Linear Programming \& Convex Sets.
An $L P$ has variablex $x \in \mathbb{R}^{d}$,
an objective function $\max c^{\top} x$, specified $b_{y} c \in \mathbb{R}^{d}$ subject to m constraints $a_{i}^{\top} x \leq b i$, where $a_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}_{1}$ for $1 \leq i \leq m$.

We typically collect the a_{i} into an m-by-d matrix, A, and the b_{i} into an m-vector, b, and withe
$A x \leq b$, where this means the inequality holds in every coordinate:
$x \leq y$ iff for all $i x(i) \leq y(i)$.
We will see many forms of linear programs.
If want $a^{\top} x \geq b$, write it as $(-a)^{\top} x \leq-b$.
If wart $a^{\top} x=b$, write it as $a^{\top} x \leq b$
and $(-a)^{\top} x \leq-b$

The set $\{x: A x \leq b\}$ is a polyhedron.
In particalon, it is convex.
we will spend most of this lector cenderstanding convex sets.

Def $C \subseteq \mathbb{R}^{n}$ is convex if for all $x, y \in C$ and all $0 \leq t \leq 1, t x \in(1-t) y \in C$.
That is, the line segment from x to y is in C.

Not Convex

Examples
A subspace : $\{x: A x=0\}$

$$
A x=0 \text { and } A_{1}=0 \Rightarrow A(t x+(1-t) y)=0
$$

An affine space: $\{x=A x=b\}$
$A x=b$ and $A y=b \Rightarrow$

$$
A(t x+(1-t) y)=t A x+(1-t) A y=t b+(1-t) b=b
$$

A line segment: $\{x: a \leq x \leq b\}, a, b \in \mathbb{R}$
An open line sequent: $\{x=a<x<b\}, a, b \in \mathbb{R}$
Positive reals: $x>0$
A halfspace: $x \in \mathbb{R}^{d}$ sit. $a^{T} x \leq b$

$$
\begin{aligned}
a^{\top}(t x+(1-t) y) & =t a^{\top} x+(1-t) a^{\top} y \\
& \leq t b+(1-t) b=b
\end{aligned}
$$

An open halfspace: $x \in \mathbb{R}^{d}$ sit. $a^{\top} x<b$

A norm ball: $\{x:\|x\| \leq 1\}$, for any norm $\|\cdot\|$
Let $B(x, r)$ be the ball of radius T around x

$$
=\left\{y:\|x-y\|_{2} \leq r\right\}
$$

Some topology
For $S \subseteq \mathbb{R}^{d}, x$ is in the interior of S if $\exists \varepsilon>0$ st. $B(x, \varepsilon) \subseteq S$

$$
E_{x}:
$$

x is on the boundary of S if $\forall \varepsilon>0$, $B(x, \varepsilon)$ contains points in S and not in S
If $s=\{x: 0<x \leqslant 1\}$, The boundary $=\{0,1\}$ $I \in S$ but $O \notin S$
S is closed if boundary $(S) \subseteq S$
S is open if $S=$ interior (S)
e.g. $\{x=0<x<1\} \quad \forall \varepsilon<\frac{1}{2}, \quad B(\varepsilon, \varepsilon / 2) \subseteq S$
S is bounded if $\exists r$ st. $S \subseteq B(0, r)$.
A halfspace is not bounded
$S \subseteq \mathbb{R}^{d}$ is compact if it is closed and bounded.
Might say what it means later

Intersections: if C_{1} and C_{2} are convex, so is $C_{1} \cap C_{2}$

The empty set is convex, as is a singleton.

A polyhedron: $x: A x \leq b$.
Unions DONOT preserve convexity

$C_{1} \cup C_{2}$ not necessarily convex

Given $x_{1}, \ldots, x_{k} \in \mathbb{R}^{d}$, a convex combination of x_{1}, \ldots, x_{k} is a point $x=\sum_{i} t_{i} x_{i}$
where $\sum_{i} t_{i}=1$ and $t \geq 0$.
The convex hull, written CH $\left(x_{1} . . x_{k}\right)$ is the set of all convex combinations

$$
\left\{\sum_{i} t_{i} x_{i}: t \geq 0,1^{\top} t=1\right\}
$$

This is always convex.
proof If

$$
\begin{array}{lll}
y=\sum r_{i} x_{i} & r=0 & 1^{\top} r=1 \\
z=\sum s_{i} x_{i} & s \geq 0 & 1^{\top} s=1
\end{array}
$$

and $t \in[0,1]$

$$
t y+(1-t) z=\sum u_{i} x_{i}
$$

with $u_{i}=t \tau_{i}+(1-t) s_{i}$

Examples

We say x_{0}, \ldots, x_{1} are affinely independent if $x_{1}-x_{0, \ldots}, x_{k}-x_{0}$ are linearly independent. Is equivalent to $\binom{x_{0}}{1}, \ldots,\binom{x_{k}}{1}$ being independent.

If x_{0}, \ldots, x_{t} are coffinely independent then $\operatorname{CH}\left(x_{0, \ldots} x_{1}\right)$ is a simplex.

