synchronization problem on the graph.

More formally, the input to a synchronization problem over a group G is an
undirected graph G = (V,E) and a group element ρij ∈ G for each edge (i, j) ∈ E,
such that ρji = ρ−1

ij . We say that an assignment of group elements to vertices, also
called a group potential, g : V → G, satisfies an edge ρij if gi = ρijgj . The objective in
a synchronization problem is to find a group potential that satisfies the edges as much
as possible. When there is a g that satisfies all of the edges, it is easy to find: one can
arbitrarily fix the value of g at one vertex and then iteratively set g at neighbors of
vertices whose values have already been set. When there is no group potential that
satisfies all of the edges, we must specify a measure of how well a group potential

∗Received by the editors April 30, 2012; accepted for publication (in revised form) by B. Hen-
drickson September 20, 2013; published electronically December 5, 2013.

http://www.siam.org/journals/simax/34-4/87533.html
†Program in Applied and Computational Mathematics (PACM), Princeton University, Princeton,

NJ 08544 (ajsb@math.princeton.edu). This author was supported by award DMS-0914892 from the
NSF.

‡PACM and Department of Mathematics, Princeton University, Princeton, NJ 08544 (amits@
math.princeton.edu). This author was partially supported by award FA9550-09-1-0551 and FA9550-
12-1-0317 from AFOSR, award R01GM090200 from the National Institute of General Medical Sci-
ences, the Alfred P. Sloan Foundation, and award LTR DTD 06-05-2012 from the Simons Foundation.

§Department of Applied Mathematics and Department of Computer Science, Yale University,
New Haven, CT 06520-8285 (spielman@cs.yale.edu). This author was supported by the NSF under
grant 091548.

1611



1612 A. S. BANDEIRA, A. SINGER, AND D. A. SPIELMAN

satisfies the edges. This is achieved by the notion of frustration which will be defined
in section 1.3.

We focus on the group O(d) of d × d orthogonal matrices (rotations, reflections,
and compositions of both on Rd). Please keep in mind that the “O” has nothing to do
with asymptotic notation. This group is of particular interest in several applications.
For example, when d = 1, i.e., G = O(1) ∼= Z/2Z, the solution to the synchronization
problem can be used to determine whether a manifold is orientable [26]. The G = O(1)
case is also a generalization of the Max-Cut problem [13]: the group potential defines
a partition of the vertices into two parts, and the group elements on edges specify
whether the vertices they connect should be on the same or opposite sides of the
partition. In fact, our inequality for partial synchronization can be understood as a
generalization of Trevisan’s inequality relating eigenvalues of the graph Laplacian and
the maximum cut [32].

Synchronization over O(d) plays a major role in an algorithm for the sensor net-
work localization problem [10]. The similar problem of synchronization over SO(d),
the group of rotations in Rd, also has several applications. The problem over SO(3)
can be used for global alignment of three-dimensional scans [33], and the problem
over SO(2) plays a major role in new algorithms for the cryo-electron microscopy
problem (see [25, 28]). Other applications of SO(2) synchronization may be found
in [29, 35, 17].

Singer [29] proposed solving the SO(2) synchronization problem by constructing
a matrix, the connection Laplacian, whose eigenvectors associated with the smallest
eigenvalues would provide the group potential if it were possible to satisfy all the
edges. He then showed that under a model of random noise that prevents such a
solution, a good solution can still be obtained by rounding the smallest eigenvectors. A
similar algorithm was proposed in [11, 25] for SO(3). These algorithms are analogous
to spectral graph partitioning—the use of the smallest eigenvector of the Laplacian
matrix to partition a graph [15]. The analysis of the SO(2) algorithm under random
noise can be viewed as an analog of McSherry’s [21] analysis of spectral partitioning.

Our paper contains three theorems. We begin by considering the simpler problem
of finding an assignment of unit vectors to each vertex that agrees with the transfor-
mations on the edges. Motivated by Trevisan [32], we first consider a variant of the
problem in which we are allowed to find a partial assignment in which we assign the
zero vector to some of the vertices. In Theorem 2.2, we prove a quadratic relationship
between the smallest eigenvalue of the connection Laplacian and the minimum frus-
tration of a partial assignment. To analyze the case in which we must assign a unit
vector to every vertex, we observe that partial assignments are really only required
when the underlying graph has poor connectivity. In Theorem 2.4, we prove a relation
between the minimum frustration of a full assignment and the smallest eigenvalue of
the connection Laplacian and the second-smallest eigenvalue of the underlying graph
Laplacian. We see that when the second-smallest eigenvalue of the underlying graph
Laplacian is large (i.e., when it is a good expander), the minimum frustration is well
approximated by the smallest eigenvalue of the connection Laplacian. Our main result
is Theorem 2.6, in which we relate the minimum frustration of a group potential to the
sum of the smallest d eigenvalues of the connection Laplacian and the second-smallest
eigenvalue of the underlying graph Laplacian.

In the same way that the classical Cheeger’s inequality provides a worst-case
performance guarantee for spectral clustering, the three Theorems described above
provide worst-case performance guarantees for a spectral method to solve each of the
described synchronization problems. It is worth noting that, in a different setup,
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Trevisan [32] showed a particular case of this inequality, when the group is O(1) ∼=
Z/2Z and all the offsets are −1. In that case the problem is equivalent to the Max-

Cut problem. Therefore, this O(1) inequality gives a performance guarantee for a
spectral method to solve Max-Cut [32].

It is worth mentioning that there are several other adaptations of Cheeger’s in-
equality. Recent progress in multiway partitioning problem gives a Cheeger inequality
for the partitioning problem where one wants to partition the graph into more than
two subsets (see [12, 19]). There is also a generalization of the Cheeger inequality for
simplicial complexes, instead of graphs (see [24, 23, 30]).

The rest of this section includes both mathematical preliminaries that are needed
in later sections and the formulation of the problem. Section 2 consists of our main
contributions, algorithms to solve different forms of the synchronization problem and
Cheeger-type inequalities that provide guarantees for these methods, as well as a brief
overview of the proofs. In section 3 we provide the rigorous proofs for the core results
described in section 2. We discuss an �1 version of the synchronization problem in
section 4 and show a few tightness results in section 5. We end with some concluding
remarks and a few open problems in section 6.

1.1. Notation. Throughout the paper we use the notation [n] to refer to {1, . . . ,
n}. Also, we make use of several matrix and vector notations. Given a matrix A we
denote by ‖A‖F its Frobenius norm. If A is symmetric we denote by λ1(A), λ2(A), . . .
its eigenvalues in increasing order. Assuming further that A is positive semidefinite,
we define the A-inner product of vectors x and y as 〈x, y〉A = xTAy (and say that two
vectors are A-orthogonal if this inner product is zero). Also, we define the A-norm of
x as ‖x‖A =

√〈x, x〉A, and we represent the �2 norm of x by ‖x‖. Given x ∈ (Rd
)n
,

we denote by xi the ith d× 1 block of x (that will correspond to the value of x on the
vertex i) and, for any u > 0, we define xu as

(1.1) xu
i =

{ xi

‖xi‖ if ‖xi‖2 ≥ u,

0 if ‖xi‖2 < u.

Furthermore, for u = 0 we denote x0 by x̃, that is,

(1.2) x̃i =

{ xi

‖xi‖ if xi 	= 0,

0 if xi = 0.

Finally, Sd−1 denotes the unit sphere in R
d.

