
Table of Contents
1 Forwards mode automatic differentiation
2 Finite Differencing

Forwards mode automatic differentiation
We define a data structure for dual numbers. The following code is poor Julia style (as it fixes data types
unnecessarily), but it is more transparent. This part is modeled after the notes by David Sanders at
https://mitmath.github.io/18337/lecture8/automatic_differentiation
(https://mitmath.github.io/18337/lecture8/automatic_differentiation)

In [1]:

struct Dual
 val::Float64
 deriv::Float64
end

This is to create the variable . It's derivative in is

In [2]:

Var(x::Number) = Dual(x, 1.0)

Now, we overload the fundamental operations. For simplicity, I will only overload the ones we need for this
example (and maybe a few others).

In [3]:

import Base: +, *, -, /, exp

x x 1

Out[2]:

Var (generic function with 1 method)

https://mitmath.github.io/18337/lecture8/automatic_differentiation

In [4]:

+(f::Dual, g::Dual) = Dual(f.val + g.val, f.deriv + g.deriv)
+(f::Dual, x::Number) = Dual(f.val + x, f.deriv)
+(x::Number, f::Dual) = f + x

-(f::Dual, g::Dual) = Dual(f.val - g.val, f.deriv - g.deriv)

exp(f::Dual) = Dual(exp(f.val), exp(f.val)*f.deriv)

*(f::Dual, g::Dual) = Dual(f.val * g.val, f.val*g.deriv + f.deriv*g.val)
*(x::Number, f::Dual) = Dual(x * f.val, x* f.deriv)

/(f::Dual, g::Dual) = Dual(f.val / g.val, (f.deriv*g.val - f.val*g.deriv) / (g.v
al)^2)

This is the function , evalauted at . Afterwards we define .

In [5]:

x2 = 2*Var(1.0)

In [6]:

x3 = 3*Var(1.0)

This should be , so its derivative should be . Recall that we are evaluating at .

In [8]:

x2*x3

Let's try the expression from class.

2x x = 1 3x

6x2 12x x = 1

Out[4]:

/ (generic function with 116 methods)

Out[5]:

Dual(2.0, 2.0)

Out[6]:

Dual(3.0, 3.0)

Out[8]:

Dual(6.0, 12.0)

In [9]:

F(x) = exp(x*x - x) / x

Here is the evaluation at a=2.0, both the value and the gradient.

In [10]:

a = 2.0
dF = F(Var(a))

To check if that gradient is correct, we can test by using a small . Following the analysis in the
recommended reading, and the next section of this notebook, we try around the square root of machine
precision.

In [11]:

a = 2.0
del = 1e-8
F(a), F(a+del), (F(a+del) - F(a)) / del

That is very close. Let's see in how many digits they agree.

In [19]:

dF.deriv - (F(a+del) - F(a)) / del

You may be wondering which is more accurate: the code or the finite difference?

To check, we will use high precision floats.

δ
δ

Out[9]:

F (generic function with 1 method)

Out[10]:

Dual(3.694528049465325, 9.236320123663312)

Out[11]:

(3.694528049465325, 3.6945281418285267, 9.23632015314979)

Out[19]:

-2.948647903622259e-8

In [12]:

A = BigFloat("2")
Del = BigFloat("1e-30")
(F(A+Del) - F(A)) / Del

In [13]:

(F(A+Del) - F(A)) / Del - dF.deriv

We see that the forward differentiation gives the right answer.

Finite Differencing
The following is a demonstration of how the choice of effects the accuracy of derivative estimations.

Note that we can find out the machine precision:

In [21]:

u = eps(1.0)

In [22]:

1 - u

In [29]:

1 - u / 4 == 1

δ

Out[12]:

9.236320123663312784038034325734461510685622094702893119747800004273
028992111742

Out[13]:

1.107628385827214206421879469750952893119747800004273028992111741961
458733212561e-15

Out[21]:

2.220446049250313e-16

Out[22]:

0.9999999999999998

Out[29]:

true

Let's try a very simple function, whose derivative we know.

In [30]:

f(x) = x^2 / 2

In [31]:

f(2)

The derivative is just x itself.

Let's see what differencing gives.

In [33]:

δ = 1e-8

In [36]:

(f(1+δ) - f(1)) / δ

We now evaluate f at an arbitrary x, and loop over various choices for . This will enable. Us to see how
the choice of impacts accuracy.