The standard simplex in \mathbb{R}^{d} is x s.t. $x \geq 0$

$$
1^{\top} x \leq 1
$$

The probability simplex in \mathbb{R}^{d} is x st. $x \geq 0$ $1^{\top} x=1$.

Dan's Favorite LP:
given $x_{1}, \ldots, x_{m} \in \mathbb{R}^{d}$ sH. $O \in C H\left(x_{1}, \ldots, x_{m}\right)$
and $c \in \mathbb{R}^{d}, \quad \max \alpha$

$$
\text { st. } \alpha c \in C H\left(x_{1}, \ldots, x_{m}\right)
$$

Separating Hyperplane Thu 1
If C and D are disjoint closed convex sets and C is compact, then exists a hyperplane that separates them.
That is, t sit. $\forall x \in C$ and $y \in D \quad t^{\top} x<t^{\top} y$.

if not convex.

Fact If f is continuous and C is compact, $\exists x \in C$ sit. $f(y) \geq f(x) \quad \forall y \in C$.
"achieves its minimum"
Lem If $x^{\top} y<0$ then for all $0<\varepsilon<\frac{\|y\|^{2}}{-x^{\top} y}$ $\|x+\varepsilon y\|_{2}^{2}<\|x\|_{2}^{2}$ 。

Proof $\|x+\varepsilon y\|_{2}^{2}=\|+\|^{2}+\varepsilon x^{\top} y+\varepsilon^{2}\|y\|^{2}$
This is $<\|x\|_{2}^{2}$ if $\varepsilon x^{\top} y+\varepsilon^{2}\|y\|^{2}<0$

$$
\begin{aligned}
& \Leftrightarrow x^{2} y+\varepsilon\|y\|^{2}<0 \quad(\varepsilon>0) \\
& \Leftrightarrow \varepsilon \leq\|y\|^{2} /\left(-x^{\top} y\right)
\end{aligned}
$$

proof of Thu 1
Let $c \in C$ and $d \in D$ minimize $\|c-d\|$ $\exists C \in C$ that minimizes dist (C, D) because C compact. To prove is a d, look in $d \cap B(c, \operatorname{dist}(c, D))$, which is also compact.
As C and D are disjoint, $\|c-d\| \neq 0$.

Let $a=d-c_{0}$

$$
\begin{aligned}
& a^{T} c=d^{\top} c-\|c\|_{2}^{2} \\
& a^{T} d=\|d\|_{2}^{2}-d^{T} c
\end{aligned}
$$

Claim $\forall x \in C$, $a^{\top} x \leq a^{\top} C$ and $\forall x \in D, a^{\top} x \geq a^{\top} d$
$\left\{a^{T} c \neq a^{\top} d\right.$ because $a^{\top} d-a^{\top} c=\|\left(d-c \|_{2}^{2}>0\right.$.
proof. let $x \in C$. So, $\forall t \in[0,1] \quad t_{x}+(1-t) c \in C$

$$
c^{\prime \prime}+t(x-c)
$$

As $\operatorname{dist}(c+t(x-c), d) \geq \operatorname{dist}(c, d)$ for all $t \in[0,1]$,

$$
\|(c-d)+t(x-c)\| \geq\|c-d\|
$$

$$
\begin{aligned}
\text { Lem } 1 & \Rightarrow(x-c)^{\top}(c-d) \geq 0 \\
& \Rightarrow(x-c)^{\top} a \leq 0 \\
& \Rightarrow x^{\top} a \leq c^{\top} a
\end{aligned}
$$

The case of D is similar.

Supporting Hyperplane Theorem:

For all convex C and $a \in$ boundary (C), $\exists t \neq 0$ such that $\forall x \in C, t^{\top} x \leq t^{\top} a$.Hyperplane through a with C on one side.
$H=\left\{x: t^{\top} x=t^{\top} a\right\}$ is the supporting hyperplane at a

Proof idea:
For each $\varepsilon>0$, let $a_{\varepsilon} \in B(a, \varepsilon)$ but $a_{\varepsilon} \notin C$. Is a hyperplane that separates a_{ε} from C. Take a limit of these.

If there is time, are last convex set:
Positive Semidefinite Matrices:
$A \in S_{t}^{n}$ if A is $n \times n$, symmetric, and for all $x \quad x^{\top} A x \geq 0$.

If $A \in S_{+}^{n}$, can prove it by writing $A=L L^{+}$the Cholesty Factorization.

If A is symmetric, but $A \notin S_{+1}^{n}$
let $A=V \Omega V^{\top}$ be spectral decomposition ad $\lambda_{n}<0$. A hyperplane separating A from S_{t}^{n} is given by $\left\{\right.$ symmetric $\left.X: v_{n}^{\top} X v_{n}=0\right\}$
$v_{n}^{\top} X v_{n} \geq 0$ for $X \in S_{t}^{n}$. $v_{n}^{\top} A v_{n}=\lambda_{n}<0$, And is a hyperplane because

$$
v^{\top} X_{v}=\sum_{1 \leq i, j \leq n} X(i, j) v(i) v(j) \text { is linear in } X .
$$