1.2. Cheeger’s inequality and the graph Laplacian. Before considering the
synchronization problem we will briefly present the classical graph Cheeger’s inequal-
ity in the context of spectral partitioning. The material presented in this section is
well known, but it will help motivate the ideas that follow in the next sections.

Let G = (V,E) be an undirected weighted graph with n vertices. In this section
we discuss the problem of partitioning the vertices in two similarly sized sets in a way
that minimizes the cut: the volume of edges across the subsets (of the partition).

There are several ways to measure the performance of a particular partition of
the graph; we will consider the one known as the Cheeger constant. Given a partition

(S, Sc) of V , let hS := cut(S)
min{vol(S),vol(Sc)} , where the value of the cut associated with S is

cut(S) =
∑

i∈S

∑
j∈Sc wij , its volume is vol(S) =

∑
i∈S di, and di =

∑
j∈V wij is the

weighted degree of vertex i. We want to partition the graph so that hS is minimized,
and the minimum value is referred to as the Cheeger number of the graph, denoted



1614 A. S. BANDEIRA, A. SINGER, AND D. A. SPIELMAN

hG = minS⊂V hS . Finding the optimal S is known to be NP-hard, as it seems to
require searching over an exponential number of possible partitions.

There is another way to measure the performance of a partition (S, Sc) known as
the normalized cut (Ncut):

Ncut(S) = cut(S)

(
1

vol(S)
+

1

vol(Sc)

)
.

As before, we want to find a subset with as small of an Ncut as possible. Note that
the Ncut and the Cheeger constant are closely related:

1

2
Ncut(S) ≤ hS ≤ Ncut(S).

Let us introduce a few important definitions. Let W0 be the weighted adjacency
matrix of G and D0 the degree matrix, a diagonal matrix with elements di. If we con-
sider a vector f ∈ Rn whose entries take only two possible values, one associated with
vertices in S and another in Sc, then the quadratic form Qf = 1

2

∑
ij wij (fi − fj)

2

is of fundamental importance as a measure of the cut between the sets. The sym-
metric positive semidefinite matrix that corresponds to this quadratic form, L0, is
known as the graph Laplacian of G. It is defined as L0 = D0 − W0 and satisfies
vTL0v = Qv for any v ∈ R

n. It is also useful to consider the normalized graph Lapla-

cian L0 = D
−1/2
0 L0D

−1/2
0 = I−D

−1/2
0 W0D

−1/2
0 , which is also a symmetric positive

semidefinite matrix.
Let us represent a partition (S, Sc) by a cut-function fS : V → R given by

fS(i) =

⎧⎨
⎩

√
vol(Sc)

vol(S) vol(G) if i ∈ S,

−
√

vol(Sc)
vol(S) vol(G) if i ∈ Sc.

It is straightforward to show that QfS = fT
S L0fS = Ncut(S), fT

S D0fS = 1, and
fT
S D01 = 0, where 1 is the all-ones vector in Rn. This is the motivation for a spectral
method to approximate the minimum Ncut problem. If we drop the constraint that f
needs to be a cut-function and simply enforce the properties established above, then
one would formulate the following relaxed problem:

(1.3) min
f :V →R,fTD0f=1,fTD01=0

fTL0f.

Since 1TL01 = 0, we know by the Courant–Fisher formula that (1.3) corresponds
to an eigenvector problem whose minimum is λ2(L0) and whose minimizer can be
obtained by the corresponding eigenvector.

Since problem (1.3) is a relaxation of the minimum Ncut problem we automat-
ically have 1

2λ2(L0) ≤ 1
2 minS⊂V Ncut ≤ hG. Remarkably, one can show that the

relaxation is not far from the partitioning problem. In fact, one can round the so-
lution of (1.3) so that it corresponds to a partition (S, Sc) of G, whose hS we can
control. This is made precise by the following classical result in spectral graph theory.
(Several different proofs for this inequality can be found in [9].)

Theorem 1.1 (Cheeger inequality [3, 2]). Let G = (V,E) be a graph and L0 its
normalized graph Laplacian. Then

1

2
λ2(L0) ≤ hG ≤

√
2λ2(L0),



CHEEGER INEQUALITY FOR GRAPH CONNECTION LAPLACIAN 1615

where hG is the Cheeger constant of G. Furthermore, the bound is constructive: using
the solution of the eigenvector problem one can produce partition (S, Sc) that achieves
the upper bound

√
2λ2(L0).

An alternative way to interpret Theorem 1.1 is through random walks on graphs.
Note that the matrix D−1

0 W0 is the transition probability matrix of a random walk
in G, whose transition probabilities are proportional to the edge weights. It is known
that the eigenvalues of L0 encode important information about the random walk.
In fact, the second smallest eigenvalue1 is a good measure of how well the random
walk mixes. More specifically, the smaller λ2(L0), the slower the convergence to the
limiting stationary distribution. It is clear that clusters will constitute obstacles to
rapid mixing of the random walk, since the probability mass might be trapped inside
such a set for a while. Cheeger’s inequality (Theorem 1.1) shows that, in some sense,
these sets are the only obstacles to rapid mixing.

1.3. Frustration, vector-valued walks, and the connection Laplacian.
If, in addition to a graph, we are given an orthogonal transformation ρij ∈ O(d) for
each edge (i, j) ∈ E, we can consider a random walk that takes the transformations
into account. One way of doing this is by defining a random walk that, instead of
moving point masses, moves a vector from vertex to vertex and transforms it via
the orthogonal transformation associated with the edge. One can similarly define a
random walk that moves group elements on vertices. The connection Laplacian was
defined by Singer and Wu [27] to measure the convergence of such random walks.
The construction requires that ρji = ρ−1

ij = ρTij . Define the symmetric matrix W1 ∈
Rdn×dn so that the (i, j)th d× d block is given by (W1)ij = wijρij , where wij is the
weight of the edge (i, j). Also, let D1 ∈ Rdn×dn be the diagonal matrix such that
(D1)ii = diId×d. We assume di > 0 for every i. The graph connection Laplacian L1

is defined to be L1 = D1 −W1, and the normalized graph connection Laplacian is

L1 = I−D
−1/2
1 W1D

−1/2
1 .

If v : V → Sd−1 assigns a unit vector in Rd to each vertex, we may think of v as
a vector in dn dimensions. In this case the quadratic form

vTL1v =
∑

(i,j)∈E

wij ‖vi − ρijvj‖2 =
1

2

∑
i,j

wij ‖vi − ρijvj‖2

is a measure of how well v satisfies the edges. This will be zero if vi = ρijvj for all
edges (i, j). As wij = 0 when (i, j) /∈ E, we can sum over all pairs of vertices without
loss of generality. An assignment satisfying all edges will correspond to a stationary
distribution in the vector-valued random walk.

Following our analogy with Cheeger’s inequality for the normalized graph Lapla-
cian, we normalize this measure by defining the frustration of v as

(1.4) η(v) =
vTL1v

vTD1v
=

1

2

∑
i,j wij ‖vi − ρijvj‖2∑

i di ‖vi‖2
.

We then define the Sd−1 frustration constant of G as

(1.5) ηG = min
v:V→Sd−1

η(v).

1We note that the smallest eigenvalue is always 0.
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The smallest eigenvalue of L1 provides a relaxation of ηG, as

λ1(L1) = min
z∈Rdn

zTL1z

zT z
= min

x∈Rdn

(D
1
2
1 x)

TL1(D
1
2
1 x)

(D
1
2
1 x)

T (D
1
2
1 x)

= min
x∈Rdn

xTL1x

xTD1x
= min

x:V→Rd
η(x).

