$$X \in Y$$
 iff for all i $X(i) \in Y(i)$.

We will see many forms of linear programs,
If want
$$ax \ge b$$
, write it as $(-a)^T x \le -b$.
If want $a^T x = b$, write it as $a^T x \le b$
and $(-a)^T x \le -b$

Def $C \subseteq \mathbb{R}^n$ is convex if for all $X, Y \in C$ and all $0 \le t \le 1$, $t \times \in (1-t) Y \in C$. That is, the line segment from $\times \Rightarrow Y$ is in C.

Examples

A subspace: $\{x: Ax = 0\}$ Ax = 0 and $A_1 = 0 \Rightarrow A(tx + (1 - t)y) = 0$. An affine space: $\{x: Ax = b\}$ Ax = t and $Ay = b \Rightarrow$ A(tx + (1 - t)y) = tAx + (1 - t)Ay = tb + (1 - t)b = b. A line segment: $\{x: a \le x \le b\}$, a, b $\in \mathbb{R}$ An open line segment: $\{x: a \le x \le b\}$, a, b $\in \mathbb{R}$ An open line segment: $\{x > 0$ A halfspace: $x \in \mathbb{R}^d$ s.t. $a^Tx \le b$ $a^T(tx + (1 - t)y) = ta^Tx + (1 - t)a^Ty$ $\le tb + (1 - t)b = b$ An open halfspace: $x \in \mathbb{R}^d$ s.t. $a^Tx < b$

A norm ball:
$$\{x: \|x\| \le 1\}$$
, for any norm $\|\cdot\|$
let $B(x,r)$ be the ball of radius r around x
 $= \{x: \|x-y\|_{2} \le r\}$

Given $X_{1,...,1} X_{E} \in \mathbb{R}^{d}$, a <u>convex combination</u> of $X_{1,...,1} X_{E}$ is a point $X = \sum_{i} t_{i} \times i$ where $\sum_{i} t_{i} = 1$ and $t \ge 0$. The convex hull, written $CH(X_{1,...} X_{E})$ is the set of all convex combinations $\{\sum_{i} t_{i} \times i : t \ge 0, 1^{T} t \ge 1\}$ This is always convex.

^

We say $X_{0,...,X_{k}}$ are <u>affinely independent</u> if $X_{1}-X_{0,...,X_{k}}-X_{0}$ are linearly independent. Is equivalent to $\begin{pmatrix} X_{0} \\ 1 \end{pmatrix}_{1...,\binom{N_{k}}{1}}$ being independent.

If $x_{0,...,X_{E}}$ are affinely independent then $(H(x_{0,...,X_{E}})$ is a simplex. The standard simplex in $(\mathbb{R}^{d} \text{ is } x \text{ s.t. } x \ge 0)$ $1^{T}x \le 1$

The probability simplet in IRd is x s.t. x20 $(^{T}x = 1)$

Dan's Favorite LP: given $X_{1,...,} X_m \in \mathbb{R}^d$ s.t. $\mathcal{O} \in CH(X_{1,...,} X_m)$ and CERd, max x st. $dC \in CH(X_{1,..,}X_{m})$ XZ ×۱ 0 25

Separating Hyperplane Thin 1
If C and D are disjoint closed convex sets
and C is compact, then exists a hyperplane
that separates them.
That is,
$$\pm$$
 s.t. HxeC and yED $t^T x \perp t^T y$.
 C D if not convex.
 T but convex.

$$\frac{\text{lem If } x^{T}y < 0 \text{ then for all } 0 < \varepsilon < \frac{\|\|\eta\|^{2}}{-x^{T}y}$$

$$\frac{\|x + \varepsilon_{\gamma}\|\|_{2}^{2} < \|x\|_{2}^{2}}{\sqrt{\frac{x^{T}y^{T}}{2}}}$$

$$\frac{\text{proof}}{\text{This is } \times \| x \|_{2}^{2}} = \| x \|_{2}^{2} + \varepsilon x^{T}y + \varepsilon^{2} \| y \|_{2}^{2}}$$

$$\frac{\text{This is } \times \| x \|_{2}^{2} \text{ if } \varepsilon x^{T}y + \varepsilon^{2} \| y \|_{2}^{2} < 0$$

$$\stackrel{(\varepsilon > 0)}{=} \times x^{T}y + \varepsilon \| y \|_{2}^{2} < 0 \quad (\varepsilon > 0)$$

$$\stackrel{(\varepsilon > 0)}{=} \xi \in \| y \|_{2}^{2} (-x^{T}y)$$

prod of the 1
Let
$$c \in c$$
 and $d \in D$ minimize $|(c-d)|$
 $\exists c \in C$ that minimizes $dist(c, 0)$ because C compact.
To prove is a d , look in $d \cap B(c, dist(c, 0))$,
which is also compact.
As C and D are $disjoint$, $||c-d|| \neq 0$.
Let $a = d - c_{\bullet}$
 $a^{T}c = d^{T}c - ||c||_{2}^{2}$
 $a^{T}d = ||d||_{2}^{2} - d^{T}c$

Claim UxeC, atx = atc and UxeD, atx=atd

$$\begin{cases} a^{T}c \pm a^{T}d \quad because \quad a^{T}d - a^{T}c = \left\| d - c \right\|_{2}^{2} > 0, \\ p \cdot d = x \in C. \\ So, \quad \forall t \in Conj \quad tx + (t+t)c \in C \\ c & +t(x-c) \\ As \quad dist(c+t(x-q_{1}d) \geq dist(c,d) \quad for all \quad t \in Conj, \\ \| (c-d) + t(x-c) \| \geq \| c-d \| \\ lem 1 \quad = > (x-c)^{T}(c-d) \geq 0 \\ \quad = > (x-c)^{T}a \leq 0 \\ \quad = > x Ta \leq c Ta \\ The case \quad d \quad D \quad is \quad similar. \end{cases}$$

Supporting Hyperplane Theorem:

For all convex C and a toundary (C),
3 t=0 such that
$$\forall x \in C, \ t T x \leq t T a$$
.
Hyperplane through a
with C on one side.

H = {x: tix = tia} is the supporting hyperplane at q

If A is symmetric, but
$$A \notin S_{\pm,1}^{h}$$

let A = V_N V^T be spectral decomposition and $\lambda_n < 0$.
A hyperplane separating A from S_{\pm}^{n} is given by
 $\{ \text{ symmetric } X : v_n^T X v_n = 0 \}$
 $v_n^T X v_n^T \ge 0$ for $X \in S_{\pm}^{n}$. $v_n^T A v_n = \lambda_n < 0$,
And is a hyperplane because

$$v^{T}Xv = \sum_{\substack{i \leq i,j \leq n}} X(i,j) v(i) v(j)$$
 is linear in X.