The condition numbers Measure how output charges when make a small Change in the input. View problem as a function f(X) let SX be small change, and $\delta f = f(x + \delta x) - f(x)$ Atsolute condition number at x is $\hat{K} = \lim_{\Omega \to 0} \sup_{\substack{\|\delta \times \| \le 2}} \frac{\|\delta F\|}{\|\delta \times \|}$ Restrict charges to be small. View SX as measurement error - error in input (but also comes from floating point) So, we want f(X), but get $f(X + \delta X)$ From this perspective $\frac{\|\partial f\|}{\|\partial X\|} = \frac{\text{forward error}}{\text{backward error}}$ If condition number is large at X, then we better be sure we know X to high accuracy. Will call such X "ill-conditioned" Note: restricting to small & is reasonable, but feels arbitrary for some problems.

Ex. again consider invertible
$$A_1$$

and $f_A(b) = A^{-1}b$
So, $f_A(b+\delta b) = A^{-1}(b+\delta b)$ and
 $\delta f_A = f_1(b+\delta b) - f_1(b) = A^{-1}(\delta b)$
 $= > \frac{||\delta f_A||_2}{||\delta b||_2} = \frac{||A^{-1}(\delta b)||_2}{||\delta b||_2} = \frac{||A^{-1}||_2}{||\delta b||_2}$

Often consider the relative condition #:

$$K = \frac{\|f(\partial X)\|}{\|\partial X\|} / \|f(X)\|}{\|\partial X\|} / \|F(X)\|}$$
For f_A , it equals $\hat{K} \cdot \frac{\|b\|}{\|A'b\|} = \hat{K} \frac{\|A'\|}{\|Y\|}$
Where $\gamma = A^{-1}b$.
So, $K \in \|A^{-1}\| \cdot \|A\|$
Can find examples on which this is tight:
if δb satisfies $\|K^{-1}(Sb\|)\| = \|A^{-1}\| \cdot \|\delta b\|$ and
 $\gamma = A^{-1}b$ satisfies $\|A\gamma\| = \|A\| \cdot \|\gamma\|$.

Now, let's examine perturbations to A.
For simplicity we will fix to (for now).
Add
$$\delta A$$
 to A, and look at change in solution, $\delta \gamma$.
 $(A + \delta A)(\gamma + \delta \gamma) = b$
Gives $A\gamma + A\delta\gamma + \delta A\gamma = b$, as $\delta A\delta\gamma \to 0$ for small
 $\delta A, \delta\gamma$
 $=> A[\delta\gamma] = -[\delta A]\gamma$ ($A\gamma = b$)
 $\delta\gamma = -A^{-1}(\delta A)\gamma$
 $|(\delta\gamma|| \in ||\deltaA|| \cdot ||A^{-1}|| \cdot ||\gamma||$
 $\dot{R} = \frac{||\delta\gamma||/||\gamma||}{||\deltaA||} \in ||A|| \cdot ||A^{-1}||$
 $K = \frac{||\delta\gamma||/||\gamma||}{||\deltaA||} \in ||A|| \cdot ||A^{-1}||$
and this can be tight.
See Solomon or Demmed for an analysis in A and b
together.

We define $K(A) = ||A|| \cdot ||A^{-1}||$

Alternote approach:
For
$$f: |\mathbb{R}^{n} \to \mathbb{R}^{m}$$
, $f[X + \delta X] \approx f(X) + Uf(X)^{T} \delta X$
But, what is ∇f for $f \to \mathbb{R}^{m}$?
It is the Jacobian: the matrix obtained by
concatenating the gradients of each output
of f
 $J = \left(\nabla f(X)(U_{1},...,\nabla f(H)(m) \right)$
 $\hat{K} = \lim_{\epsilon \to 0} \sup_{\|\delta X\|_{2} \leq \epsilon} \frac{\|(f(X + \delta X) - f(X))\|}{\|\delta X\|}$
 $= \lim_{\epsilon \to 0} \sup_{\|\delta X\|_{2} \leq \epsilon} \frac{\|(J \cdot \delta X)\|_{2}}{\|\delta X\|_{2}} = \|\|J\||_{2}$

The diagonal entries of $S(i,i) = O_i$ are the <u>singular values</u> Usually order so $O_i = O_2 = \cdots = O_n = O$

Recall U is onthogonal iff
$$U^{T}U = I$$
.
Called onthogonal because implies for
 $i \neq j$, $0 = I(i,j) = (U^{T}U)(i,j) = U(i,j)^{T}U(i,j)$
So, cdumms of U are onthogonal.
And, $||U(i,j)||_{2} = 1$ for all i .
Holds iff $UU^{T} = I$, because left-inverse = right-inverse
for square matrices.

ter property of orthogonal matrices:

$$\forall x \| \| \| \|_{2} = \| \| \| \|_{2}$$

because $\| \| \| \| \|_{2}^{2} = x^{T} \| \| \| \| x = x^{T} x = \| \| x \| \|_{2}^{2}$

