Geometric view of
$$Ax=b$$
. Let $a_1 \dots a_n$ be rows of A :
 $\begin{pmatrix} -a_1 \dots \\ \vdots \\ -a_n^T \dots \end{pmatrix}$ So $Ax=b \leq 2$ $a_1^T x=b_1$ for all i .

 $a_i^T x = b_i$ is the equation defining a hyperplane in \mathbb{R}^n . Some people call it an affine subspace.

kaczmarz: if there is an i s.t. $a_i^T \times \neq b_i$, move \times to the closest \hat{x} s.t. $a_i^T \hat{x} = b_i$.



Obtain by
$$\hat{x} = x - xa_i$$
, for some x
Solve for x by $a_i^T \hat{x} = b_i = a_i^T (x - xa_i) = b_i$
 $= x a_i^T a_i = a_i^T x - b_i = x = \frac{a_i^T x - b_i}{\|a_i\|^2}$

$$\frac{C(ain (not necessary, but useful)}{x - sai is closest point to x on Hi.}$$

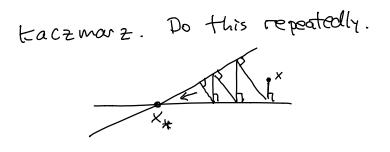
$$\frac{proof}{1} = clist(x, x - srai) = l|sail|_{2} = \frac{|aix - bi|}{|ai||_{2}} \cdot l|ail|_{2}$$

$$= \frac{|aix - bi|}{|ai||_{2}} \quad (i)$$

Whereas if $x - \delta \in Hi$, $a_i^T (x - \delta) = b_i \implies a_i^T x - b_i = a_i^T \delta$

$$= \left| \begin{array}{c} \alpha_{i}^{T} \times - \mathfrak{b}_{i} \right| \leq \left| \left| \alpha_{i} \right| \right|_{2} \\ \end{array} \right| \\ = \left| \begin{array}{c} \alpha_{i}^{T} \times - \mathfrak{b}_{i} \\ \hline \left| \left| \alpha_{i} \right| \right| \right|_{2} \\ \end{array} \right| \\ \leq \left| \left| \left| \delta \right| \right|_{2} \\ \end{array} \right| \\$$

proof 2: Cillaill is unit normal to Hi



Let Xy be solution to AXX = b. How much does $||X - X \times ||_2$ decrease?

Claim
$$||x - X_{*}||_{2}^{2} = ||x_{*} - \hat{x}||_{2}^{2} + ||x - \hat{x}||_{2}^{2}$$

by Pythagorean theorem because $X_{*} - \hat{x} \perp x - \hat{x}$
Here is an algebraic proof: $x - \hat{x} = \delta a_{\hat{v}}$,
whereas $\delta a_{\hat{v}}^{T}(X_{*} - \hat{x}) = \delta (b_{\hat{v}} - b_{\hat{v}}) = 0$

50, (i) above implies

$$||\hat{\chi} - \chi_{\star}||_{2}^{2} = ||\chi - \chi_{\star}||_{2}^{2} - \frac{(a_{i}^{T} \times -b_{i})^{2}}{||a_{i}||_{2}^{2}}$$

So, set prob of i to
$$P_{\overline{i}} = \frac{||\alpha_{i}||_{2}^{2}}{||A||_{p}^{2}}$$

Then
$$\mathbb{E}\left[\|X-X_{*}\|_{2}^{2}-\|X-X_{*}\|_{2}^{2}\right]$$

$$=\sum_{i}^{2}P_{i}\frac{(a_{i}^{T}X-b)^{2}}{||a_{i}||_{2}^{2}}=\sum_{i}^{2}\frac{||a_{i}||_{2}^{2}}{||A||_{F}}\frac{(a_{i}^{T}X-a_{i}^{T}X_{*})^{2}}{||a_{i}||_{2}^{2}}$$

$$=\frac{1}{||A||_{F}^{2}}\sum_{i}^{2}\left(a_{i}^{T}X-a_{i}^{T}X_{*}\right)^{2}=\frac{1}{||A||_{F}^{2}}\left\||A(X-X_{*})||_{2}^{2}$$

$$\geq\frac{\sigma_{n}(A)}{||A||_{F}^{2}}\left(||X-X_{*}||_{2}^{2}-\frac{1}{||A||_{F}^{2}}\left\||X-X_{*}||_{2}^{2}\right)$$

Implies
$$\mathbb{E}\left[\left\|\hat{\mathbf{X}}-\mathbf{X}_{*}\right\|_{2}^{2}\right] \leq \left(\left\|-\frac{1}{\left(\|\mathbf{A}\|_{F}^{2}\right)\left\|\mathbf{A}^{*}\right\|_{2}^{2}}\right)\left\|\mathbf{X}-\mathbf{X}_{*}\right\|_{2}^{2}\right]$$

If start at
$$X_0 = 0$$
, and X_t is the iterate,

$$\mathbb{E}\left[\|X_t - X_*\|_2^2 \right] \leq \left(\left| - \frac{1}{\|A\|_F^2 \|A^{-}\|_2^2} \right)^{t} \|X_*\|_2^2 \right]$$

Time: when pick
$$\tilde{i}$$
, need to compute $Q_{s}^{T}X$
and subtract d $Q_{\tilde{s}}$ from X ,
which testes time $\theta(n_{\tilde{i}})$,
where $n_{\tilde{i}} = \#$ non-zero entries in $Q_{\tilde{i}}$.

