Linear Programming & Convex Sets.

An LP has variables $x \in \mathbb{R}^d$, an objective function $\max c^T x$, specified by $c \in \mathbb{R}^d$, subject to m constraints $a_i^T x \leq b_i$, where $a_i \in \mathbb{R}^d$, $b_i \in \mathbb{R}$, for $1 \leq i \leq m$.

We typically collect the a_i into an m-by-d matrix A, and the b_i into an m-vector b, and write

$$Ax \leq b,$$

where this means the inequality holds in every coordinate:

$$x \leq y \iff \text{for all } i \ x(i) \leq y(i).$$

We will see many forms of linear programs.

If want $a^T x = b$, write it as $(-a)^T x \leq b$.

If want $a^T x \leq b$, write it as $a^T x \leq b$ and $(-a)^T x \leq -b$

The set $\{x : Ax \leq b\}$ is a polyhedron.

In particular, it is convex.

We will spend most of this lecture understanding convex sets.
Def: \(C \subseteq \mathbb{R}^n \) is convex if for all \(x, y \in C \) and all \(0 \leq t \leq 1 \), \(tx + (1-t)y \in C \).

That is, the line segment from \(x \) to \(y \) is in \(C \).

Examples

A subspace: \(\{ x : Ax = 0 \} \)

\[A\!x = 0 \text{ and } A\!y = 0 \implies A(tx + (1-t)y) = 0. \]

An affine space: \(\{ x : Ax = b \} \)

\[A\!x = b \text{ and } A\!y = b \implies A(tx + (1-t)y) = tA\!x + (1-t)A\!y = tb + (1-t)b = b. \]

A line segment: \(\{ x : a \leq x \leq b \} \), \(a, b \in \mathbb{R} \)

An open line segment: \(\{ x : a < x < b \} \), \(a, b \in \mathbb{R} \)

Positive reals: \(x > 0 \)

A halfspace: \(x \in \mathbb{R}^d \) s.t. \(a^\top x \leq b \)

\[a^\top(tx + (1-t)y) = ta^\top x + (1-t)a^\top y \]

\[\leq tb + (1-t)b = b \]

An open halfspace: \(x \in \mathbb{R}^d \) s.t. \(a^\top x < b \)
A norm ball: $\{x : \|x\| \leq 1\}$, for any norm $\|\cdot\|$

Let $B(x, r)$ be the ball of radius r around x

$$= \{y : \|x - y\| \leq r\}$$

Some topology

For $S \subseteq \mathbb{R}^d$, x is in the interior of S if $\exists \varepsilon > 0$ s.t. $B(x, \varepsilon) \subseteq S$

Ex:

x is on the boundary of S if $\forall \varepsilon > 0$, $B(x, \varepsilon)$ contains points in S and not in S

If $S = \{x : 0 < x < 1\}$, the boundary = $\{0, 1\}$

S is closed if boundary $(S) \subseteq S$

S is open if $S = \text{interior}(S)$

e.g. $\{x : 0 < x < 1\}$ with $\varepsilon \leq \frac{1}{2}$, $B(x, \varepsilon) \subseteq S$

S is bounded if $\exists r$ s.t. $S \subseteq B(0, r)$.

A halfspace is not bounded.
$S \subseteq \mathbb{R}^d$ is **compact** if it is closed and bounded.

Might say what it means later.

Intersections: if C_1 and C_2 are convex, so is $C_1 \cap C_2$.

The empty set is convex, as is a singleton.

A polyhedron: $x \colon Ax \leq b$.

Unions **DO NOT** preserve convexity.

Given $x_1, \ldots, x_k \in \mathbb{R}^d$, a **convex combination** of x_1, \ldots, x_k is a point $x = \sum_i t_i x_i$ where $\sum_i t_i = 1$ and $t_i \geq 0$.

The convex hull, written $CH(x_1, \ldots, x_k)$ is the set of all convex combinations

\[
\{ \sum_i t_i x_i : t_i \geq 0, \sum_i t_i = 1 \}
\]

This is always convex.
proof If \(y = \sum \gamma_i x_i \) \(\gamma \geq 0 \) \(1^\top \gamma = 1 \)
\[
z = \sum s_i x_i \quad s \geq 0 \quad 1^\top s = 1
\]
and \(t \in [0,1] \)
\[
t y + (1-t) z = \sum u_i x_i
\]
with \(u_i = t \gamma_i + (1-t) s_i \).

Examples

Simplices

We say \(x_0, \ldots, x_k \) are **affinely independent**
if \(x_i - x_0, \ldots, x_k - x_0 \) are linearly independent.
Is equivalent to \((x_0)_{1 \leq i \leq k} \) being independent.

