Gaussian Elimination & LU factorization.

Is how solve Ax=6 unless know something nice or horrible aboat A.

It is easy to solve equations in Δ matrices, so once we compute Land U, it is easy to solve equations in A.

"Easy": court Ops
where
$$f(u) \approx G(g(u))$$
 if $\exists c_1, c_2, no \text{ sit}$.
 $c_1g(u) \leq f(u) \in (2g(u))$ for all $n \geq n_0$

To compute Ax requires 2n2-n flops - floating point ops Think of O(n2) ops to include memory refs, branches, ck

Forward Substitution: solving
$$Lx = b$$

L looks like $\begin{pmatrix} L(1,1) & 0 & 0 & 0 \\ L(2,1) L(1,2) & 0 & - & 0 \\ L(n,1) & - & - & L(n,n) \end{pmatrix} \begin{pmatrix} x(1) \\ \vdots \\ x(n) \end{pmatrix} = \begin{pmatrix} b(1) \\ \vdots \\ b(n) \end{pmatrix}$
This says $L(1,1) \times (1) = b(1)$, so set $x(1) = b(1)/L(1,1)$
 $L(2,1) \times (1) + L(2,2) \times (2) = b(2)$, ubst if $L(1,1) = 0$
 S_{1} and we know $x(1)$, we can set
 $x(2) = \frac{1}{L(2,2)} (b(2) - L(2,1) \times (1))$
 $x(3) = \frac{1}{L(3,3)} (b(3) - L(3,1) \times (1) - L(3,2) \times (2))$
flops to compute $x(0) = 1$ ($x = 1$)
 $x(2) = 3$ ($x = 1$)
 $x(3) = 5$ ($x = - + *$)
 $x(3) = 5$ ($x = - + *$)
 $x(3) = 5$ ($x = - + *$)
 $x(n) = 2n - 1$ and $x = (2n - 1) - (2n - 1) +$
So if flops to compute $x = 1 + 3 + 5 + \cdots + 2n - 1 = n^{2}$
(from lat (educe) or $O(n^{2})$ ops
 O ne way to write this:

for i in 1 to 0

$$\begin{cases}
x(i) = b(i) \\
for j in 1 to (i-i) \\
(x(i) = x(i) - L(i,j) \times (j) \\
x(i) = x(i) / L(i,i)
\end{cases}$$

Another way to write this:

$$\begin{array}{l} x=b \\ \text{for } \tilde{v} \text{ in } 1 \text{ to } n \\ \left\{ \begin{array}{l} x(\tilde{v}) = x(\tilde{v}) / L(\tilde{v},\tilde{v}) \\ \text{for } \tilde{y} \text{ in } \tilde{v}(\tilde{v}) = n \\ (x(\tilde{y}) = x(\tilde{y}) - L(\tilde{v},\tilde{v}) x(\tilde{v}) \end{array} \right\} \end{array}$$

This code is an operator that multiplies by L-1

Backwards solve: solve
$$Ux = b$$

$$\begin{pmatrix} U(L_1) & U(L_2) & \cdots & U(L_1n) \\ 0 & U(2,2) & \cdots & U(2,n) \\ \vdots & & \vdots \\ 0 & \cdots & 0 & U(n,n) \end{pmatrix} \times = b$$

$$\vdots & \vdots & \vdots \\ 0 & \cdots & 0 & U(n,n) \end{pmatrix}$$
Scene thing but start with $x(n)$, so also n^2 flops
So, to solve $Ax = b$, solve $LUx = b$ by
I. Find $y = t$. $Ly = b$
2. Find $x = t + Ux = y$
 $= > LUx = Ly = b$
Total $\#$ flops = $2n^2$

Why do I call this easy? A has nº entries, so is time ~ #entres in A. the ideal.

Multiplying Ax uses 2n²-n flops, so is comparable to multiplication.

