Gaussian Elimination & LU factorization.

Is there how to solve \(Ax=b \) unless you know something nice or horrible about \(A \).

For today's lecture, \(A \) is an \(n \times n \) invertible matrix.

The LU factorization of \(A \) produces

a lower triangular (henceforth \(L \)) matrix \(L \), and an upper \(\Delta \) or matrix \(U \) such that \(LU = A \).

1. Whence \(L \)?
2. Pivoting to avoid \(0 \).
3. Why \(L \)?

It is easy to solve equations in \(\Delta \) matrices, so

once we compute \(L \) and \(U \), it is easy to solve equations in \(A \).

"Easy": count ops

where \(f(n) \approx \Theta(g(n)) \) if \(f = c_1 g + c_2 n^z \), no \(z \),

\(c_1 g(n) \leq f(n) \leq c_2 g(n) \) for all \(n \geq n_0 \).

To compute \(Ax \) requires \(2n^2 - n \) flops - floating point ops

Think of \(\Theta(n^2) \) ops to include memory ref, branches, etc.
Forward Substitution: solving $Lx = b$

L looks like

$$
\begin{pmatrix}
L(1,1) & 0 & 0 & \cdots & 0 \\
L(2,1) & L(2,2) & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
L(n,1) & \cdots & \cdots & L(n,n) & 0
\end{pmatrix}
\begin{pmatrix}
x(1) \\
x(2) \\
\vdots \\
x(n-1) \\
x(n)
\end{pmatrix}
=
\begin{pmatrix}
b(1) \\
b(2) \\
\vdots \\
b(n-1) \\
b(n)
\end{pmatrix}
$$

This says $L(i,i) \cdot x(i) = b(i)$, so set $x(i) = b(i)/L(i,i)$

$L(2,1) \cdot x(1) + L(2,2) \cdot x(2) = b(2)$,

so, once we know $x(i)$, we can set

$x(2) = \frac{1}{L(2,2)} \left(b(2) - L(2,1) \cdot x(1) \right)$

$x(3) = \frac{1}{L(3,3)} \left(b(3) - L(3,1) \cdot x(1) - L(3,2) \cdot x(2) \right)$

flops to compute $x(i)$: 1 (\checkmark)

$x(2) : 3 \text{ (\checkmark - \times)}$

$x(3) : 5 \text{ (\checkmark - - \times \times)}$

$x(n) : 2n-1 \text{ one } \backslash \ (2n-1) - \ (2n-1) \times$

So, # flops to compute $x = 1 + 3 + 5 + \cdots + 2n-1 = n^2$

(from 1st lecture) or $\Theta(n^2)$ ops

One way to write this:

```
for i in 1 to n
    \[ x(i) = b(i) \]
    for j in 1 to (i-1)
        \[ x(i) = x(i) - L(i,j) \cdot x(j) \]
    \[ x(i) = x(i) / L(i,i) \]
```
Another way to write this:

\[x = b \]
\[
\text{for } i \text{ in } 1 \text{ to } n
\]
\[
\begin{align*}
x(i) &= x(i) / L(i,i) \\
\text{for } j \text{ in } i+1 \text{ to } n
\end{align*}
\]
\[
\begin{align*}
x(j) &= x(j) - L(j,i) x(i)
\end{align*}
\]

This code is an operator that multiplies by \(L^{-1} \)

Backwards solve: solve \(Ux=b \)

\[
\begin{pmatrix}
U(1,1) & U(1,2) & \cdots & U(1,n) \\
0 & U(2,2) & \cdots & U(2,n) \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & U(n,n)
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
= b
\]

Some things but start with \(x(n) \), so also \(n^2 \) flops

So, to solve \(Ax=b \), solve \(LUx=b \) by

1. Find \(y \) s.t. \(Ly=b \)
2. Find \(x \) s.t. \(Ux=y \)

\[
\Rightarrow \quad LUx = Ly = b
\]

Total \# flops = \(2n^2 \)
Why do I call this easy?
A has n^2 entries, so is time $\sim \#$entries in A.
the ideal.

Multiplying Ax uses $2n^2 - n$ flops, so is comparable
to multiplication.

How do we get L and U?
And, why not compute A^{-1}, or L^{-1} or U^{-1}?

Answers are mostly numerics and run time (it takes longer)
To start, let’s ask “why even compute L or U”

Main goal: produce a sequence of operators
T_1, \ldots, T_k so that $x = T_1(T_2(\ldots(T_k b)\ldots))$
which write as $x = T_1 \circ T_2 \circ \ldots \circ T_k b$.

E.g. $T_1 = L^{-1}$, $T_2 = U^{-1}$.
Computing L: apply operations to A until it is upper Δ or.

Elimination: making entries of A zero.

Idea: gradually zero out entries of A until it is upper Δ or.

in order, zero out $A(2,1), A(3,1), \ldots, A(n,1)$

$A(3,2), A(4,2), \ldots, A(n,2)$

\ldots

$A(n, n-1)$

Example: $A(2,1) = A(2,1) - A(1,1) \cdot \frac{A(2,1)}{A(1,1)}$

subtract $\frac{A(2,1)}{A(1,1)}$ times first row from second.

