$NP = \text{Non-deterministic Polynomial Time}$

is a large family of problems
expect some are not solvable in polynomial time.

NP-hard: Problems at least as hard as everything in NP.

If can solve any one of them in poly time, then can solve every NP problem in poly time.

NP-complete: NP-hard and in NP
especially essentially equivalent to each other
The hardest problems in NP.

Idea behind NP: (motivation before definition)
Problems for which it might be hard to find the answer. But once found is easy to check.

Like systems of equations:
takes work to find solution, but easy to check.

Linear equations are in polynomial time,
but Systems of Polynomial Equations are hard.
Abbreviate SPE.
SPE: Have variables, say x_1, \ldots, x_n, and polynomials $p_1(x), \ldots, p_k(x)$.

Problem 1: find x s.t. $p_i(x) = 0$ for all i?

\rightarrow Problem 2: Does there exist x s.t. $p_i(x) = 0$ for all i?

Problem 1: Given this x, can efficiently check if satisfies all equations. If x is rational, and the coefficients of the polynomials are rational, can check.

i: $x^2 - 2 = 0$, $x^p - 2 = 0 \forall x, y, p$

ii: Size(x) could be much larger than size(p), is inefficient from perspective of $p_i \ldots p_k$

iii: What if is no solution?

no solution is an answer.
How would we check that?

We go with Problem 2, which has just yes/no answers.
If “yes”, is an x that you can (try to) check.
If “no”, there might not be.

Problems with yes/no answers are called decision problems
An \(\mathsf{NP} \)-complete problem: \(\exists \mathsf{013}\text{-SPE} \)

Does there exist \(x \in \mathsf{013}^n \) s.t. \(P_i(x) = 0 \), \(\forall i \)?

Now, the solution can not be big: is in \(\mathsf{011}^n \).
Can evaluate \(P_i(x) \) in time polynomial in \(\text{size}(P_i) \), so can check \(x \) efficiently.

For yes answers and \(x \) proving answer is “yes” \(P_i(x) = 0 \) \(\forall i \leq k \), call \(x \) a witness, certificate, or proof.

For no answers there does not need to be.

Let \(q = (P_1, \ldots, P_k) \) specify an instance of the problem.
Write \(q \in \mathsf{013}\text{-SPE} \) if is valid problem with yes answer.

Def A problem \(Y \) (like \(\exists \mathsf{013}\text{-SPE} \)) is in \(\mathsf{NP} \) if \(\exists \) a polynomial-time algorithm \(A \) (witness checker) and constant \(c \) governing answer size such that for all \(q \) (problem instances)

\(q \in Y \) (valid and yes answer) \(\Rightarrow \exists w \) (witness) s.t. \(A(q,w) = \text{"yes"} \) and \(\text{size}(w) \leq c \cdot \text{size}(q)^c \)

if \(q \not\in Y \), \(\forall w \) s.t. \(\text{size}(w) \leq c \cdot \text{size}(q)^c \), \(A(q,w) = \text{"no"} \).
If answer is yes, A continues A
 " " " no, A will never say "yes"
If q is not valid problem, A says no
w could be larger than q, but rarely is.
size(w) ≤ poly(size(q))
Time of A is poly in size of q.

3.113 - SPE is in NP

Def. A problem Y is in P if

\[\exists \text{ a polynomial-time algorithm } A \]
\[q \in Y \Rightarrow A(q) = "yes" \]
\[q \notin Y \Rightarrow A(q) = "no" \]

P ⊆ NP
Linear feasibility \(\exists x \text{ st. } Ax \leq b ? \) is in P

Optimization → Decision:
\[\exists x \text{ st. } f(x) \leq t \text{ and } g(x) \leq 0 \]

Then search on \(x \)
\[x_1 > 0 \quad x_1 \leq 2 \quad x_1 \leq q \quad x_1 \leq 8 \ldots \]
Can learn \(x \) by asking about its bits.
All this is in NP, if \(f \) and \(g \) poly time computable.
“Algorithm” is a bit vague. Program is more precise. Turing machines formalize this. We will use logic circuits.

\[NP \text{ contains very hard problems} \]

\begin{itemize}
 \item Factoring.
 \item Break every public-key crypto scheme.
 \item Design anything given specs.
 \item Prove any theorem, as long as proof is not too long.
\end{itemize}

How do we prove something is \(NP \)-hard?

\textbf{Reductions.}

A \textit{Karp reduction from} \(Y \) to \(Z \) is a polynomial time algorithm \(A \) s.t.
\[
g \in Y \iff A(g) \in Z
\]

\(A \) transforms problem \(Y \) into problem \(Z \)

Given \(A \) and a Ptime algorithm for \(Z \), can solve \(Y \) in Ptime.

If \(Y \) is hard, then \(Z \) must also be hard.
A **Cook** reduction from Y to Z is a polynomial time algorithm A that decides if $y \in Y$
using an oracle for Z that decides membership in Z
in constant time.