Formulas from the SVD:

A =
$$USV^{T} => U^{T}AV = U^{T}USV^{T}U = S$$

 $A^{T} = VS^{T}U^{T} = VSU^{T}$
if $\sigma_{n} > O$, $A^{-1} = (USV^{T})^{-1} = U^{T}S^{-1}U^{-1}$
 $= VS^{-1}U^{T}$
and S^{-1} is diagonal with entries $\frac{1}{\sigma_{i}}$

Let
$$u_{1}, u_{1}$$
 be columns of U
and v_{1}, v_{1} be columns of V .
 $A = \sum_{i} \sigma_{i} u_{i} v_{i}^{T}$, a sum of reak-1 metrices
 i
As $v_{i}^{T}v_{j} = 0$ for $\hat{v} \neq \hat{j}$, $Av_{j} = \sum_{i} \sigma_{i} u_{i} v_{i}^{T}v_{j} = \sigma_{j} u_{j}$

$$\underbrace{\operatorname{Cor}}_{1} \| \|A^{-1}\|_{2} = \|A^{-1}\|_{2}.$$

$$\underbrace{\operatorname{Cor}}_{1} \| \|A^{-1}\|_{2} = \|\sigma_{n}\|_{2}.$$

$$\operatorname{Similarly}_{1} \min \| \|A \times \| = \sigma_{n} = \frac{1}{\|A^{-1}\|_{1}}$$

$$\operatorname{Let} P \text{ be the set of Singular matrices.}$$

$$\underbrace{\operatorname{Mm}}_{A_{0} \in P} \min \| \|A - A_{0}\|_{2} = \sigma_{n}(A)$$

$$A_{0} \in P$$

$$\underbrace{\operatorname{Proof}}_{1} \| \| \|A - A_{0}\|_{2} = \sigma_{n}(A)$$

$$A_{0} \in P$$

$$\underbrace{\operatorname{Proof}}_{1} \| \| \|A - A_{0}\|_{2} = \sigma_{n}(A)$$

$$A_{0} \in P$$

$$\underbrace{\operatorname{Proof}}_{1} \| \| \|A - A_{0}\|_{2} = \sigma_{n}(A)$$

$$A_{0} \in P$$

$$\underbrace{\operatorname{Proof}}_{1} \| \| \|A - A_{0}\|_{2} = \sigma_{n}(A)$$

$$A_{0} \in P$$

$$\underbrace{\operatorname{Proof}}_{1} \| \| \|A - A_{0}\|_{2} = \sigma_{n}(A)$$

$$A_{0} \in P$$

$$\underbrace{\operatorname{Proof}}_{1} \| \| \|A - A_{0}\|_{2} = \sigma_{n}(A)$$

$$A_{0} \in P$$

$$\underbrace{\operatorname{Proof}}_{2} \| \|A \|_{2} = \sigma_{n}(A)$$

$$\underbrace{\operatorname{Min}}_{2} \| \|A \|_{2} = \sigma_{n}(A)$$

$$\underbrace{\operatorname{Min}}_{2} \| \|A \|_{2} = \sigma_{n}(A)$$

$$\underbrace{\operatorname{Min}}_{2} \| \|A \|_{2} = \sigma_{n}.$$

$$\underbrace{\operatorname{Min}}_{2} \| \|A \|_{2} = \sigma_{n}.$$

The normalized distance,
$$\frac{dist(A,P)}{||A||_2} = \frac{\sigma_n(A)}{\sigma_r(A)} = \frac{1}{\kappa(A)}$$

Also holds if measure distance in
$$||A||_F$$

(recall $||A||_F = (ZA(o,j)^2)^{1/2}$)

$$\frac{\text{Lem}}{\text{Proof}} \|A\|_{F} = \left(\sum_{i}^{2} \sigma_{i}^{2}\right)^{1/2}$$

$$\frac{\text{proof}}{\text{Proof}} \quad \text{First} \quad \text{observe} \quad \|A\|_{F} = \|U^{T}A\|_{F},$$

$$\frac{\text{because}}{\text{because}} \quad \|(A\|_{F}^{2} = \sum_{i}^{2} \||A(:,i)\|_{2}^{2} = \sum_{i}^{2} \|U^{T}A(:,i)\|_{2}^{2}$$

$$= \||U^{T}A\|_{F}^{2}$$

Similarly,
$$\|A\|_F = \|U^T A V\|_F = \|S\|_F = \left(\sum_{i} \sigma_i^2\right)^{1/2}$$

Now, min
$$||A-Aoll_F = \sigma_n$$
,
 $A_o \in P$
because $||A||_2 \in ||A||_F$, so part I holds.
And for rank-1 matrices like $\sigma_n u_n v_n T$,
 $||\sigma_n u_n v_n T||_2 = ||\sigma_n u_n v_n T||_F = \sigma_n$