If there is a group potential g : V → O(d) that satisfies all the edges (which would
again correspond to a stationary distribution for the O(d)-valued random walk), then
we can obtain d orthogonal vectors on which the quadratic form defined by L1 is zero.
For each 1 ≤ k ≤ d, we obtain one of these vectors by setting v(i) to the kth column
of g(i) for all i ∈ V . In particular, this means that the columns of the matrices of
the group potential that satisfies all of the edges lie in the nullspace of L1. Since
g(i) ∈ O(d), these vectors are orthogonal. If G is connected, one can show that these
are the only vectors in the nullspace of L1. This observation is the motivation for the
use of a spectral algorithm for synchronization.

We define the frustration of a group potential g : V → O(d) to be

(1.6) ν(g) =
1

2d

1

vol(G)

∑
i,j

wij‖gi − ρijgj‖2F .

We then define the O(d) frustration constant of G to be

νG = min
g:V →O(d)

ν(g).

In Theorem 2.6, we prove that this frustration constant is small if and only if the sum
of the first d eigenvalues of L1 is small as well.

2. Cheeger’s type inequalities for the synchronization problem. In this
section we present our main results. We present three spectral algorithms to solve
three different formulations of synchronization problems and obtain for each a guar-
antee of performance in the form of a Cheeger’s type inequality. We will briefly
summarize both the results and the ideas to obtain them, leaving the rigorous proofs
to section 3.

We start by considering the Sd−1 synchronization problem. This corresponds to
finding, for each vertex i of the graph, a vector vi ∈ Sd−1 in way that for each edge (i, j)
the vectors agree with the edges, meaning vi = ρijvj . Since this might not always
be possible, we look for a function v : V → Sd−1 for which the frustration η(v) is
minimum (see (1.4)). Motivated by an algorithm to solve Max-Cut by Trevisan [32],
we first consider a version of the problem for which we allows ourselves to synchronize
only a subset of the vertices, corresponding to the partial synchronization in Sd−1.
We then move on to consider the full synchronization problem in Sd−1.

Finally, we will present our main result, an algorithm for O(d) synchronization
and a Cheeger-like inequality that equips it with a worst-case guarantee. Recall
that the O(d) synchronization corresponds to finding an assignment of an element
gi ∈ O(d) to each vertex i in a way that minimizes the discrepancy with the pairwise
measurements ρij ∼ gig

−1
j obtained for each edge. This corresponds to minimizing

the O(d) frustration, ν(g) (see (1.6)).

2.1. Partial synchronization in Sd−1. The motivation for considering a spec-
tral relaxation for the synchronization problem in Sd−1 is the observation that λ1(L1) =
minx:V→Rd η(x). In order to understand how tight the relaxation is we need to relate
λ1(L1) with ηG = minx:V→Sd−1 η(x).
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Consider, however, the following example: a graph consisting of two disjoint
components, one whose ρij measurements are perfectly compatible and another one on
which they are not. Its graph connection Laplacian would have a nonzero vector in its
null space, corresponding to synchronizations on the compatible component and zero
on the incompatible part (thus λ1(L1) = 0). On the other hand, the constraint that
v has to take values on Sd−1 will force it to try to synchronize the incompatible part,
thereby bounding ηG away from zero. This example motivates a different formulation
of the Sd−1 synchronization problem where vertices are allowed not to be labeled
(labeled with 0). We thus define the partial Sd−1 frustration constant of G as the
minimum possible frustration value for such an assignment,

(2.1) η∗G = min
v:V →Sd−1∪{0}

η(v).

We propose the following algorithm to solve the partial Sd−1 synchronization
problem.

Algorithm 2.1. Given a graph G = (V,E) and a function ρ : E → O(d),
construct the normalized connection Laplacian L1 and the degree matrix D1. Compute

z, the eigenvector corresponding to the smallest eigenvalue of L1. Let x = D
− 1

2
1 z. For

each vertex index i, let ui = ‖xi‖ and set vi : V → Sd−1 ∪ {0} as vi = xui , according
to (1.1). Output v equal to the vi that minimizes η(vi).

Lemma 3.1 guarantees that the solution v given by Algorithm 2.1 satisfies η(v) ≤√
10η(x). Since x was computed so that η(x) = λ1(L1), Algorithm 2.1 is guaranteed

to output a solution v such that

η(v) ≤
√
10λ1(L1).

Note that λ1(L1) ≤ η∗G, which is the optimum value for the partial Sd−1 synchroniza-
tion problem (see (2.1)). The proof for Lemma 3.1 will appear below. The idea to
show that the rounding, from x, to the solution v done by Algorithm 2.1 produces
a solution with η(v) ≤ √

10η(x) is to use the probabilistic method. One considers
a random rounding scheme by rounding x as in Algorithm 2.1 and (1.1) but thresh-
olding at a random value u, drawn from a well-chosen distribution. One then shows
that, in expectation, the frustration of the rounded vector is bounded by

√
10η(x).

This automatically ensures that there must exist a value u that produces a solution
with frustration bounded by

√
10η(x). The rounding described in Algorithm 2.1 runs

through all possible such roundings and is thus guaranteed to produce a solution sat-
isfying the bound. An O(1) version of this algorithm and analysis appeared in [32],
when ρ is the constant function equal to −1, in the context of the Max-Cut problem.
In fact, if d = 1, the factor 10 can be substituted by 8 and the stronger inequality
holds η(v) ≤√8λ1(L1).

The above performance guarantee for Algorithm 2.1 automatically implies the
following Cheeger-like inequality.

Theorem 2.2. Let G = (V,E) be a weighted graph. Given a function ρ : E →
O(d), let η∗G be the partial Sd−1 frustration constant of G and λ1(L1) the smallest
eigenvalue of the normalized graph connection Laplacian. Then

(2.2) λ1(L1) ≤ η∗G ≤
√
10λ1(L1).

Furthermore, if d = 1, the stronger inequality holds, η∗G ≤√8λ1(L1).
We note that Trevisan [32], in the context of Max-Cut, iteratively performs

this partial synchronization procedure in the subgraph composed of the vertices left
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unlabeled by the previous iteration, in order to label the entire graph. We, however,
consider only one iteration.

2.2. Full synchronization in Sd−1. In this section we adapt Algorithm 2.1
to solve (full) synchronization in Sd−1 and show performance guarantees, under rea-
sonable conditions, by obtaining bounds for ηG, the frustration constant for syn-
chronization in Sd−1. The intuition given to justify the relaxation to partial Sd−1

synchronization was based on the possibility of poor connectivity of the graph (small
spectral gap). In this section we show that poor connectivity, as measured by a small
spectral gap in the normalized graph Laplacian, is the only condition under which
one can have large discrepancy between the frustration constants and the spectra of
the graph connection Laplacian. We will show that, as long as the spectral gap is
bounded away from zero, one can in fact control the full frustration constants.

Algorithm 2.3. Given a weighted graph G = (V,E) and a function ρ : E →
O(d), construct the normalized connection Laplacian L1 and the degree matrix D1.
Compute z, the eigenvector corresponding to the smallest eigenvalue of L1. Let x =

D
− 1

2
1 z. Output the solution v : V → Sd−1 ∪ {0}, where each vi is defined as

vi =
xi

‖xi‖ .

