Gausstan Elimination \& $L U$ factorization.
Is how solve $A x=b$ unless know something nice or horrible about A.

For today's lecture, A is an $n-b y-n$ invertible matrix.
The LU factorization of A produces
a lower triangular (henceforth Δ ar matrix L, and an upper Δ ar matrix U such that $L U=A$.

1. Whence L?
2. Pivoting to avoid 0 .
3. Why L?

It is easy to solve equations in Δ matrices, so once we compute L and U, it is easy to solve equations in A.
"Easy": count ops
where $f(a) \approx \theta(g(n))$ if $\exists c_{1}, c_{2}$, no sit.

$$
c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}
$$

To compute $A x$ requires $2 n^{2}-n$ flops - floating point ops Think of $\theta\left(n^{2}\right)$ ops to include memory refs, branches, et

Forward Substitution: solving $L x=b$

$$
\begin{aligned}
& \text { Forward Substitution: looks like } \left.\left(\begin{array}{cccc}
L C(1,1) & 0 & 0 & \cdots \\
L(2,1) & L(, 2) & 0 & \cdots \\
\vdots \\
L(n, 1) & \cdots & L(n, n)
\end{array}\right)\left(\begin{array}{c}
x(1) \\
\vdots \\
x(n)
\end{array}\right)=\left(\begin{array}{c}
b(1) \\
\vdots \\
b(n)
\end{array}\right)\right)
\end{aligned}
$$

This says $L(1,1) \cdot x(1)=b(1)$, so set $x(1)=b(1) / L(1,1)$

$$
L(2,1) \times(1)+L(2,2) \times(2)=b(2)
$$

what if $L\left(c_{1},\right)=0$? is singular
so, once we know $x(1)$, we can set

$$
\begin{aligned}
& x(2)=\frac{1}{l(2,2)}(b(2)-L(2,1) \times(1)) \\
& x(3)=\frac{1}{L(3,3)}(b(3)-L(3,1) \times(1)-L(3,2) \times(2))
\end{aligned}
$$

\# flops to compute $x(1)=1$ (1)

$$
\begin{aligned}
& x(2)=3(1-*) \\
& x(3)=5 \quad(1-\cdots *) \\
& x(n)=2 n-1 \text { are } \backslash(2 n-1)-(2 n-1) *
\end{aligned}
$$

So, \#flops to compute $x=1+3+5+\cdots+2 n-1=n^{2}$
(from list lecture) or $\theta\left(n^{2}\right)$ ops

One way to write this:
for i in 1 to n

$$
x(i)=b(i)
$$

for j in 1 to $(i-1)$

$$
\begin{aligned}
& 1 x(i)=x(i)-L(i, j) x(j) \\
& x(i)=x(i) / L(i, i)
\end{aligned}
$$

Another way to write this:

$$
x=b
$$

keep On board
for i in 1 to n

$$
\left\{\begin{array}{l}
x(i)=x(i) / L(i, i) \\
\text { for } j \text { in } i+1 \text { to } n \\
\mid x(j)=x(j)-L(j, i) x(i)
\end{array}\right.
$$

This code is an operator that multiplies by L^{-1}

Backwards solve: solve $C l x=b$

$$
\left(\begin{array}{cccc}
u(1,1) & u(1,2) & \cdots & u(1, n) \\
0 & u(2,2) & \cdots & u(2, n) \\
\vdots & & & \vdots \\
0 & \cdots & 0 & u(n, n)
\end{array}\right) x=b
$$

Scone thing, but start with $x(n)$, so also n^{2} flops
So, to solve $A x=b$, solve $L u_{x}=b$ by

1. Find y st. $L_{y}=b$
2. Find x st. $U_{x}=y$

$$
\Rightarrow L u_{x}=L_{y}=b
$$

Total \#flops $=2 n^{2}$

Why do I call this easy?
A has n^{2} entries, so is time \sim \#entres in A. the ideal.

Maltiplying Ax uses $2 n^{2}-n$ flops, so is comparable to multiplication.

How do we get L and U ?
And, why not compute A^{-1}, or L^{-1} or U^{-1} ?
Answers are mostly nemerics and ten time (it takes (onger)
To start, let's ask "ally even coupute Lor U"
Main goal: produce a sequence of operators
T_{1}, \ldots, T_{k} so that $x=T_{1}\left(T_{2}\left(\cdots\left(T_{k}(b) \cdots\right)\right.\right.$
which write as $x=T_{1} \circ T_{2} \circ \ldots \circ T_{k}(b)$
e.g. $T_{1}=L^{-1} \quad T_{2}=U^{-1}$

Computing L: apply operations to A until it is upper Lar. Elimination: making entries of A zero.
Idea: gradually zero out entries of A cutil is upper Bar. in order, zero out $A(2,1) \quad A(3,1) \ldots, A(1,1)$
$A(3,2) \quad A(4,2) \cdots A(n, 2)$
$A(n, n-1)$
Example: $\quad A(2,:)=A(2,:)-A(1,:) \cdot \frac{A(2,1)}{A(1,1)}$ subtract $\frac{A(2,1)}{A(1,1)}$ ties first row from second.