To avoid changing A, let $M = A$, and modify M

Let O_{ij}^c be operation on a vector x

that subtracts $c \cdot x[i,j]$ from $x[i,j]$

$O_{ij}^c (x|\{k\}) = \begin{cases} x[k] & \text{if } k \neq j \\ x[i,j] - c \cdot x[i,j] & \text{if } k = j \end{cases}$

$O_{ij}^c \circ O_{ij}^c \circ x = x$

Write O_{ij}^c as a matrix $= I - cE_{j,i}$,

where $E_{j,i}$ is zero except $E(j,i) = 1$

$E(2,1) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

$E_{j,i} \cdot x = x[i,j] E_j$
Can apply to a matrix M by applying to each of its columns.

We begin with $M = O_{\mu_2}^{M(\mu_1, \mu_1)} \cdot M$.

Eliminate all entries in first column, except $M(\mu_1, \mu_1)$, by

for i in 2 to n

$c = M(\mu_1, i) / M(\mu_1, \mu_1)$

$M = O_{\mu_1 i}^c \cdot M$

In 2nd column, eliminate all entries in rows 3...n

for i in 3 to n

$c = M(\eta_2, i) / M(\eta_2, \eta_2)$

$M = O_{\eta_2 i}^c \cdot M$

As $M(\eta, \mu_1) = 0$ for $i > 1$ at this point, none of these entries change.

Full algorithm:

$M \leftarrow A$

For i in 1 to $n-1$

For j in $i+1$ to n (so $j > i$)

$c_{ij} = M(\eta_i, \mu_1) / M(\eta_i, \eta_i)$

$M = O_{\eta_i \mu_1}^{c_{ij}} \cdot M$
Example: \[
\begin{bmatrix}
2 & 1 & 0 \\
4 & 3 & 1 \\
8 & 9 & 5 \\
6 & 9 & 8
\end{bmatrix} \rightarrow
\begin{bmatrix}
2 & 1 & 0 \\
0 & 1 & 1 \\
8 & 9 & 5 \\
6 & 9 & 8
\end{bmatrix} \rightarrow
\begin{bmatrix}
2 & 1 & 0 \\
0 & 1 & 1 \\
8 & 9 & 5 \\
0 & 9 & 8
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2 \\
0 & 4 & 6
\end{bmatrix} \rightarrow
\begin{bmatrix}
2 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2 \\
0 & 0 & 2
\end{bmatrix} = U
\]

If we store the \(C_{ij}\), then we can use them to solve linear equations:

\[O_{m \times n} \cdots O_{1 \times 2} \cdot A = U\]

So solve \(Ax = b\) by applying these operators to \(b\),

giving \(Ux = O_{m \times n} \cdots O_{1 \times 2} \cdot b\)

Then solve for \(x\).

As an algorithm, this is:

for \(i\) in 1 to \(n-1\)
 for \(j\) in \(i+1\) to \(n\)
 \[b = O_{i \times j} \cdot b \iff b[i] = b[j] - C_{i,j} \cdot b[i]\]

Is same as forward solve in \(L\) with

\(L(i,i) = 1\) and \(L(j,i) = C_{i,j}\)
This is how we build L.

How many ops?

\[
\begin{aligned}
\text{for } i \text{ in } 1 \text{ to } n-1 \\
\quad \text{for } j \text{ in } i+1 \text{ to } n \\
\quad \quad \text{apply } O^c_{i,j} \text{ to } M - \text{ but only in cols } i+1 \text{ to } n
\end{aligned}
\]

\[
\sum_{i=1}^{n-1} (n-i)^2 \approx \frac{1}{3} n^3, \text{ so } \Theta(n^3) \text{ ops}
\]

Why not build L^{-1}? Seems to take $\Theta(n^3)$ ops, is wasteful and we do not need it.

What to do when $L(i,i) = 0$?

Pivot. Find k s.t. $L(k,i) \neq 0$, and eliminate entries in column i using k th row.

Or, swap rows k and i (virtually)

Instead of L, construct PL for a permutation matrix L.

A permutation matrix is a matrix P

that is all zeros except for one 1 in every row and column.

For each i, let $\pi(i)$ be s.t. $P[i,\pi(i)] = 1$

$P_{x} = x(\pi(1)), x(\pi(2)), \ldots, x(\pi(n))$,

a permutation of x.
It is easy to multiply a vector by P—takes $\Theta(n)$ ops by using formula.

P is orthogonal, so $P^T P = I \Rightarrow P^{-1} = P^T$.

\Rightarrow is easy to apply P^{-1}.

We compute P during the algorithm, and go back and adjust c_{ij} at the end—more work if do it along the way.

Example: $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ compute LU for $P^T A$

$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $P^T A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

But, this is not the only problem!

What if $A = \begin{bmatrix} \varepsilon & 1 \\ 0 & 1 \end{bmatrix}$ $L = \begin{bmatrix} 1 & 0 \\ \frac{\varepsilon}{2} & 1 \end{bmatrix}$ $U = \begin{bmatrix} \varepsilon & 1 \\ 0 & 1 - \frac{\varepsilon}{2} \end{bmatrix}$

If $\varepsilon < 10^{-16}$, rounding error gives $\tilde{U} = \begin{bmatrix} \varepsilon & 1 \\ 0 & -\frac{\varepsilon}{2} \end{bmatrix}$

and $L \tilde{U} = \begin{bmatrix} \varepsilon & 1 \\ 1 & 0 \end{bmatrix}$ a very different matrix.
So, pivot not just when O, but when small. Try to keep L and U small.

A theorem of Wilkinson says if compute with precision u,

\[\|A - LU\| \leq u \cdot \Theta (\|L\| \|U\|) \]

Is a good reason to think about L and U.