If xi = 0, have vi be any vector in Sd−1.
Similarly to Algorithm 2.1, Lemma 3.6 guarantees that the solution v given by

Algorithm 2.3 satisfies η(v) ≤ 44 1
λ2(L0)

η(x). Again, since x was computed so that

η(x) = λ1(L1), Algorithm 2.1 is guaranteed to output a solution v such that

η(v) ≤ 44
λ1(L1)

λ2(L0)
.

Recall that, trivially, λ1(L1) ≤ ηG, which is the optimum value for the (full) Sd−1

synchronization problem (see (1.5)). The proof for Lemma 3.6 is also deferred until
section 3. The idea here is to look at the vector of the local norms of x: nx ∈ Rn,

where nx(i) = ‖xi‖. It is not hard to show that
nT
x L0nx

nT
x D0nx

≤ η(x), which means that

if η(x) is small, then nx cannot vary much between two vertices that share an edge.
Since λ2(L0) is large, one can show that such a vector needs to be close to constant,
which means that the norms of x across the vertices are similar. If the norms were
all the same, then the rounding vi =

xi

‖vi‖ would not affect the value of η(·), we take

this slightly further by showing that if the norms are similar, then we can control how
much the rounding affects the penalty function.

The above performance guarantee for Algorithm 2.3 automatically implies another
Cheeger-like inequality.

Theorem 2.4. Let G = (V,E) be a graph. Given a function ρ : E → O(d),
let ηG be the Sd−1 frustration constants of G, λ1(L1) the smallest eigenvalue of the
normalized graph connection Laplacian, and λ2(L0) the second smallest eigenvalue of
the normalized graph Laplacian. Then,

λ1(L1) ≤ ηG ≤ 44
λ1(L1)

λ2(L0)
.

2.3. The O(d) synchronization problem. We now present our main contri-
bution, a spectral algorithm for O(d) synchronization together with a Cheeger-type
inequality that provides a worst-case performance guarantee for the algorithm.
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Before presenting the algorithm and the results, let us note the differences be-
tween this problem and the Sd−1 synchronization problem presented above. For the
Sd−1 case, the main difficulty that we faced in trying to obtain candidate solutions
from eigenvectors was the local unit norm constraint. This is due to the fact that
the synchronization problem requires its solution to be a function from V to S

d−1,
corresponding to a vector in Rdn whose vertex subvectors have unit norm, while the
eigenvector, in general, does not satisfy such a constraint. Nevertheless, the results in
the previous section show that, by simply rounding the eigenvector, one does not lose
more than a linear term, given that the graph Laplacian has a spectral gap bounded
away from zero.

However, the O(d) synchronization setting is more involved. The reason being
that, besides the local normalization constraint, there is also a local orthogonality
constraint. (At each vertex, the d vectors have to be orthogonal so that they can be
the columns of an orthogonal matrix.) For Sd−1 we locally normalized the vectors, by
choosing for each vertex the unit vector closest to xi. For O(d) synchronization we
will pick, for each vertex, the orthogonal matrix closest (in the Frobenius norm) to the
matrix

[
x1
i · · ·xd

i

]
, where xj

i corresponds to the d-dimensional vector assigned to vertex
i by the jth eigenvector. This rounding can be achieved by the polar decomposition.
Given a d×d matrix X , the matrix U(X), solution of minU∈O(d) ‖U(X)−X‖F , is one
of the components of the polar decomposition ofX (see [16, 20] and references therein).
We note that U(X) can be computed efficiently through the SVD decomposition of
X . In fact, given the SVD of X , X = UΣV T , the closest orthogonal matrix to X
is given by U(X) = UV T (see [16]). This approach is made precise in the following
spectral algorithm for O(d)-synchronization.

Algorithm 2.5. Given a weighted graph G = (V,E) and a function ρ : E →
O(d), construct the normalized connection Laplacian L1 and the degree matrix D1.
Compute z1, . . . , zd, the first d eigenvectors corresponding to the d smallest eigenvalues

of L1. Let xj = D
− 1

2
1 zj for each j = 1, . . . , d. Output the solution g : V → O(d),

where each gi is defined as

gi = U(Xi),

where Xi = [x1
i · · ·xd

i ] and U(Xi) is the closest orthogonal matrix of Xi, which can
be computed via the SVD of Xi; if Xi = UiΣiV

T
i , then U(Xi) = UiV

T
i . If Xi is

singular,2 simply set U(Xi) to be Id.
Similarly to how the performance of the S

d−1 synchronization algorithms was
obtained, Lemma 3.11 bounds the effect of the rounding step in Algorithm 2.5. Be-
fore rounding, the frustration of the solution [x1 · · ·xd] is 1

d

∑d
i=1 η(x

i). Lemma 3.11
guarantees that the solution g obtained by the rounding in Algorithm 2.5 satisfies
ν(g) ≤ 1026d3 1

λ2(L0)

∑d
i=1 η(x

i). Because of how the vectors x1, . . . , xd were built,∑d
i=1 η(x

i) =
∑d

i=1 λi(L1), and this means that the solution g computed by Algo-
rithm 2.5 satisfies

ν(g) ≤ 1026d3
1

λ2(L0)

d∑
i=1

λi(L1).

This performance guarantee automatically implies our main result, a Cheeger
inequality for the connection Laplacian.

2In this case the uniqueness of U(Xi) is not guaranteed, and thus the map is not well defined.
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Theorem 2.6. Let λi(L1) and λi(L0) denote the ith smallest eigenvalues of the
normalized connection Laplacian L1 and the normalized graph Laplacian L0, respec-
tively. Let νG denote the frustration constant for O(d) synchronization. Then,

1

d

d∑
i=1

λi(L1) ≤ νG ≤ 1026d3
1

λ2(L0)

d∑
i=1

λi(L1).

Note that, once again, the lower bound is trivially obtained by noting that the
eigenvector problem is a relaxation of the original synchronization problem.

Although the rigorous statement and proof of Lemma 3.11 will be presented in
section 3, we give a brief intuitive explanation of how the result is obtained.

As discussed above, the performance guarantee for Algorithm 2.3 relies on a
proper understanding of the effect of the rounding step. In particular we showed that
if λ2(L0) is small, then locally normalizing the candidate solution (which corresponds
to the rounding step) has an effect over the penalty function that we can control. The
case of O(d) synchronization is dealt with similarly. Instead of local normalization,
the rounding step for Algorithm 2.5 is based on the polar decomposition. We start by
understanding when the polar decomposition is stable (in the sense of changing the
penalty function on a given edge) and see that this is the case when the candidate
solution Xi ∈ Rd×d is not close to being singular. The idea then is to show that only
a small portion (which will depend on

∑d
i=1 λi(L1) and λ2(L0)) of the graph can have

candidate solutions Xi close to singular and use that to show that, overall, we can
bound the harmful contribution potentially caused by the rounding procedure on the
penalty function.

3. Proof of the main results. In this section we prove the results described
above.

3.1. Proofs for synchronization in Sd−1. We start with the main lemma
regarding partial Sd−1 synchronization.

Lemma 3.1. Given x ∈ Rdn, there exists u > 0 such that

η(xu) ≤
√
10η(x).

Moreover, if d = 1, the right-hand side can be replaced by
√
8η(x).

