
 

Recall The SUD of an ntd matrix A nzd

is A US VT where UE IRHhas orthonormal column
5 is dxD nonnegativediagonal with entries of Zod

is a dtd orthogonal matrix

they are pairwise orthogonal unit vectors
and look like the first d columns of an orthogonalmatrix

Claim Lel Ui Ud and Nc Nd be the columns of
U and U Then A Foi ai uit

proof
Letei be elementary unit vector in dimension i
So e eat all zeros but with a 1 in the it entry

S Foie ie it USUT U Ioi e E VT

Ioi Ue i eEV'T
Ioi deil Veit
Oi Ui UI

Nole not unique can replace a by Ui andmighthave oi oi.ci

Recall Avi a ai

because F ofUjutj Vi Oj Uj tojni Oi Ui

and similarly Atui oui



Existence of SUD follows from
Thespectralthearem
Every square symmetric matrix A can be written
A VIVT where V is an orthogonal matrixof eigenvectors

and I is a diagonal matrix of eigenvalues di kn
The ith column of V wi satisfies Ave dive

We won't prove this but we te view part
If A is symmetric Arrow Ace_µu and XFM
then UTU _O

Pref Consider UTAN UTXU XIN and as symmetric
UTATN µuTN So either µ d or IN O

proof SUD exists for simplicity when A is non singular
leet Xi XD and Ni Nd be eiguals trees of ATA
Xi 20 because NIATANI Ni Xi Ni Xi NINI di

and AviffAnil ItAvilla
And U Nd are orthonormal
For I sit hi O let Ui Avi and Oi T.li
We then have Atai YI ATAwi Fi Ni
we will show that these ai are eigenvectors of AAT
AATai AffAlvi Xi Avi nice

Thus the Ui are eigenvectors of AAT of eigenvalue Xi
and are thus orthogonal



g

set S µ og so USUT has the tightform

To finish let F Fi Ui Ui

To see that A I recall that a matrix is determined

by its action on a basis and we have

Ivi Avi Fi Ui for all i

Geometric view of USUT as an operator
Wx rotates x

S Vix their scales its coordinates
USUTx rotates it again
If apply to unit sphere UT does not change

5 scales to ellipse
U rotate it

s TT U
i

T
U

Recall u argyay HAHx



Generalization Vi Arg max HA H
IKKI
XI Ui i i

proofe Ni is Orth to Nc Ni I Ad IIAwill o

and every x Orth to u Ni e maps to a UI

whose coordinates are scaled by 0oz zon

Two related meanings of the SUD
L A partial sum Ae Ef E oiuini is the tank t

T

matrix that is closest to A

We care because a lot of data is low rank e noise

Think of movie preferences with n people and K movies
A Pim how much personp likes movie on

Might measure c properties of a movie Uma NmCt

and person p's weighting of those properties upCdc 6pct
and hope ACam uptil Until

2 If view rows of A as vectors AI ant
Ui ar span the tank r subspace that comes
closest to these vectors



Projection let S E IRD be a subspace of dimension on
and let u Ur be an orthonormal basis of S

For any X C Rd we want I org my distCx y

By the Pythagorean theorem we know that
I x is orthogonal to the vectors in S

This implies I 2 Ui Uit because is in S and

for all j uj I II Ujai Keith left as ajar to

So cej I H O Uj is t to I X



The approach we took last lecture amounts to computing

an orthonormal basis Uni ad of the space orthogonal to S
and setting E x II ai UEx
This is the same because

II ai faith EuiceE X HUTx I

where U iced

For t I wart line in Rdthrough 0 minimizing sum of squares
Ayof distances to it

as

sagas

Specify a line by span u where u is a unit vector

The point on the line closest to ai is ice u

let Si ai Laia u so distance from ai to line is Hdill
We want to find the u that minimizes F Kdill

2

As Hoff Hair Cain Hall Haiti faita
this is equivalent to maximizing ECain KATHE

we proved in lect 4 that argonaut KATHIE U



theorem For any e a r dimensional subspace 5
that minimizes I distlai.SI is span Uy art

proot Induction on T Did 5 1

Let s minimize this and let we be a unit Uec

in S orthogonal to a Ut r exists by dimCSI T
et w we be an orthonormal basis of S
The projection of Ai Cento S is II Wj Wj

By assumption and Pythagoras S maximizes
1

I KProjscailll I Iof I Hwjlk

By induction HAuilliz KAWHI

SO we may Assume Wi wi i Ui Ut l

As Ut Arg Max KANI and we LU Ui i
11th I
XI U Nr l

HAw.lk e Halli IIHAwjllie.IE lAujlE



See BHK Thin 3.5 for a related proof that
A minimizes 11A Ark and HA Ai ke
over tart t matrices

Computing the SVD

Iteratively first compute u and we

then recursively work on A aunt

To compute Ui and w
start with random unital

Compute the 0,0 wi that minimizes HA oiaivittle

I Hai o u u Cillt
By previous O u Ata

0Now iterate Compute best a for v and best vifoui

After t iterations get vector uT CAAJa
HCAATtaill

This converges Write UP Zai Ui with ExE 1

So CAAT u Zai OEai and CAATtap Idiot Ui

If 0 oz the oft term dominates for target
If a Ez what does it mean to compute Ue



To analyze need to know 2 is unlikely to be too
small Can prove this life last lecture
a random unit vector is unlikely to be
very small in any coordinate