To avoid changing A. let $M=A$, and modify M

Let $O_{i, j}^{c}$ be operation on a vector x that subtracts $c \cdot x[i]$ from $x[j]$

$$
\begin{aligned}
& O_{i v}^{c}(x)[k]=\left\{\begin{array}{l}
x[k] \text { if } k \neq j \\
x[j]-c x[i] \quad k=j
\end{array}\right. \\
& \mathcal{O}_{i j}^{-c} \cdot O_{i j}^{c} \circ x=x
\end{aligned}
$$

Write $O_{i, j}^{c}$ as a matrix $=I-c E_{j, i,}$,
where $E_{j, i}$ is zero except $E(j, i)=1$

$$
E(2,1)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad E_{j, i} x=x[i] e_{j}
$$

Can apply to a matrix M by applying to each of its columns.

We begin with $M=O_{1,2}^{\mu(2,1)(\mu(1,1)}$ o M
Eliminate all entries in first column, except $M(1,1), b_{y}$ for i in 2 to n

$$
\begin{aligned}
& c=M(i, 1) \mid M(1,1) \\
& M=O_{1, i}^{c} \quad \circ M
\end{aligned}
$$

Ir 2 nd column, eliminate all entries in rows $3 \ldots n$ for i in 3 to n

$$
\begin{aligned}
& C=M(i, 2) / M(2,2) \\
& M=O_{2, i}^{c} \cdot M
\end{aligned}
$$

As $M(i, 1)=0$ for $i>1$ at this point, none of those entries change.

Full alsorithm:

$$
M=A
$$

For i in 1 to $n-1$
For j in $i+1$ to $n \quad\left(\begin{array}{ll}50 & j\end{array}\right)$

$$
\begin{aligned}
& c_{i, j}=M(j, i) / M(i, i) \\
& M=O_{i, j}^{c_{i, j}} \circ M
\end{aligned}
$$

Example: $\left[\begin{array}{llll}2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8\end{array}\right] \rightarrow\left(\left[\begin{array}{llll}2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8\end{array}\right] \rightarrow\left(\left[\begin{array}{llll}2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 3 & 5 & 5 \\ 0 & 9 & 6 & 8\end{array}\right]\right.\right.$

$$
\rightarrow\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 2 \\
0 & 4 & 6 & 8
\end{array}\right] \rightarrow \cdots\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 2
\end{array}\right]=U
$$

If we stare the $C_{i, j}$, Than can use them to solve linear equations:

$$
O_{n-1, n}^{c_{n-1, n}} \cdots \cdot O_{1,2}^{c_{1,2}} \circ A=U
$$

So solve $A x=b$ by applying these operator to D_{1} giving $U_{x}=O_{n-1, n}^{c_{n-1, n}} \circ \cdots O_{1,2}^{c_{1,2}} \circ b$

Then solve for x.
As an algorithm this is for i in 1 to $n-1$
for j in $i+1$ to n

$$
b=O_{i, j}^{c_{i, j}} b \Leftrightarrow b[j]=b[j]-c_{i, j} b[i]
$$

Is same as forward solve in L with

$$
L(i, i)=1 \text { and } L(j, i)=C_{i}, j
$$

This is how we build L.
How may ops? for i in 1 to $n-1$
for j in $i+1$ to n
apply $O_{i j}^{c}$ to U - bat call in cols it to $\left.n\right]$

$$
\sum_{i=1}^{n-1}(n-i)^{2} \approx \frac{1}{3} n^{3} \text {, so } \Theta\left(n^{3}\right) \text { ops }
$$

Why not build L^{-1} ? Seems to take $\Theta\left(n^{3}\right)$ ops.
Is wasteful and we do not need it.
What to do when $L(i, i)=0$?
Pivot. Find k si. $l(k, i) \neq 0$, and
e eliminate entries in column i using $k^{\text {th }}$ row.
Or, swap rows k and i (virtually)
Instead of L_{1} construct $P L$ for a permutation matrix L.
A permutation matrix is a matrix P
that is all zeros except for one 1 in every
row and column.
For each i, let $\pi(i)$ be st. $P[i, \pi(i)]=1$
$P x=x(\pi(1)), x(\pi(2)), \ldots, x(\pi(n))$,
a permutation of x.

It is easy to mull a vector by p trees $\theta(n)$ ops by using formula.
P is orthogonal, so $P^{\top} P=I \Rightarrow P^{-1}=P^{\top}$ \Rightarrow is easy to reply P^{-1}.

We compute P dcering the algorithm, and go back and adjust $c_{i, j}$ at the end is more work if do it along the way.

Example $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ compute lu for $P^{\top} A$

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad P^{\top} A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

But, this is not the only problem!
What if $A=\left[\begin{array}{ll}\varepsilon & 1 \\ 1 & 1\end{array}\right] \quad L=\left[\begin{array}{cc}1 & 0 \\ 1 / \varepsilon & 1\end{array}\right] \quad U=\left[\begin{array}{ll}\varepsilon & 1 \\ 0 & 1-1 / \varepsilon\end{array}\right]$
If $\varepsilon<10^{-16}$, rounding error gives $\tilde{U}=\left[\begin{array}{cc}\varepsilon & 1 \\ 0 & -1 / \varepsilon\end{array}\right]$ and $L \tilde{U}=\left[\begin{array}{ll}\varepsilon & 1 \\ 1 & 0\end{array}\right]$ a very different matrix.

So, prov ot not just when O_{1} bat when small.
Try to keep L and U small.
A theorem of Wilkinson says if compare with precision u,

$$
\|A-\tilde{L} \tilde{u}\| \leq u \cdot \theta(\|\tilde{L}\| \cdot\|\tilde{u}\|)
$$

Is a good reason to think about L and U.