Proof. This lemma immediately follows from Lemma 3.2 as

η(xu) =
1

2

∑
ij wij‖xu

i − ρijx
u
j ‖2∑

i di‖xu
i ‖2

≤
(
1

2
max
i,j

‖xu
i − ρijx

u
j ‖
) ∑

ij wij‖xu
i − ρijx

u
j ‖∑

i di‖xu
i ‖

≤
∑

ij wij‖xu
i − ρijx

u
j ‖∑

i di‖xu
i ‖

,

where the last inequality was obtained by noting that ‖xu
i − ρijx

u
j ‖ ≤ ‖xu

i ‖ + ‖xu
j ‖

≤ 2
Lemma 3.2. Given x ∈ Rdn, there exists u > 0 such that∑

ij wij‖xu
i − ρijx

u
j ‖∑

i di‖xu
i ‖

≤
√
10η(x).

Moreover, if d = 1, the right-hand side can be replaced by
√
8η(x).

Proof. Let us suppose, without loss of generality, that x is normalized so that
maxi ‖xi‖ = 1. We will use a probabilistic argument. Let us consider the random
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variable u drawn uniformly from [0, 1] and recall that xu is defined by xu
i = xi

‖xi‖ if

‖xi‖2 > u or xu
i = 0 if ‖xi‖2 ≤ u. We will show that 1

2

E
∑

ij wij‖xu
i −ρijx

u
j ‖

E
∑

i di‖xu
i ‖ ≤

√
5
2η(x),

which implies that at least one of the realizations of u must satisfy the inequality, and
proves the lemma.

We start by showing that, for each edge (i, j),

(3.1) E‖xu
i − ρijx

u
j ‖ ≤

√
5

2
‖xi − ρijxj‖ (‖xi‖+ ‖xj‖) .

Without loss of generality we can consider ρij = I and ‖xj‖ ≤ ‖xi‖ and get

E‖xu
i − xu

j ‖ = ‖xj‖2
∥∥∥∥ xi

‖xi‖ − xj

‖xj‖
∥∥∥∥+ (‖xi‖2 − ‖xj‖2

)
.

Thus, it suffices to show

‖xj‖2
∥∥∥∥ xi

‖xi‖ − xj

‖xj‖
∥∥∥∥+ (‖xi‖2 − ‖xj‖2

) ≤
√
5

2
‖xi − xj‖ (‖xi‖+ ‖xj‖) ,

which is a consequence of Proposition A.1 for y =
xj

‖xj‖ , z = xi

‖xi‖ , and α = ‖xi‖
‖xj‖ . Now,

using (3.1), the linearity of expectation, and the Cauchy–Schwarz inequality we have

E

∑
ij

wij‖xu
i − ρijx

u
j ‖ ≤

√
5

2

∑
ij

wij‖xi − ρijxj‖(‖xi‖+ ‖xj‖)

≤
√
5

2

√∑
ij

wij‖xi − ρijxj‖2
√∑

ij

wij(‖xi‖+ ‖xj‖)2.

Since
∑

ij wij‖xi − ρijxj‖2 = 2η(x)
∑

i di‖xi‖2 and

∑
ij

wij(‖xi‖+ ‖xj‖)2 ≤ 2
∑
ij

wij(‖xi‖2 + ‖xj‖2) = 4
∑
i

di‖xi‖2,

we have

E

∑
ij

wij‖xu
i − ρijx

u
j ‖ ≤

√
5

2

√
8η(x)

∑
i

di‖xi‖2

=

√
5

2

√
8η(x)E

∑
i

di‖xu
i ‖ = 2

√
5

2
η(x)E

∑
i

di‖xu
i ‖,

which completes the proof. When d = 1, the sharper result can be obtained by noting

that (3.1) holds even without the
√
5
2 factor.

In the context of full Sd−1 synchronization, the intuition given to justify a require-
ment in connectivity of the graph is that it forces the solution of the relaxed problem
to have balanced norm across the vertices of the graph. The following lemma makes
this thought precise.

Lemma 3.3. Given x ∈ Rdn, there exists αx ≥ 0 such that rx = x−αxx̃ satisfies

‖rx‖2D1
≤ η(x)

λ2(L0)
‖x‖2D1

.
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Proof. Let us define nx ∈ Rn by (nx)i = ‖xi‖ and recall x̃ defined in (1.2). We
now set αx = argminα ‖nx − α1‖D0 . A simple calculation reveals that this gives

αx =
1TD0nx

1TD01
.

Since nx is a nonnegative vector, αx is nonnegative as well. Let us also define ux ∈ Rn

so that (rx)i = (ux)ix̃i. This implies that ux = nx − (1
TD0nx

1TD01
)1. Thus,

uT
xL0ux = nT

xL0nx =
1

2

∑
ij

wij(‖xi‖ − ‖xj‖)2 ≤ 1

2

∑
ij

wij‖xi − ρijxj‖2 = η(x)‖x‖2D1
.

Since uT
xD01 = 0, we have (ux)

TL0ux

‖ux‖2
D0

≥ λ2(L0). This shows that ‖rx‖2D1
= ‖ux‖2D0

≤
1

λ2(L0)
η(x)‖x‖2D1

.

This allows one to bound the volume of the subset of vertices where the norm of
x is not typical. Let us first define this set.

Definition 3.4. Given x ∈ Rdn, normalized so that ‖x‖2D1
= vol(G), and a

positive number δ, we define the ill-balanced vertex subset of the graph G as Ibx(δ) =
{i ∈ V : |‖xi‖ − 1| ≥ δ}.

The volume of Ibx(δ) is controlled by the following lemma.
Lemma 3.5. Let x ∈ Rdn satisfy ‖x‖2D1

= vol(G). Then,

vol(Ibx(δ))
vol(G)

≤ 4

δ2
η(x)

λ2(L0)
.

Proof. Lemma 3.3 guarantees the existence of αx ∈ R
+ such that rx = x − αxx̃

satisfies ‖rx‖2D1
≤ η(x)

λ2(L0)
‖x‖2D1

.

Let us start by bounding αx; by the triangle inequality,

(1− αx)
2 vol(G) = (‖x‖D1 − αx‖x̃‖D1)

2 ≤ ‖rx‖2D1
≤ η(x)

λ2(L0)
vol(G),

which implies (1− αx)
2 ≤ η(x)

λ2(L0)
.

If i ∈ Ibx(δ), then |‖xi‖ − 1| ≥ δ, which implies ‖(rx)i‖ = |‖xi‖ − αx| ≥
|‖xi‖ − 1| − |1− αx| ≥ δ −

√
η(x)

λ2(L0)
. Squaring both sides of the inequality and sum-

ming over all i ∈ Ibx(δ) gives

(3.2)
η(x)

λ2(L0)
vol(G) ≥ ‖rx‖2D1

≥
∑
i∈Ibk

di‖(rx)i‖22 ≥ vol(Ibk)
(
δ −

√
η(x)

λ2(L0)

)2

,

as long as δ >
√

η(x)
λ2(L0)

. Let us separate two cases:

If δ
2 >

√
η(x)

λ2(L0)
, then, using (3.2), we have

vol(Ibk)
vol(G)

≤ η(x)

λ2(L0)

(
δ −

√
η(x)

λ2(L0)

)−2

≤ η(x)

λ2(L0)

(
δ − δ

2

)−2

=
4

δ2
η(x)

λ2(L0)
.
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If, on the other hand, δ
2 ≤

√
η(x)

λ2(L0)
, then, since vol(Ibk)

vol(G) ≤ 1,

vol(Ibk)
vol(G)

≤ 1 ≤ η(x)

λ2(L0)

(
δ

2

)−2

=
4

δ2
η(x)

λ2(L0)
.

