Recall The SUD of an nucl matrix,
$$A$$
, $(n \ge 1)$
is $A = USV^T$, where $U \in \mathbb{R}^{nucl}$ has orthonormal columns,
 S is did nonnegative diagonal with entries $\sigma_1 \ge \cdots \ge \sigma_d$
 V is a did orthogonal matrix.

*: they are pairwise extregenal unit vectors,
and look like the first 2 columns of an orthogonal matrix.
Claim let
$$u_{1,...,}u_{d}$$
 and $v_{...}v_{d}$ be the columns of
 U and V . Then $A = \sum_{i} \sigma_{i} \sigma_{i} v_{i}^{T}$
proof
let e_{i} be elementary unit vector in dimension i .
So, $e_{i}e_{i}^{T} = all$ zeros, but with a 1 in the (i,i) entry.
 $S = \sum_{i} \sigma_{i} e_{i}e_{i}^{T} \Longrightarrow USV^{T} = U(\sum_{i} \sigma_{i}e_{i}e_{i}^{T})V^{T}$
 $= \sum_{i} \sigma_{i} (Ue_{i}e_{i}^{T}V^{T})$
 $= \sum_{i} \sigma_{i} (ue_{i})(ve_{i})^{T}$
 $= \sum_{i} \sigma_{i} u_{i} v_{i}^{T}$

Note: not unique: can replace u_i by $-u_i$, and might have $\sigma_i = \sigma_{i+1}$.

Recall
$$Av_i = \sigma_i u_i$$
,
 $because \left(\sum_{j} \sigma_j u_j v_j^T\right) v_i = \sum_{j} \sigma_j u_j \left(v_j^T v_i\right) = \sigma_i u_i$
and similarly $A^T u_i = \sigma v_i$

Existence of SUD follows from <u>The Spectral Theorem</u> Every square symmetric matrix A can be written A = VANT where V is an orthogonal matrix of eigenvectors and A is a diagonal matrix of eigenvalues, A,..., An. The ith column of V, Vi, satisfies $Av_i = \lambda_i v_i$,

proof SUD exists: (for simplicity when A is non-singular)
Let
$$\lambda_{1,...,\lambda_d}$$
 and $\nu_{1,...,N_d}$ be eigenals (vecs of A^TA
 $\lambda_{\bar{i}} \ge 0$ because $\nu_{\bar{i}}^T A \nu_{\bar{i}} = \nu_{\bar{i}}^T \lambda_{\bar{i}} \nu_{\bar{i}} = \lambda_{\bar{i}} \nu_{\bar{i}} \nu_{\bar{i}} = \lambda_{\bar{i}}$,
and $= (A \nu_{\bar{i}})^T (A \nu_{\bar{i}}) = ||A \nu_{\bar{i}}||_2^2$

And, $V_1...N_d$ are orthonormal. For i st. $\lambda_i \ge 0$, let $u_i = \int_{\lambda_i}^{\infty} A v_i$, and $\sigma_i = \int_{\lambda_i}^{\infty} W_i$ We then have $A^T u_i = \int_{\lambda_i}^{\infty} A^T A v_i = \int_{\lambda_i}^{\infty} v_i$ We will show that these u_i are eigenvectors of $A A^T$: $AA^T u_i = \int_{\lambda_i}^{\infty} A(A^T A)v_i = \int_{\lambda_i}^{\infty} \lambda_i A v_i = \lambda_i U_i$ Thus, the u_i are eigenvectors of AA^T of eigenvalue λ_i , and are thus orthogonal.

Set
$$S = \begin{pmatrix} J\lambda_i \\ J\lambda_n \end{pmatrix}$$
, so USU^T has the rightform.
To finish, let $\widetilde{A} = \sum_{i} J\lambda_i u_i v_i^T$
To see that $A = \widetilde{A}$, recall that a matrix is determined
by its action on a basis, and we have
 $\widetilde{A} v_i = Av_i = J\lambda_i u_i$ for all i

-

Recall v. = arg max ||Axll

Generalization: $V_{\tilde{z}} = \arg \max ||A_{\chi}||$ $||\chi||=1$ $\chi \perp V_{i_1\cdots i_j} V_{\tilde{z}-i_j}$

proof.
$$N_{\overline{i}}$$
 is onth to $N_{1...}N_{\overline{i}-1}$, and $||A_{Vi}||=\sigma_{\overline{i}}$
and every x onth to $N_{1...}N_{\overline{i}-1}$ maps to a $V_{\overline{i}}x$
whose coordinates are scaled by $\sigma_{\overline{i}} \ge \cdots \ge \sigma_{n}$