Can solve Y given a subroutine for Z

Y is polynomial-time reducible to Z
if there exists a Cook reduction from Y to Z.
Karp reductions are Cook reductions,
and always use Karp reductions
(For all known decision problems in NP
with $Y \leq_P Z$, is a Karp reduction)

Z is NP-hard if $Y \in NP$, $Y \leq_P Z$.

Still seems like a lot to show,
NP-complete problems make this manageable.

Z is NP-complete (NPC)
if $Z \in NP$ and Z is NP-hard.
To show \(X \) is \(\text{NP-hard} \), just show \(Z \leq_p X \)
for some \(\text{NP-hard} \) \(Z \).

Then \(U \in \text{NP} \), \(Y \leq_p Z \) and \(Z \leq_p X \Rightarrow Y \leq_p X \)
\(\Rightarrow X \) is \(\text{NP-hard} \)

Once we know one such \(Z \), always work from it
and never have to write \(U \in \text{NP} \) again.

Theorem Circuit-Satisfiability (C-SAT) is \(\text{NP-complete} \).

Problem: given a logic circuit with one output,
is there an input that makes the output true?

Example

\[
\begin{align*}
\text{AND} & \quad \text{NOT} \\
\text{AND} & \quad \text{OR} \\
\text{AND} & \\
\text{AND} & \\
\end{align*}
\]

A binary boolean circuit has gates numbered 1,..., \(k \)
\(\text{s.t.} \) each is either

a. an input \((\text{True} \ (\text{False} \ \bar{I}/0) \)

b. the negation \((\text{NOT}) \) of a lower numbered gate
c. the AND or OR of two lower numbered gates.

Gate \(k \) is the output.

WOLOG inputs are gates 1 through \(n \), and \(k \geq n \).
Observation: can view every gate g_j as a function of the inputs. If all these equations are satisfied, $y_j = g_j(x_1, x_n)$, for all j. $g_j(x_1, x_n)$
Why \(\text{C-SAT} \) is \(\text{NP} \)-complete:

\(\text{C-SAT} \in \text{NP} \): given an input can evaluate every gate. \(\checkmark \)

\(\text{C-SAT} \) is \(\text{NP} \)-hard because (roughly) for every algorithm \(A \) that runs in time \(T(n) \) on inputs of size \(n \),

for every \(n \) there is a circuit \(C_n \) with \(\leq O((T(n)+n)^2) \) gates s.t.

\(C_n(x) = A(x) \) for all \(x \in \{0,1\}^n \)

Anything a \(\text{ptime} \) algorithm can do a polynomial size circuit can, too.

Now, want to prove \(\Sigma_0^P \text{-SPE} \) is \(\text{NP} \)-complete and \(\text{SPE} \) is \(\text{NP} \)-hard.

We already argued \(\Sigma_0^P \text{-SPE} \in \text{NP} \).

Now need to prove \(\text{C-SAT} \leq_p \Sigma_0^P \text{-SPE} \)

Let \(\Phi \) be an input to \(\text{C-SAT} \). That is a circuit.

We need to translate into an instance of \(\Sigma_0^P \text{-SPE} \)

Let \(g_1, \ldots, g_k \) be gates in \(\Phi \)

\(g_1, \ldots, g_n \) are inputs \(x_1, \ldots, x_n \)
Variables will \(Y_1, \ldots, Y_k \)

- For \(k-n+1 \) equations
 - Force \(Y_j = g_j(Y_1, \ldots, Y_n) \)

 \[g_j = \text{NOT}(g_i) \quad Y_j = 1 - Y_i \quad Y_j + Y_i = 0 \]

 \[g_j = \text{AND}(g_h, g_i) \quad Y_j = Y_h \cdot Y_i \quad Y_j - Y_h Y_i = 0 \]

 \[\text{OR}(g_h, g_i) \quad Y_j = Y_h + Y_i - Y_h Y_i \]

For output \(Y_k = 1 \quad Y_k = 0 \)

If all \(g \)s satisfied, and \(Y_1, Y_n \in \{0, 1\} \)

then \(Y_k = g_k(Y_1, \ldots, Y_n) \)

If \(\exists \; x_1, \ldots, x_n \) s.t. \(g_k(x_1, \ldots, x_k) = 1 \)

then \(\exists \; Y_1, \ldots, Y_n \) that satisfy all equations

\[Y_j = g_j(x_1, \ldots, x_k) \quad Y_i = x_i \quad 1 \leq i \leq n \]

And conversely if \(Y_1, \ldots, Y_k \) sat all \(g \)s

then \(g(Y_1, \ldots, Y_n) = 1, \; g \in \text{C-SAT} \)

Equations are quadratic and each has at most 3 terms, and coeffs in \(\{-1, 0, 1\} \)
Thus \(\exists_{0,1}^1 \text{SPE} \leq_P \text{SPE} \)

so \(\text{SPE} \) \(\text{NP} \)-hard

Proof: same eqns, add \(x_i (\neg x_i) = 0, \forall i \)

only if \(x \in \exists_{0,1}^1 \).