By placing an upper bound on the number of ill-balanced vertices (Lemma 3.5),
we can control how much η(x) is affected when we locally normalize x. This is achieved
in the following lemma, which contains the central technical result regarding full Sd−1

synchronization.
Lemma 3.6. For every x ∈ Rdn, η(x̃) ≤ 44

λ2(L0)
η(x).

Proof. We want to bound η(x̃) = 1
2 vol(G)

∑
ij wij‖x̃i − ρij x̃j‖2. Without loss of

generality we can assume ‖x‖2D1
= vol(G). Let 0 < γ < 1, and then

η(x̃) ≤ 1

2 vol(G)

⎛
⎝ ∑

i∈Ibx(γ)

∑
j

wij‖x̃i − ρij x̃j‖2 +
∑

j∈Ibx(γ)

∑
i

wij‖x̃i − ρij x̃j‖2

+
∑

i,j /∈Ibx(γ)
wij‖x̃i − ρij x̃j‖2

⎞
⎠

≤ 4
vol(Ibx(γ))

vol(G)
+

1

2 vol(G)

∑
i,j /∈Ibx(γ)

wij‖x̃i − ρij x̃j‖2.

By Lemma 3.5 we have 4 vol(Ibx(γ))
vol(G) ≤ 16

γ2

η(x)
λ2(L0)

.

Note that, for any y, z ∈ Rd, ‖ y
‖y‖ − z

‖z‖‖ ≤ ‖y−z‖
min{‖y‖,‖z‖} . By setting y = xi and

z = ρijxj , we get ‖x̃i − ρij x̃j‖ ≤ ‖xi−ρijxj‖
min{‖xi‖,‖xj‖} . This implies that

1

2 vol(G)

∑
i,j /∈Ibx(γ)

wij‖x̃i − ρij x̃j‖2 ≤ 1

2 vol(G)

∑
i,j /∈Ibx(γ)

wij

( ‖xi − ρijxj‖
min{‖xi‖, ‖xj‖}

)2

≤ 1

2 vol(G)

1

(1 − γ)2

∑
i,j /∈Ibx(γ)

wij ‖xi − ρijxj‖2 .

This means that

η(x̃) ≤ 16

γ2

η(x)

λ2(L0)
+

1

2 vol(G)

1

(1− γ)2

∑
i,j /∈Ibx(γ)

wij ‖xi − ρijxj‖2

≤
(
16

γ2

1

λ2(L0)
+

1

(1 − γ)2

)
η(x).

Since λ2(L0) ≤ 1 (see, e.g., [8]), it is possible to pick γ (e.g., 0.7) such that
16
γ2

1
λ2(L0)

+ 1
(1−γ)2 ≤ 44

λ2(L0)
.

3.2. Proofs for synchronization in O(d). As described, the rounding pro-
cedure for O(d) synchronization is based on the polar decomposition. We need to
understand how much the polar decomposition can potentially affect the penalty on
each edge. With this purpose we use the following result of Li [20].

Lemma 3.7 (Theorem 1 in [20]). Let A,B ∈ C
d×d be nonsingular matrices

with polar decompositions A = U(A)P and B = U(B)P ′. Then ‖U(A) − U(B)‖F ≤
2

σmin(A)+σmin(B)‖A−B‖F , where σmin(A) is the smallest singular value of the matrix

A.
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This means that in order to bound possible instabilities of the polar decomposi-
tion, one needs to control the size of the smallest singular value of Xi =

[
x1
i · · ·xd

i

]
.

To achieve this, we will introduce a notion similar to Ibx(δ) but designed to take into
account local orthogonality instead of local normalization.

Definition 3.8. Given x, y ∈ R
dn, two D1-orthogonal vectors, normalized so

that ‖x‖2D1
= ‖y‖2D1

= vol(G), and a positive number δ, we define the following
ill-balanced vertex subset of the graph G as

Ibxy(δ) = {i ∈ V : |〈xi, yi〉| ≥ δ} .
The next lemma shows that, for an edge whose incident vertices are not ill-

balanced (see Definitions 3.8 and 3.4), the polar decomposition only slightly affects
the penalty function.

Lemma 3.9. Let x1, . . . , xd ∈ Rdn be D1-orthogonal vectors, normalized so
that ‖xk‖2D1

= vol(G). Let us define the “balanced” set B as the complement of⋃
k∈[d](Ibxk( 1

8d) ∪
⋃

m∈[d]\{k} Ibxkxm( 1
2d )). For all i, j ∈ B, we have

‖U(Xi)− ρijU(Xj)‖F ≤
√
2‖Xi − ρijXj‖F .

Proof. For i ∈ B, consider the gram matrix XT
i Xi. Its kth diagonal entry

satisfies ‖xk
i ‖2 ≥ (1− 1

8d)
2 ≥ 1− 1

4d . On the other hand, the nondiagonal entries are,
in magnitude, smaller or equal to 1

2d . By the Gershgorin circle theorem, the smallest
eigenvalue of XT

i Xi, which is equal to σmin(Xi)
2, satisfies σmin(Xi)

2 ≥ 1− 1
4d − (d−

1) 1
2d . Hence, σmin(Xi) ≥ 1√

2
. By observing that U(ρijXj) = ρijU(Xj) and using

Lemma 3.7, we get ‖U(Xi)− ρijU(Xj)‖F ≤ √
2‖Xi − ρijXj‖F .

The last step is to control the size of the ill-balanced sets.
Lemma 3.10. Let x, y ∈ Rdn be D1-orthogonal vectors such that ‖x‖2D1

=
‖y‖2D1

= vol(G). Then,

vol
(Ibxy ( 1

2d

) \ (Ibx ( 1
8d

) ∪ Iby
(

1
8d

)))
vol(G)

≤ 4(8d)2
η(x) + η(y)

λ2(L0)
.

Proof. Let us consider the vector u = 1√
2
(x+ y). It satisfies ‖u‖2D1

= vol(G), and

by the triangle inequality on the norm ‖ · ‖L1 , η(u) ≤ η(x) + η(y). By Lemma 3.5 we

get
vol(Ibu( 1

8d ))

vol(G) ≤ 4(8d)2 η(x)+η(y)
λ2(L0)

. We conclude the proof by noting that Ibxy( 1
2d) ⊂

Ibx( 1
8d )∪Iby( 1

8d)∪Ibu( 1
8d ). In fact, if i 	∈ Ibx( 1

8d)∪Iby( 1
8d)∪Ibu( 1

8d), then |〈xi, yi〉| =
|‖ui‖2 − ‖xi‖2+‖yi‖2

2 | ≤ (1 + 1
8d)

2 − (1− 1
8d )

2 = 1
2d .

At this point we have built all the foundations needed for the proof of the central
lemma regarding O(d) synchronization.

Lemma 3.11. Given x1, . . . , xd ∈ R
dn such that 〈xk, xl〉D1 = 0 for all k 	= l,

consider the potential g : V → O(d) given as gi = U(Xi), where Xi = [x1
i · · ·xd

i ] and
U(X) is the closest (in the Frobenius norm) orthogonal matrix of X. If Xi is singular,
U(Xi) is simply set to be Id. Then,

ν(g) ≤ (2d−1 + 210d3
) 1

λ2(L0)

d∑
i=1

η
(
xi
)
.