In [39]:

x = 1.0

delta
delta

Out[30]:

f (generic function with 1 method)

Out[31]:

2.0

Out[33]:

1.0e-8

Out[36]:

0.999999993922529

Out[39]:

1.0

In [40]:

for i in 1:16
 δ = 10.0^(-i)
 err = 1 - (f(x+δ) - f(x)) / δ
 println("At δ = $(δ) error is $(err)")
end

So, we should choose , which is the square root of machine precision.

Let's repeat with a better formula.

In [43]:

δ = 1e-8
(f(x+δ) - f(x-δ)) / (2δ)

δ = 1e − 8

At δ = 0.1 error is -0.05000000000000093
At δ = 0.01 error is -0.0050000000000003375
At δ = 0.001 error is -0.0004999999998487326
At δ = 0.0001 error is -4.999999958599233e-5
At δ = 1.0e-5 error is -5.000006964905879e-6
At δ = 1.0e-6 error is -4.999621836532242e-7
At δ = 1.0e-7 error is -5.0543903284960834e-8
At δ = 1.0e-8 error is 6.07747097092215e-9
At δ = 1.0e-9 error is -8.274037099909037e-8
At δ = 1.0e-10 error is -8.274037099909037e-8
At δ = 1.0e-11 error is -8.274037099909037e-8
At δ = 1.0e-12 error is -8.890058234101161e-5
At δ = 1.0e-13 error is 0.0007992778373591136
At δ = 1.0e-14 error is 0.0007992778373591136
At δ = 1.0e-15 error is -0.11022302462515654
At δ = 1.0e-16 error is 1.0

Out[43]:

0.9999999966980866

In [44]:

for i in 1:16
 δ = 10.0^(-i)
 err = 1 - (f(x+δ) - f(x-δ)) / (2δ)
 println("At δ = $(δ) error is $(err)")
end

That was too good, because the function is quadratic. Let's try another for which we know the derivative,
and a more interesting .

In [46]:

f2(x) = exp(x)

x

At δ = 0.1 error is -2.220446049250313e-16
At δ = 0.01 error is -8.881784197001252e-16
At δ = 0.001 error is 8.237854842718662e-14
At δ = 0.0001 error is 3.8768988019910466e-13
At δ = 1.0e-5 error is -1.000088900582341e-12
At δ = 1.0e-6 error is -1.000088900582341e-12
At δ = 1.0e-7 error is -2.8755664516211255e-11
At δ = 1.0e-8 error is 3.3019134093592584e-9
At δ = 1.0e-9 error is -2.7229219767832546e-8
At δ = 1.0e-10 error is -8.274037099909037e-8
At δ = 1.0e-11 error is -8.274037099909037e-8
At δ = 1.0e-12 error is -3.3389431109753787e-5
At δ = 1.0e-13 error is 0.00024416632504653535
At δ = 1.0e-14 error is 0.0007992778373591136
At δ = 1.0e-15 error is -0.05471187339389871
At δ = 1.0e-16 error is 0.44488848768742173

Out[46]:

f2 (generic function with 1 method)

In [48]:

x = 3.14
for i in 1:16
 δ = 10.0^(-i)
 err = f2(x) - (f2(x+δ) - f2(x-δ)) / (2δ)
 println("At δ = $(δ) error is $(err)")
end

So, the best choice of is around 1e-5, or the cube root of machine precision.

In []:

δ

At δ = 0.1 error is -0.03852570257168253
At δ = 0.01 error is -0.00038506637248048037
At δ = 0.001 error is -3.850640965197272e-6
At δ = 0.0001 error is -3.8564976989619026e-8
At δ = 1.0e-5 error is -5.864642105279927e-10
At δ = 1.0e-6 error is -1.8299175508218468e-9
At δ = 1.0e-7 error is 3.9026289755383914e-8
At δ = 1.0e-8 error is 1.2784413172539644e-7
At δ = 1.0e-9 error is -2.181419759494929e-6
At δ = 1.0e-10 error is 1.3712939193055718e-6
At δ = 1.0e-11 error is -0.00014073725323271447
At δ = 1.0e-12 error is -0.002982908196273115
At δ = 1.0e-13 error is 0.011227946518928889
At δ = 1.0e-14 error is -0.3440434213611212
At δ = 1.0e-15 error is 1.7875847859191794
At δ = 1.0e-16 error is 23.103866858722185