Two (related) meanings of the SUD:
1. A partial sum,
$$A_r \stackrel{\text{def}}{=} \sum_{\substack{i \leq r \\ i \leq r}} \sigma_i u_i N_i^T$$
, is the rank-r
matrix that is closest to A.
We case because a lot of data is low-rank + noise.
Think of movie preferences, with a people and k movies.
 $A(p,m) = how much person p likes movie m.$
Might measure r properties of a movie, $Vm(i),..., Vm(r)$
and person p's weighting of those properties $Up(i),..., Up(r)$,
 $circl hope A(p,m) \approx \sum_{\substack{i \leq r \\ i \leq r}} Up(i) Vm(i)$

2. If view rows of A as vectors, aim and Unin ur span the rank-r subspace that romes closert to these vectors. Projection: let $S \subseteq [\mathbb{R}^d]$ be a subspace of dimension rand let $\alpha_{1,...}, \alpha_r$ be an orthonormal basis of S, For $\alpha_{1,\gamma} \times E[\mathbb{R}^d]$, we want $\hat{X} = \alpha_{1,\gamma} \min_{y \in S} dist(x, y)$.

By the Pythagorean theorem, we know that $\hat{X} - X$ is orthogonal to the vectors in S

This implies
$$\hat{x} = \sum_{i=1}^{r} u_i (u_i^T x)$$
, because is in S and
for all j_i , $u_j^T \hat{x} = \sum_{i=1}^{r} u_i^T u_i (u_i^T x) = u_j^T x$ as $u_j^T u_i^T = \begin{cases} l \ l = j \\ 0 & 0 \\ 0 & 0 \end{cases}$.
So, $u_j^T (\hat{x} - x) = 0 \implies u_j$ is \perp to $\hat{x} - x$

The approach we took last lecture amounts to computing an arthonormal basis $u_{r+1,...}, u_d$ of the space orthogonal to S, and setting $\hat{x} = x - \sum_{\tilde{z}=r+1}^{n} u_{\tilde{z}} (u_{\tilde{z}}^T x)$

This is the same because

$$\sum_{i=1}^{n} u_i(u_i^{\mathsf{T}} x) = \left(\sum_{i} u_i u_i^{\mathsf{T}} \right) x = \mathcal{U} \mathcal{U}^{\mathsf{T}} x = \mathcal{I},$$

where $\mathcal{U} = \left(u_i^{\mathsf{L}}, \dots, u_d^{\mathsf{L}} \right)$

For
$$r=1$$
, wat line in \mathbb{R}^d through 0 minimizing sum of squares
of distances to it.

Specify a line by Span(a) where u is a unit vector.
The point on the line closest to a_i is $(a_i^T a) \cdot u$
let $S_i = a_i - (a_i^T a)u$, so distance from a_i to line is $||S_i||^2$
We want to find the u that minimizes $\sum_{i=1}^{n} ||d_i||^2$.

As $||S_i||^2 = ||a_i||^2 - (a_i^T u)^2 ||u||^2 = ||a_i||^2 - (a_i^T u)^2$,
this is equivalent to maximizing $\sum_{i=1}^{n} |a_i||^2 = u_i$

We proved in let 4 that $a_i = u_i$

Theorem For any
$$r_1 = a r$$
-dimensional subspace S
that minimizes $\sum_{i} dist(a_i, s)^2$ is $spon(u_{i,...}u_r)$
proof Induction on r . Did $r=1$.
Let s minimize this, and let w_r be a unit vec
in S or thogonal to $u_{i,...}(u_{r-1}, (exists br dim(s)=r))$
let $w_{i,...}w_r$ be an orthonormal basis of S .
The projection of a_i onto S is $\sum_{j=i}^{r} (a_i^T w_j) w_j$

By assumption, (and Pythagoros)
$$S$$
 maximizes
 $\sum_{i} ||Pni_{i}s(a_{i})||^{2} = \sum_{i} \sum_{j} (O_{i}^{T}\omega_{j})^{2} = \sum_{j=1}^{r} ||A\omega_{j}||_{2}^{2}$
By induction, $\sum_{j=1}^{r} ||Au_{j}||_{2}^{2} \ge \sum_{j=1}^{r-1} ||A\omega_{j}||_{2}^{2}$
So, we may assume $\omega_{i_{j}\cdots i_{r}}\omega_{r-1} = u_{i\cdots i_{r-1}}$.