Proof. Let us consider B as defined in Lemma 3.9, meaning Bc =
⋃

k∈[d](Ibxk( 1
8d )∪⋃

m∈[d]\{k} Ibxkxm( 1
2d)). We want to bound ν(g) = 1

2d vol(G)

∑
ij wij‖gi − ρijgj‖2F .
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Since (B × B)c ⊂ (Bc × V ) ∪ (V × Bc),∑
ij

wij‖gi − ρijgj‖2F ≤
∑

(i,j)∈B×B
wij‖U(Xi)− ρijU(Xj)‖2F

+2
∑
i∈Bc

∑
j∈V

wij‖gi − ρijgj‖2F

≤ 2
∑
ij

wij‖Xi − ρijXj‖2F + 8d vol (Bc) ,

where the second inequality was obtained by using Lemma 3.9 and noting that Oi is
an orthogonal matrix. To bound vol (Bc) we make use of Lemmas 3.5 and 3.10 and

get that vol(Bc)
vol(G) is bounded above by

∑
k∈[d]

vol
(Ibxk

(
1
8d

))
vol(G)

+
1

2

∑
k∈[d]

∑
m∈[d]\k

vol
(Ibxkxm

(
1
2d

) \ (Ibx ( 1
8d

) ∪ Iby
(

1
8d

)))
vol(G)

≤ 28d3
∑

k∈[d] η(x
k)

λ2(L0)
.

Since
∑

ij wij‖Xi−ρijXj‖2F = 2vol(G)
∑d

k=1 η(x
k), we get ν(g) ≤ (2d−1+210d3) 1

λ2(L0)∑d
k=1 η(x

k).

4. An unsquared version of the frustration constant. We formulated the
synchronization problem as minimizing the square of the Frobenius norm of the in-
compatibilities (in some sense, an �2 penalty function). This penalty function is
particularly nice because it is close in spirit to the Rayleigh quotient formulation of
an eigenvector problem and thus more related to what the spectral method will try
to minimize, as we indeed showed in the theorems above.

On the other hand, considering the sum of the Frobenius norms of the incom-
patibilities (in some sense, an �1 penalty function) will induce sparsity on the edge
inconsistencies, meaning that it will favor candidate solutions for which some edges
are perfectly correct even if there are some edges with large errors. This type of
penalty function is often favorable under some noise models. In fact, the noise model
analyzed in [29] consists of a few randomly chosen edges having a measurement that
is randomly drawn with respect to the uniform distribution in the space of possible
measurements (in our case O(d); in [29] SO(2)), and therefore the original rotation
potential will perfectly agree with some edges and have a large error on others. This
motivates us to look at �1 versions of frustration constants. Let us define

ν1(O) =
1√

d vol(G)

∑
ij

wij‖Oi − ρijOj‖F ,

and the O(d) frustration �1 constant of G as νG,1 = minO:V→O(d) ϑ(O). Similarly,

η1(v) =

∑
ij wij‖vi − ρijvj‖∑

i di‖vi‖
and the �1 constant of G, as ηG,1 = minv:V→Sd−1 ζ(v). We also define a partial version
of it, η∗G,1 = minv:V→Sd−1∪{0} ζ(v).
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From our results in the above section it is easy to obtain the following Cheeger
type inequalities for these frustration constants.

Theorem 4.1. Let λi(L1) and λi(L0) denote the ith smallest eigenvalue of,
respectively, the normalized connection Laplacian L1 and the normalized graph Lapla-
cian L0. Let η∗G,1, ηG,1,and νG,1 denote the �1 frustration constants defined above.
Then,

λ1(L1) ≤ η∗G,1 ≤
√
10λ1(L1),(4.1)

λ1(L1) ≤ ηG,1 ≤ 2

√
22

λ2(L0)
λ1(L1),(4.2)

and,

(4.3)
1

d

d∑
i=1

λi(L1) ≤ νG,1 ≤ 6d

√√√√ 57d

λ2(L0)

d∑
i=1

λi(L1).

Proof. For any v : V → Sd−1 ∪ {0}, we have

η(v) =
1

2

∑
ij wij‖vi − ρijvj‖2∑

i di‖vi‖2
≤
(∑

ij wij‖vi − ρijvj‖
)

maxij ‖vi−ρijvj‖
2

(
∑

i di‖vi‖)min ‖vi‖

≤
∑

ij wij‖vi − ρijvj‖∑
i di‖vi‖

= η1(v),

which, together with Theorems 2.2 and 2.4, gives the lower bound on both (4.1) and
(4.2).

Note that Lemma 3.2 actually guarantees that there exists v : V → Sd−1 ∪ {0}
such that η1(v) ≤

√
10λi(L1), which concludes the proof of (4.1).

Let v : V → Sd−1 ∪ {0} be a solution that satisfies η(v) ≤ 44λ1(L1)
λ2(L0)

, guaranteed

to exist by Theorem 2.4. We then have,

η1(v) =

∑
ij wij‖vi − ρijvj‖∑

i di‖vi‖
=

1

vol(G)

∑
ij

(
w

1
2

ij‖vi − ρijvj‖
)
w

1
2

ij

≤ 1

vol(G)

⎛
⎝∑

ij

wij‖vi − ρijvj‖2
⎞
⎠

1
2
⎛
⎝∑

ij

wij

⎞
⎠

1
2

=

√∑
ij wij‖vi − ρijvj‖2∑

i di‖vi‖2

=
√
2η(v),(4.4)

where the inequality is obtained using Cauchy–Schwarz. This completes the proof of
(4.2).

Inequality (4.3) is shown in the same way as (4.2): since gi, gj ∈ O(d), we have

‖gi − ρijgj‖F ≤ 2
√
d, which gives ν1(g) ≥ ν(g). On the other hand, using Cauchy–

Schwarz in the same way as in (4.4) gives ν1(g) ≤
√
2ν(g), which implies (4.3) and

concludes the proof of the theorem.
In fact, Wang and Singer [34] recently showed that under the random outlier’s

noise model (described above), a semidefinite relaxation of the O(d) synchronization
problem formulated with the �1 penalty function was able to recover the ground
truth solution with high probability, provided the underlying graph is drawn from
the Erdős–Rényi random graph model and the ratio of outliers is below a certain
threshold.
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5. Tightness of results. Let us consider the ring graph on n vertices Gn =
(Vn, En) with Vn = [n] and E = {(i, (i+ 1)mod n), i ∈ [n]} with the edge weights all
equal to 1 and ρ : V → O(d) as ρ(n,1) = − I and ρ = I for all other edges. Define

x ∈ Rdn by xk = [2 k
n − 1, 0, . . . , 0]T . It is easy to check that η(x) = O(n−2) and that,

for any u > 0, if xu 	≡ 0, there will have to be at least one edge that is not compatible
with xu, implying η(xu) ≥ 1

2n . This shows that the 1/2 exponent in Lemma 3.1 is
needed. In fact, by adding a few more edges to the graph Gn, one can also show the
tightness of Theorem 2.2: Consider the “rainbow” graph Hn that is constructed by
adding to Gn, for each nonnegative integer k smaller than n/2, an edge between vertex
k and vertex n − k with ρ(k,n−k) = − I. The vector x still satisfies η(x) = O(n−2),

however, for any nonzero vector v : V → Sd−1 ∪ {0}, it is not hard to show that η(v)
has to be of order at least n−1, meaning that η∗G is Ω(

√
λ1(L1)). This also means

that, even if considering η∗G, one could not get a linear bound (as provided by Lemma
3.6) without the control on λ2(L0).