Answers are mostly numerics and then time (it takes longer) To start, let's ask "ally even compute L or U" Main goal: produce a sequence of operators $T_{1,...,}T_{k}$ so that $x = T_{1}(T_{2}(...(T_{k}(b)...))$ which write as $x = T_{1} \circ T_{2} \circ ... \circ T_{k}(b)$ $e_{1}g. T_{1} = L^{-1} T_{2} = U^{-1}$

Compating L: apply operations to A until it is upper Dor.
Elimination: mating entries of A zero.
I bea: gradually zero out entries of A witil is upper Dar.
in order, zero out
$$A(2,1) A(3,1),..., A(n,1)$$

 $A(3,2) A(1,2) \cdots A(n,2)$
 $A(n,n-1)$
Example: $A(2,1) = A(2,1) - A(1,1) \cdot \frac{A(2,1)}{A(1,1)}$
subtract $\frac{A(2,1)}{A(1,1)}$ trues first row from second.
To avoid changing A. let $M=A$, and modify M

Let
$$O_{i,j}^{c}$$
 be operation on a vector \mathbf{x}
that subtracts $c \cdot x t i 3$ from $x t i 3$
 $O_{i,j}^{c} (x) [t=] = \begin{cases} x t \in 3 & \text{if } t = \pm j \\ x t i 3 - c \times t i 3 \end{cases}$
 $O_{i,j}^{-c} \circ O_{i,j}^{c} \circ x = x$

Write
$$O_{i,j}^{c}$$
 as a matrix = $I - c E_{j,i}$,
where $E_{j,i}$ is zero except $E(j,i) = 1$
 $E(2,i) = \begin{pmatrix} 0 & 0 \\ i & 0 \end{pmatrix}$ $E_{j,i} \times = \times Ii3e_{j}$

Can apply to a matrix
$$M$$
 by applying to
each of its columns.
We begin with $M = O_{N2}^{M(n)N(m(n))}$ o M
Eliminate all entries in first column, except $M(n)$, by
for i in 2 to n
 $c = M(i,n)/M(n)$
 $M = O_{i,i}^{c}$ o M
In 2nd column, eliminate all entries in rows $3...n$
for i in 3 to n
 $c = M(i,2)/M(2,2)$
 $M = O_{2,i}^{c}$ o M
As $M(i,i) = 0$ for i>1 of this point,
none of those entries change.
Full alsorithm:
 $M = A$
For i in 1 to $n-1$
For j in i+1 to n (so $i>i)$

Example:
$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 3 & 5 & 5 \\ 0 & 9 & 6 & 8 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 3 & 5 & 5 \\ 0 & 9 & 6 & 8 \end{bmatrix}$$
If we store the Cinj, then can use them to solve

Is same as forward solve in L with
$$L(\hat{\imath},\hat{\imath})=1$$
 and $L(\hat{\jmath},\hat{\imath})=C\hat{\imath},\hat{\jmath}$

This is how we build L.
How many ops?
for i in 1 to n-1
for j in cell to n
apply
$$O_{nj}^{z}$$
 to M - but aly in cols it it to n
 $\tilde{T}(n-i)^{2} \approx \frac{1}{3}n^{3}$, so $O(n^{3})$ ops
it
 M_{r}^{z} (n-i)² $\approx \frac{1}{3}n^{3}$, so $O(n^{3})$ ops
it
 M_{r} not build L^{-1} ? Seens to take $O(n^{3})$ ops,
Is workeful and we do not need it.
 M_{r} to do when $L(1,i)=O$?
Pirot. Find to she $L(1,i)=O$?
Pirot. Find to she $L(1,i)=O$?
 Or_{1} swap rows to add i (virtually)
Instead of L, construct PL for a permetation matrix L.
A permetation matrix is a matrix P
Hat is all zeros except for one 1 in every
row and column.
For each i, let $\pi(i)$ to st. $P[i,\pi(i)] = 1$
 $Px = x(\pi(n), x(\pi(a), ..., x(\pi(n)),
a permetation of x.$

It is easy to mult a vector by P-
takes
$$\Theta(n)$$
 ops by using formula.
P is orthogonal, so $PTP = I \implies P^{-1} = P^{T}$
=> is easy to apply P^{-1} .

Example
$$A = \begin{bmatrix} 0 \\ i \end{bmatrix}$$
 compute LU for PTA
 $P = \begin{bmatrix} 0 \\ i \end{bmatrix}$ $P^{T}A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

But, this is not the only problem!
What if
$$A = \begin{bmatrix} \varepsilon & i \\ i & i \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ y_{\varepsilon} & 1 \end{bmatrix} = \begin{bmatrix} \varepsilon & 1 \\ 0 & 1 - y_{\varepsilon} \end{bmatrix}$$

If $\varepsilon < 10^{-16}$, rounding error gives $\tilde{U} = \begin{bmatrix} \varepsilon & i \\ 0 & -y_{\varepsilon} \end{bmatrix}$
and $\tilde{U} = \begin{bmatrix} \varepsilon & 1 \\ 1 & 0 \end{bmatrix}$ a very different matrix.