Let's compare this to GD and its improvement CG each step requires matt by A, which takes time Zn;

and
$$(GT)$$
: $(|A(x-x_{*})||_{2}^{2} \leq (1 - \frac{1}{(|A||_{2}^{2} \cdot (|A^{-1}||_{2}^{2})})^{t} ||x_{*}||_{2}^{2}$
 $CG \geq \leq 2(1 - \frac{2}{(|A||_{2}||A^{-1}||_{2})})^{2t} ||x_{*}||_{2}^{2}$

Son CG needs fewer iterations, but each takes longer. Sometimes kacemare is a win.

Understanding perturbed matrices.
Consider
$$B = A + \epsilon R$$
 where R has Normal / Gaussian
independent $N(o_i)$ entries
Recall x is $N(o_i o^2) - Normal, mean 0, warriance o^2$
has density $p(x) = \frac{1}{\sigma 52\pi r} e^{-x^2/2\sigma^2}$
If x is $N(o_i)$, ex is $N(o_i \epsilon^2)$.

And if
$$x(i),..., x(n)$$
 are independent $N(0, i)$,
then $t^{T}x = \sum_{i} t(i) x(i)$ is $N(0, ||t||_{2}^{2})$

Is unlikely
$$K(B)$$
 is big
 $\Pr[K(A+zR) \ge (||A||_2 + zSn)/\lambda] \le Jn\lambda/2$
 $||A+zR||_2$ is opproximately $||A||_2$, $plus \ge Sn$.
 $\sigma_n(A+zR)$ is unlikely to be small.
For $B = \begin{pmatrix} b_1 & b_n \\ 1 & 0 \end{pmatrix}$ define
 $height(i) = dist(bi, span(b_0: j \neq i))$
 $= t^T b_i$ where t is the unit normal to $span(b_0: j \neq i)$
 $i.e. t^T b_j = 0$ for $j \neq i$, $||t|| = 1$

Geometry Len1
$$\exists i$$
 s.t. height $(i) \leq \operatorname{Snon}(B)$

proof let
$$v$$
 be s.t. $||v||_2 = 1$ and $||Bv||_2 = 0_7$
Let \tilde{v} be s.t. $||v||_2 = ||v||_{\infty}$, so $|v(\tilde{v})| = 1/37$.

$$\begin{split} \mathcal{N}_{0\omega} & \left| \left| \begin{array}{c} \sum_{j} \nu(j) \, b_{j} \end{array}\right| \right| = \sigma_{n} \\ & \left| \left| \begin{array}{c} \sum_{j} \frac{\nu(j)}{\nu(i)} \, b_{j} \end{array}\right| \right| = \frac{\sigma_{n}}{\left| \nu(i) \right|} \leq \int n \, \sigma_{n} \\ & \int \left| \left| \begin{array}{c} \frac{1}{\nu(i)} & \frac{1}{\nu(i)} \right| \\ & \frac{1}{\mu} \\ & \left| \left| \begin{array}{c} b_{i} \end{array}\right| - \sum_{j \neq i} \frac{\nu(j)}{\nu(i)} \, b_{j} \end{array}\right| \right| \quad ad \quad \sum_{j \neq i} \frac{\nu(j)}{\nu(i)} \, b_{j} \in Span\left(\begin{array}{c} b_{j} \\ & j \\ & j \\ & j \\ \end{array}\right) \end{split}$$

Probability
$$lem^2$$
 for each i ,
 $Pr[height(i) \leq \lambda] \leq \sqrt{2}$

proof of lem Sample by for
$$j \neq i$$
. Having fixed these,
let t be the unit normal to span $(b_j:j \neq i)$
so height $(i) = t^T b_i$
 $b_i = a_i + \epsilon \tau_i$ so $\Pr[\text{height}(i) \leq \lambda] = \Pr[[t^T b_i] \leq \lambda]$
 $= \Pr[\epsilon t^T \tau_i \in [-t^T a_i - \lambda_i - t^T a_i + \lambda]]$
 $= \frac{1}{\sqrt{2\pi \epsilon}} \int_{-t^T a_i - \lambda}^{-t^T a_i + \lambda} dx \leq \frac{2\lambda}{\sqrt{2\pi \epsilon}} \leq \frac{\lambda}{\epsilon}$

Then
$$\Pr[O_n(B| \land \lambda] \le n^{3/2} \ \lambda/\epsilon]$$

proof lent =>
 $\Pr[O_n(B) \le \lambda] \le \Pr[\exists i \text{ s.t. height}(i) \le \ln \lambda]$
 $\le \sum \Pr[height(i) \le \ln \lambda]$
 i
 $\le \sum \int n \ \lambda/\epsilon$, by len 2
 i
 $\le n^{3/2} \ \lambda/\epsilon$

Note: Improved to 2.35 Jul/E in SSTOG and a tight Jul/E is BEMS'19

Plot it?