The condition numbers
Measure how output charges when make a small change in the input.
View problem as a function $f(X)$
let δX be small change, and

$$
\delta f=f(x+\delta x)-f(x)
$$

Absolute condition number at x is

$$
\tilde{k}=\lim _{\varepsilon \rightarrow 0} \sup _{\|\delta x\| \leq \varepsilon} \frac{\|\delta f\|}{\|\delta x\|}
$$

Restrict changes to be small.
View δX as measurement error - error in input (but also comes from floating point)
So, we wart $f(x)$, but get $f(x+\delta x)$
From this perspective $\frac{\|\partial f\|}{\|\partial x\|}=\frac{\text { forward error }}{\text { backward error }}$
If condition number is large at X,
then we better be sure we know X to high accuracy.
Will call such X "ill-conditioned"
Note: restricting to small δX is reasonable, bat feels arbitrary for some problems.

Ex. again consider invertible A_{1} and $f_{A}(b)=A^{-1} b$

So, $f_{A}(b+\delta b)=A^{-1}(b+\delta b)$ and

$$
\begin{aligned}
& \delta f_{A}=f_{A}(b+\delta b)-f(b)=A^{-1}(\delta b) \\
\Rightarrow & \frac{\left\|\delta f_{A}\right\|_{2}}{\|\delta b\|_{2}}=\frac{\left\|A^{-1}(\delta b)\right\|_{2}}{\|\delta b\|_{2}} \leq\left\|A^{-1}\right\|_{2}
\end{aligned}
$$

Often consider the relative condition \#:

$$
k=\frac{\|f(\delta x)\| /\|f(x)\|}{\|\delta x\| /\|x\|}
$$

For f_{A}, it equals $\hat{k} \cdot \frac{\|b\|}{\left\|A^{-1} b\right\|}=\hat{k} \frac{\left\|A_{y}\right\|}{\|y\|}$
where $y=A^{-1} b$.
So, $K \leq\left\|A^{-1}\right\| \cdot\|A\|$
Can find examples on which this is tight: if δb satisfies $\left\|A^{-1}(\delta b)\right\| l=\left\|A^{-1}\right\| \cdot\|\delta b\|$ and $y=A^{-1} b$ satisfies $\|A y\|=\|A\| \cdot\|y\|$.

Now, lets examine perturbations to A. For simplicity we will fix b (for now). Add δA to A, and look at change in solution, δy.

$$
(A+\delta A)(y+\delta y)=b
$$

Gives $A_{y}+A \delta y+\delta A_{y}=b$, as $\delta A \delta y \rightarrow 0$ for small $\delta A, \delta y$

$$
\begin{aligned}
\Rightarrow & A(\delta y)=-(\delta A) y \quad\left(A_{y}=b\right) \\
& \left.\delta y=-A^{-1} / \delta A\right) y \\
& \|\delta y\| \leq\|\delta A\| \cdot\left\|A^{-1}\right\| \cdot\|y\| \\
\hat{K}= & \frac{\|\delta y\|}{\|\delta A\|} \leq\left\|A^{-1}\right\| \cdot\|y\| \\
K= & \frac{\|\delta y\| /\|y\|}{\|\delta A\| /\|A\|} \leq\|A\| \cdot\left\|A^{-1}\right\|
\end{aligned}
$$

and this can be tight.
See Solomon or Demmel for an analysis in A ard b together.

We define $K(A)=\|A\| \cdot\left\|A^{-1}\right\|$

Alternote approach:
For $\quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad f(X+\delta X) \approx f(x)+\nabla f(x)^{\top} \delta X$
But, what is ∇f for $f \rightarrow \mathbb{R}^{m}$?
It is the Jacobian: the matrix obtained by concatenating the gradients of each output of f

$$
J=(\nabla f(x)(1), \ldots, \nabla f(t)(m))
$$

$$
\begin{aligned}
\hat{K} & =\lim _{\varepsilon \rightarrow 0} \sup _{\|\delta x\|_{2} \leq \varepsilon} \frac{\|f(x+\delta x)-f(x)\|}{\|\delta x\|} \\
& =\lim _{\varepsilon \rightarrow 0} \sup _{\|\delta x\|_{2} \leqslant \varepsilon} \frac{\|J \cdot \delta x\|_{2}}{\|\delta x\|_{2}}=\|J\|_{2}
\end{aligned}
$$

Norms and the Singular Value Decomposition.
Theorem (proof in a (after lecture)
Every square matrix A can be written $A=U S U^{\top}$, where U and U are orthogonal and S is nonnegative and diagonal.

The diagonal entries of $S(i, i)=\sigma_{i}$ are the singular values Usually order so $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$

Rectangular is OK, too. Just add zero rows or colcemns to make it square.