If \(x_0, \ldots, x_k \) are affinely independent
then \(\mathbf{C}^k(x_0, \ldots, x_k) \) is a simplex.

The standard simplex in \(\mathbb{R}^d \) is \(x \) s.t. \(x \geq 0 \)
\[
1^\top x = 1
\]
The probability simplex in \mathbb{R}^d is x s.t. $x \geq 0$ and $1^T x = 1$.

Dan's Favorite LP:

given $x_1, \ldots, x_m \in \mathbb{R}^d$ s.t. $0 \in CH(x_1, \ldots, x_m)$
and $c \in \mathbb{R}^d$, $\max c$ s.t. $d \in CH(x_i, \ldots, x_m)$

Separating Hyperplane Thm 1

If C and D are disjoint closed convex sets and C is compact, then exists a hyperplane that separates them.

That is, t s.t. $x \in C$ and $y \in D$ if not convex.

If not convex.

C | D
Fact: If \(f \) is continuous and \(C \) is compact,
\[\exists x \in C \text{ s.t. } f(y) = f(x) \quad \forall y \in C. \]

"achieves its minimum"

Lemma: If \(x^T y < 0 \) then for all \(0 < \varepsilon < \frac{\|y\|^2}{-x^T y} \)
\[\|x + \varepsilon y\|_2^2 < \|x\|_2^2. \]

\[\begin{align*}
\text{proof:} \quad \|x + \varepsilon y\|_2^2 &= \|x\|^2 + 2x^T y + \varepsilon^2 \|y\|^2 \\
&< \|x\|^2 \quad \text{if} \quad x^T y + \varepsilon \|y\|^2 < 0 \\
&\iff \quad x^T y + \varepsilon \|y\|^2 < 0 \quad (\varepsilon > 0) \\
&\iff \quad \varepsilon < \frac{\|y\|^2}{-x^T y}
\end{align*} \]

Proof of Thm 1:

Let \(c \in C \) and \(d \in D \) minimize \(\|c - d\| \)

\(\exists \ c \in C \) that minimizes \(\text{dist}(c, d) \) because \(C \) compact.

To prove is \(a \), look in \(d \cap B(C, \text{dist}(c, d)) \),

which is also compact.

As \(C \) and \(D \) are disjoint, \(\|c - d\| \neq 0. \)

Let \(a = d - c. \)
\[\begin{align*}
a^T c &= d^T c - \|c\|_2^2 \\
a^T d &= \|d\|_2^2 - d^T c
\end{align*} \]

Claim \(\forall x \in C, a^T x = a^T c \) and \(\forall x \in D, a^T x = a^T d \)
\(\alpha^T c + \alpha^T d \) because \(\alpha^T d - \alpha^T c = \|d - c\|_2^2 > 0. \)

Proof: Let \(x \in C \). So, \(\alpha + (1-t)c \in C \)
\[c + t(x-c) \]
As \(\text{dist}(C + t(x-c), d) = \text{dist}(C, d) \) for all \(t \in [0, 1] \),
\[\|c - d\| + t(x-c) \| = \|c - d\| \]

Lemma:

\[\Rightarrow (x - c)^T (c - d) \geq 0 \]
\[\Rightarrow (x - c)^T \alpha \leq 0 \]
\[\Rightarrow x^T \alpha \leq c^T \alpha \]

The case of \(D \) is similar.

Supporting Hyperplane Theorem:

For all convex \(C \) and \(a \in \text{boundary}(C) \),
exists \(t \neq 0 \) such that \(\forall x \in C, \ t^T x \leq t^T a \).

Hyperplane through \(a \) with \(C \) on one side.

\(H = \{ x : t^T x = t^T a \} \) is the supporting hyperplane at \(a \).
Proof idea:
For each $\varepsilon > 0$, let $a_\varepsilon \in B(q, \varepsilon)$ but $a_\varepsilon \notin C$. Is a hyperplane that separates a_ε from C.
Take a limit of these.

If there is time, one last convex set:
Positive Semidefinite Matrices:
$A \in S^+_n$ if A is non-symmetric and
for all $x \in \mathbb{R}^n A x = 0$.

If $A \in S^+_n$, can prove it by writing $A = LL^T$ — the Cholesky Factorization.

If A is symmetric, but $A \notin S^+_n$,
let $A = V \Lambda V^T$ be spectral decomposition and $\lambda_n < 0$.
A hyperplane separating A from S^+_n is given by
\[\{ \text{symmetric } X : \mu^T X \nu = 0 \} \]
\[\mu^T X \nu \geq 0 \text{ for } X \in S^+_n. \quad \mu^T A \mu = \lambda_n < 0, \]
And is a hyperplane because
\[\mu^T X \nu = \sum_{i \leq j} X(i, j) \mu(i) \nu(j) \] is linear in X.