As
$$U_r = \operatorname{cerg} \max \left\| A_X \right\|_2^2$$
, and $W_r \perp U_{1,..} U_{r-1}$
 $\| X \|_{r-1}$
 $X \perp V_{1} \cdot N_{r-1}$

$$\| (A w_r) \|_{2}^{2} \leq \| A u_r \|_{2}^{2} \implies \sum_{j=1}^{r} \| A w_j \|_{2}^{2} \leq \sum_{j=1}^{r} \| A u_j \|_{2}^{2}$$

What does it mean to compute u, and v, ?Are not unique if $\sigma_i = \sigma_2$. We really just want $\widetilde{A}_r = \sum_{i \leq r} \sigma_i u_i v_i^T$ s.t. $||A - \widetilde{A}_r||_F \in (1+\epsilon) \text{ optimal.}$

Iteratively: first compute
$$u$$
, and $w_{i,j}$.
then recursively work on $A - \sigma_i u_i w_i^T$

Focus on finding
$$\|x\|=1$$
 st. $\|Ax\|_{2} \ge (1-\varepsilon)\sigma_{1}$

Start with random unit
$$a_i^{\circ}$$
.
Compute the $\sigma_{i,j}^{\circ} v_{i}^{\circ}$ that minimizes $\|A - \sigma_{i}^{\circ} u_{i}v_{i}^{*}t\|_{F}$
 $= \sum_{i} \|a_{i} - \sigma_{i}u_{i}v_{i}(i)\|^{2}$
By previous, $\sigma_{i}v_{i} = A^{T}u_{i}$.
Now, iterate. Compute best u_{i}° for $v_{i,j}^{\circ}$ and best v_{i}° for u_{i}° .
After t iterations get vector $u_{i}^{t} = (AA^{T})u_{i}^{\circ}$.
 $\|(AA^{T})^{t}u_{i}^{\circ}\|$

This is the Power Method.
To understand it, let x be the initial reaction vector,
and write
$$x = \sum_{i} \alpha_{i} \alpha_{i}$$
, where $\alpha_{i} = \alpha_{i}^{T} x$, $\sum \alpha_{i}^{2} = 1$
So, $(AA^{T})\alpha_{i}^{\circ} = \sum \alpha_{i} \sigma_{i}^{2} \alpha_{i}$, and $(A\overline{AT})^{\dagger} \alpha_{i}^{\circ} = \sum \alpha_{i} \sigma_{i}^{2} \alpha_{i}$
 $= > \text{ big } \sigma_{i}$ dominate.

Choose to so that
$$\sigma_{\mathbf{F}} \ge (1 - \varepsilon) \sigma_{\mathbf{F}} > \sigma_{\mathbf{F}}$$

let $S = span(u_1, ..., u_{\mathbf{E}})$.

Theorem If $t \ge \frac{1}{2\epsilon} \ln(\frac{1}{2\alpha_i})$, then $dist(S, u_i^t) \le \epsilon$ <u>proof</u>. let initial random unit vec be x_{0_i}

and
$$X_t = (AA^T) \times_0$$
, $U_t^t = \frac{1}{||X_t||}$.

$$\| X_t \|_2^2 = \| \sum_{i} \phi_i \sigma_i^{2t} u_i \|_2^2 = \phi_i^2 \sigma_i^{4t}$$

2. dist $(s, u_i^{t})^2 = \left\| \sum_{i>k} u_i \cdot u_i^T \chi_t / \|\chi_t\| \right\|^2$ $= \frac{1}{\|\chi_t\|^2} \sum_{i>k} \left(d_i \sigma_i^{2t} \right)^2 \leq \frac{1}{\|\chi_t\|^2} \left(1 - \epsilon \right)^{4t} \sigma_i^{4t} \sum_{i>k} d_i^2$ $\leq \frac{1}{\|\chi_t\|^2} \left((-\epsilon)^{4t} \sigma_i^{4t} \leq \frac{(1-\epsilon)^{4t}}{d_i^2} \right)^2$ So, $dist(s, u_i^{t}) \leq \frac{(1-\epsilon)^{2t}}{d_i} \leq \frac{exp(-2\epsilon t)}{d_i} \leq \epsilon$ Note: d, is unlitely to be small: the chance a random unit vector is close to a hyperplane is life the chance for an appropriately scaled Gaussian,

Len (see len B.l in Santar-Spielman-Teng '06) For $\beta \in l$ and a random unit vector X, $\Pr[|u,TX| \in \frac{\beta}{\sqrt{d}}] \leq 2\beta$