Recall U is orthogonal iff $U^{\top} U=I$.
Called orthogonal because implies for $i \neq j, 0=I(i, j)=\left(U^{\top} U\right)(i, j)=U(i i)^{\top} U(i, j)$
So, columns of Cl are orthogonal.
And, $\|U(, i)\|_{2}=1$ for all i.
Holds iff $U U^{\top}=I$, because left-inuerse $=$ rist-inverse for square matrices.
Key property of orthogonal matrices:
$\forall x\|u x\|_{2}=\|x\|_{2}$
because $\left\|U_{x}\right\|_{2}^{2}=x^{\top} U^{\top} U_{x}=x^{\top} x=\|x\|_{2}^{2}$

Formulas from the SUD:

$$
\begin{aligned}
& A=U S U^{\top} \Rightarrow U^{\top} A V=U^{\top} U S U^{\top} U=S \\
& \begin{aligned}
& A^{\top}=V S^{\top} U^{\top}=U S U^{\top} \\
& \text { if } \sigma_{n}>0, \quad A^{-1}=\left(U S U^{\top}\right)^{-1}=U^{-\top} S^{-1} U^{-1} \\
&=V S^{-1} U^{\top}
\end{aligned}
\end{aligned}
$$

and S^{-1} is diagonal with entries $1 / \sigma_{i}$
Let $u_{1 \ldots,} u_{n}$ be columns of U and $v_{1} \ldots v_{n}$ be colcomns of V.
$A=\sum_{i} \sigma_{i} u_{i} v_{i}^{\top}$, a sum of rank-1 matrices
As $v_{i}^{\top} v_{j}=0$ for $i \neq j, \quad A v_{j}=\sum_{i} \sigma_{i} a_{i} v_{i}^{\top} v_{j}=\sigma_{j} u_{j}$

Lem $\|A\|_{2}=\sigma_{1}$
proof $\|A\|_{2}=\sigma_{1}$ because $\left\|A v_{1}\right\|_{2}=\sigma_{1}\left\|u_{1}\right\|_{2}=\sigma_{1}$

$$
\text { (and } \left.\left\|v_{1}\right\|_{2}=1=\left\|u_{1}\right\|_{2}\right)
$$

For every $x_{1} \quad\|S \times\|_{2} \leq \sigma_{1} \cdot\|x\|_{2}$,
because $\|S x\|_{2}^{2}=\sum_{i} \sigma_{i}^{2} x(i)^{2} \leq \sum_{i} \sigma_{1}^{2} x(i)^{2} \leqslant \sigma_{1}^{2}\|x\|^{2}$
So $\|A x\|_{2}=\left\|U S V^{\top} x\right\|_{2}=\left\|S U^{\top} x\right\|_{2} \leq \sigma_{1}\left\|U^{\top} x\right\|_{2}=\sigma_{1}\|x\|_{2}$

Cor. $\|A\|_{2}=\left\|A^{\top}\right\|_{2}$.
Cor. $\left\|A^{-1}\right\|_{2}=1 / \sigma_{n}$. So $K(A)=\frac{\sigma_{1}}{\sigma_{n}}$
Similarly, $\min _{x \neq 0} \frac{\left\|A_{x}\right\|}{\|x\|}=\sigma_{n}=\frac{1}{\left\|A^{-1}\right\|}$
let P be the set of singular matrices.
Tum min $\left\|A-A_{0}\right\|_{2}=\sigma_{n}(A)$
$A_{0} \in P$
proof 1 . If $\|\Delta\|_{2}=\sigma_{n}(A)$, then $A-\Delta \notin P$ because for all $\|x\|\left\|_{1}\right\| A x-\Delta x\left\|_{2} \geq\right\| A \times\left\|_{2}-\right\| \Delta x \|_{2}$

$$
\geq \sigma_{n}(A)-\|A\|_{2}>0
$$

So is no x st. $(A-\Delta) x=0$.
2. Let $\Delta=\sigma_{n} u_{n} v_{n}^{\top}$

Then $A-\Delta=\sum_{i=1}^{n-1} \sigma_{i} u_{i} v_{i}^{\top}$ has rank $\leq n-1$.
In particular, $(A-\Delta) v_{n}=0$
And, $\|\Delta\|_{2}=\sigma_{n}$.
The normalized distance, $\frac{\operatorname{dist}(A, P)}{\|A\|_{2}}=\frac{\sigma_{n}(A)}{\sigma_{1}(A)}=\frac{1}{K(A)}$

Also holds if measure distance in $\|A\|_{F}$

$$
\text { (recall } \left.\|A\|_{F}=\left(\sum A(i, j)^{2}\right)^{1 / 2}\right)
$$

Lem $\|A\|_{F}=\left(\sum_{i} \sigma_{i}^{2}\right)^{1 / 2}$
proof First observe $\|A\|_{F}=\left\|u^{\top} A\right\|_{F}$, because $\|A\|_{F}^{2}=\sum_{i}\|A(:, i)\|_{2}^{2}=\sum_{i}\left\|u^{\top} A(:, i)\right\|_{2}^{2}$

$$
=\left\|U^{\top} A\right\|_{F}^{2}
$$

Similarly, $\|A\|_{F}=\left\|U^{\top} A V\right\|_{F}=\|S\|_{F}=\left(\sum_{i} \sigma_{i}^{2}\right)^{1 / 2}$
\quad Now, $\quad \min \left\|A-A_{0}\right\|_{F}=\sigma_{n}$,

$$
A_{0} \in P
$$

because $\|\Delta\|_{2} \leq\|\Delta\|_{F_{1}}$ so pant I holds.
And for rank-l matrices like $\sigma_{n} u_{n} v_{n} T_{1}$,

$$
\left\|\sigma_{n} u_{n} v_{n}^{\top}\right\|_{2}=\left\|\sigma_{n} u_{n} v_{n}^{\top}\right\|_{F}=\sigma_{n}
$$