Theorem 2.6 provides a nontrivial bound only if λ2(L0) is sufficiently large. It is
clear that if one wants to bound full frustration constants, a dependency on λ2(L0)
is needed. It is, nevertheless, nonobvious that this dependency is still needed if we
consider partial versions of O(d) frustration constants, ϑ∗

G or ν∗G. This can, however,
be illustrated by a simple example in O(2); consider a disconnected graph G with
two sufficiently large complete components, G1 = (V 1, E1) and G2 = (V 2, E2). For
each edge let ρi,j = [ −1 0

0 1 ]. It is clear that the vectors x1 and x2 defined such that
x1
i = [0, 1V 1(i)]T and x2

i = [0, 1V 2(i)]T are orthogonal to each other and lie in the null
space of the graph connection Laplacian of G. This implies that λ2(L1) = 0. On the
other hand, it is straightforward to check that ν∗G is not zero because it is impossible
to perfectly synchronize the graph (or any of the components, for that matter).

6. Concluding remarks. Synchronization is a challenging problem. Recent
discoveries suggest that spectral relaxations are promising as feasible methods to
solve this problem. In fact, in [29], probability guarantees of performance are given
for the performance of a spectral method to solve the SO(2) synchronization problem
under a certain random noise model. Nevertheless, to the best of our knowledge,
Algorithm 2.5 is the first method for O(d) synchronization having a (deterministic)
worst-case performance guarantee. As one would expect, the worst-case performance
is significantly weaker than the kind of probabilistic guarantees, given a specific noise
model, e.g., as the one given in [29]. In fact, the guarantees in [29] and [34] are given in
terms of distance between the candidate solution and the ground truth, while the one
we provide is given in terms of the compatibility error. Recently, in the context of the
phase retrieval problem, the guarantees from this paper were used to obtain guarantees
on the distance between the candidate solution and the ground truth (see [1]).

In special applications, one knows, a priori, that every element in the potential
has positive determinant. This corresponds to a synchronization problem in SO(d).
Although this can be viewed as a special case of the O(d) problem, it is expected that
the additional structure can be leveraged to improve the algorithm (and the analysis).
In particular, the first d− 1 columns of a matrix in SO(d) completely determine the
matrix. This suggests that the SO(d) synchronization problem is solvable by just the
first d − 1 eigenvectors of the connection Laplacian, instead of the d first ones. In
fact, the SO(2) synchronization problem is equivalent to the S

1 localization one, and
the guarantees for the S1 localization problem were given solely in terms of the first
eigenvalue of the graph connection Laplacian. We leave the improved SO(d) analysis
for future work.
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The performance guarantee for this algorithm relies on the fact that the vectors
obtained are D1-orthogonal. However, in practice, due to possible errors in the calcu-
lations, this condition might be perturbed and the D1 inner products of these vectors,
although small, may no longer be exactly zero. It is easy to adapt the analysis to this
setting and show that it is in fact robust to such perturbations.

The results in this paper also suggest an alternative to Algorithm 2.5 which cor-
responds to, instead of solves, the eigenvector problem, determining the d vectors
sequentially, and, at each step, constraining on the vector being locally orthogonal to
the previous ones. (This can still be done efficiently; see [14].) After the d vectors are
obtained, one can simply locally normalize each one and output that as the synchro-
nization solution candidate. The issue with this method is that its iterative nature3

makes its analysis more difficult, as it is hard to guarantee that small errors in the
first few vectors would not greatly affect the remaining ones. Also, numerical simula-
tions suggest that the performance, in practice, of both methods is roughly the same.
Independently of which method is used, the solution, although guaranteed to have
a certain performance, is not guaranteed to be a local optimum. Recently, Boumal
et al. [5] suggest that an iterative smooth optimization (in manifolds) method, when
started in the solution given by the rounding procedure, can be used to locally search
for a better solution.

One might argue that, in some applications, the weights on the edges of the graph
do not have a clear meaning, the reason being that we may be given a few relative
measurements ρij and it is unclear how to give weights to such measurements. In such
cases, since we have the freedom of choosing the weights of the edges and Theorems 2.4
and 2.6 suggest that our method will work better with a large λ2(L0), one could
compute the weights of the edges in such a way that λ2(L0) is maximized. This
problem is solved in [31]. The caveat is that the new weights will affect the way the
compatibility error is measured, as well as the eigenvalues of the connection Laplacian.
It is thus still unclear if such an approach would improve the method. Another
interesting possible outcome of a procedure of this nature is a possible ranking of the
edges; large weights would likely tend to be given to edges that are more important
to ensure the connectivity of the graph.

The classical Cheeger inequality has an analogous result on smooth manifolds
(actually, the first to be shown [7]). One interesting question is whether the theorems
in this paper have an analogous smooth version. One difficulty is to understand what
would correspond to the frustration constant in the smooth case. Recent work on
vector diffusion maps [27] suggests that an analogous result on smooth manifolds
would be related to the parallel transport, and its incompatibility and some results in
differential geometry [4] suggest that the holonomy could be a geometric property that
corresponds to the frustration constant. These suggestions are “coherent” because
holonomy can, in some sense, be viewed as the incompatibility of the parallel transport
(due to the curvature of the manifold).

In some cases the incompatibilities have some structure; the continuous setting
described above may be such an example. Although, in this paper, we make no
attempt to understand or take advantage of such structure, we believe this would be
an interesting direction for future work, and we direct the reader to papers on which
topological tools are used to understand (and leverage) the structure of inconsistencies
in synchronization-like problems [6, 18, 22].

3This is due to the fact that the calculation of one of the vectors greatly depends on the ones
already computed.
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Appendix A. Some technical steps.
Proposition A.1. For any y and z unit vectors in Rd, the following holds for

any α ≥ 1:

‖y − z‖+ α2 − 1 ≤
√
5

2
‖y − αz‖(1 + α).

Proof. Let t = ‖y − z‖, which implies that 0 ≤ t ≤ 2. Since y and z are unit

vectors, it is straightforward to check that ‖y−αz‖ =
√
1 + α2 − 2α(1 − 1

2 t
2). Thus,

it suffices to show

(A.1) t+ α2 − 1 ≤
√
5

2

√
1 + α2 − 2α

(
1− 1

2
t2
)
(1 + α)

for all 0 ≤ t ≤ 2 and α ≥ 1. Since both sides of (A.1) are positive, it is enough to
show the inequality with both sides squared. Squaring and rearranging yields

t2 + 2tα2 − 2t+
(
α2 − 1

)2 ≤ 5

4

(
(α2 − 1)2 + αt2(1 + α)2

)
.

This is equivalent to the nonnegativity, in the interval [0, 2], of a certain quadratic
function of t: (

5

4
α(1 + α)2 − 1

)
t2 − (2α2 − 2

)
t+

1

4

(
α2 − 1

)2 ≥ 0.

Since, for α ≥ 1,

(
2α2 − 2

)2−4

(
5

4
α(1 + α)2 − 1

)
1

4

(
α2 − 1

)2
=
(
α2 − 1

)2(
4− 5

4
α(1 + α)2 + 1

)
≤ 0,

the quadratic is always nonnegative and thus nonnegative in [0, 2].
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