Mutline: How to solve most conver optimization problems, IPL. Polynomial time. Convex problems we can solve in polynomial time. min f(x) s.t. s(x)=0, f,g convex $\exists \lambda \geq 0$ st. $h_{\lambda}(x) = f(x) + \lambda g(x)$ global with of 4, (4) is solution Bat which 2 ? >= O gust min f Low just ming X2 be sol to ha (2) OLLEON f(x) sets pren and s(x) smaller billion y search on &? g(+1)=0 out hope for -2=g(x)=0 (1-t)f(x) + tg(x) search on $t \in [0,1]$ ~ $f(x) + \frac{t}{1+} g(x) \qquad \lambda = \frac{t}{1+}$

$$f(H) - \varepsilon \sum_{z=1}^{k} \log(-g_{z}(H))$$

 t Barrier

Short with
$$\mathcal{L}$$

decrease $\mathcal{L} = \frac{1}{2} \text{ or } \mathcal{L}(-\frac{1}{16})$
 X_{2t} find X_{2t+1} start working from X_{2t} .
Usually only need ligh arrange when $\mathcal{E} \rightarrow 0$
Usually use Nowton's Method, ust gradents.
Min F(A) a Taylor apport to F
swall of
 $F(x+\delta) \approx F(A+ OF(A)T) + \frac{1}{2}\delta^{T}(OF(A)T)$
 T
 $Hessian...$
 $S = -(D^{2}F(A)^{-1} \nabla F(A))$
Usually so to $F(x+t\delta)$ some t
thermanetar solves LPs in polynomial time.
Solve b very small \mathcal{E} , and can then round to
exact solution.
Lenoreland Energs $x \in K_{\delta}$ \mathbb{R}_{t-1}^{*} S_{t}^{n}

Polynomial Time.
input size
$$N$$
. poly time always permons
at most $\leq O(N^c)$
for some fixed constant c (c=2 or 3, c=6)

Gaussian Elin n-by-number
$$N=n^2 \# s$$
.
ren true $\leq O(n^3) = O(N^{3/2})$

Add two to bit #5, time
$$\leq O(b)$$
.
Comparison $\leq O(b)$.
Mattiplying to bit #5 time $\leq O(b \lg b)$

$$X_{0} = 3$$

for $\tilde{\iota}$ in 1 for
 $\chi_{\tilde{\iota}} = \chi_{\tilde{\iota}-1}^{2}$
 $\chi_{n} = 3^{2^{n}}$ need $\Theta(2^{n})$ tits to write chow.

LU factorization is poly time, even when count bits.

once & small enough, can round to a solution

Contin solution has poly in the impair see.

True berause true to Ax=6

Use rationals. Write imports as
$$T/q$$
,
 P and q are integer.
of bits to write $P = 1+2Tig_{2}p_{1}^{2}$ bits
 $size(p) = # bits used to write D
 $size(p) = # bits to write x.$
 $L = T/q$ size(A) = $size(P) + size(q)$
 $P_{1-} P_{1}$ integer
 $size(TTPi) \leq \sum_{i} size(R)$
 $T \log TTPi = \sum_{i} size(R)$
 $T \log TTPi = \sum_{i} size(R)$
 $rationals$
 $size(TTqi) \leq \sum_{i} size(Xi)$ $\lambda i = Pi/q_{i}$
 $Z \times i = (\sum_{i} Pi Tt q_{i})$
 Tq_{i}
 $size(TTqi) \leq \sum size(Qi)$
 $\leq size(2pi) + size(Ttqi)$
 $n - uechon (x_{1-} x_{1}) = size(n) + \sum_{i} size(Xi)$$

Len be n-by-n notive A
size
$$(\det(A) \leq 2 \cdot \operatorname{size}(A))$$

 $\det = \sum_{penstr} (-1)^{\operatorname{size}(\pi)} \prod_{i=1}^{n} A(i, \pi(i))$
 $A(i, j) = \operatorname{Pij}(\operatorname{qr}_{i,j})$
 $\det = \operatorname{P(q)} \quad q \in \operatorname{T(qr_{i,j})}$
 $\det(A) \leq \prod (1 + \operatorname{Pr_{i,j}})$
 $\operatorname{size} \ d \leq 2 \leq \operatorname{see}(\operatorname{Pr_{i,j}})$
 $\operatorname{e}^{i}q_{i}^{2}$

Len
$$A_{x=t}$$
, $size(A) \leq 4n (size(A) + size(b))$
(romer's rule says $A(\bar{i}) = \frac{\det(A\bar{i})}{\det(A)}$
 $A\bar{i} = A$, but it rol replaced by b.
 $size(A(\bar{i})) \leq 2(size(A) + (size(A) + size(b)))$
 $\leq 4n(size(A) + size(b))$

