Approximate solutions to systems of linear equations: Approximation, error, norms, and gradient descent.

We first think of the Euclidean norm-the standard notion of

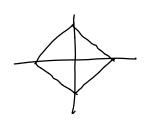
$$\|v\|_{2}^{2} \left(\sum_{i}^{\nu(i)}\right)^{i/2} = \int v^{T} v$$

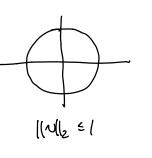
Other common norms are $\|v\|_{1} = \sum_{i}^{2} |v(i)|$ 1-norm
and $\|v\|_{\infty} = \max_{i} |v(i)|$ ∞ -norm or
 $\lim_{i \to \infty} |v|_{\infty} = \max_{i} |v(i)|$ \max -norm

for
$$|cP \cdot 00$$
, $||v||_{P} = \left(\sum_{i} |v(i)|^{P}\right)^{i}/P$, called a P -norm.

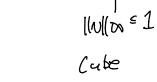
Let's check that
$$\|\cdot\|_{1}$$
, and $\|\cdot\|_{2}$ satisfy property d.
 $\|v + \omega\|_{1} = \sum_{i} |v(i) + \omega(i)| \leq \sum_{i} |v(i)| + |\omega(i)| = \|\omega\|_{1} + \|\omega\|_{1}$
To show $\|v + \omega\|_{2} \leq \|v\|_{2} + \|\omega\|_{2}$, will show
 $\|v + \omega\|_{2}^{2} \leq (\|v\|_{2} + \|w\|_{2})^{2}$
 $\leq > (v + \omega)^{T}(v + \omega) \leq \|v\|_{2}^{2} + 2\|v\|_{2}\|\omega\|_{2} + \|\omega\|_{2}^{2}$
 $\leq > v_{T}v + 2v_{T}w + w_{T}w \leq v_{T}v + 2\|v\|_{2}\|\omega\|_{2} + w_{T}w$
 $\leq > v_{T}w \leq \|v\|_{2}\|\omega\|_{2} + The Cauchy - Schwartz inequality.$
So, $\|\cdot\|_{2}$ is a norm is equivalent to Couchy - Schwartz.

Understand norms by examing v sit. I/v] = 1

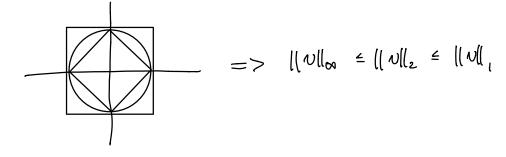




lWll, ≤ 1 Greveralized Octabedron



Basic relations.



$$\frac{\text{proof}}{i} \| \| \|_{0}^{2} = \max_{i} v(i)^{2} \leq \sum_{i} v(i)^{2} = \| \| \|_{1}^{2}$$
$$\| \| \|_{2}^{2} = \sum_{i} v(i)^{2} \leq \sum_{i} v(i)^{2} + \sum_{i \neq j} | v(i) | | v(j) | = \| \| \|_{1}^{2}$$

$$T_{LM} \quad ||v||_{i} \leq 5\pi ||v||_{2} \leq 5\pi ||v||_{0} \leq 5\pi ||v||_{0}$$

$$Proof \quad |et \ \omega(i) = |v(i)| \text{ for all } i. So, \quad ||w||_{i} = ||v||_{i} = 1^{T}\omega$$

$$and \quad ||w||_{2} = ||v||_{2}.$$

$$||w||_{i} = 1^{T}\omega \leq ||1n||_{i} ||w||_{2} \quad b_{i} \quad Couchy \quad Schwart_{2}$$

$$= 5\pi ||w||_{2}$$

$$||v||_{2}^{2} = \sum_{i=1}^{n} v(i)^{2} = \sum_{i=1}^{n} ||v||_{0}^{2} = n ||v||_{0}$$

For matrices. The Frotenius norm,
$$||M||_F$$
, treats
a matrix like a vector : $||M||_F = \left(\sum_{i,j} M(i,j)^2\right)^{1/2}$

We often use operator norms, like

$$\|M\|_2 = \max_{\substack{X \neq 0 \\ X \neq 0}} \frac{\|MX\|_2}{\|X\|_2}$$

Measures how much M can increase length of

a vector. More later... Consider problem of compating $f(X) \quad X \in \mathbb{R}^{m}$, $f(X) \in \mathbb{R}^{n}$ Our code might compate an approximate solution, $\tilde{f}(X)$. The <u>absolute</u> forward error is $||f(X) - \tilde{f}(X)||$ The <u>relative</u> forward error is $||f(X) - \tilde{f}(X)||$ ||f(X)||

Scale error by norm of solution

The absdate backward error is
min
$$\left\{ \| \tilde{X} - X \|$$
 st. $f(\tilde{X}) = \tilde{f}(X) \right\}$
The closest problem \tilde{X} whose converting $\tilde{f}(X)$.
Relative backward:
min $\left\{ \frac{\| \tilde{X} - X \|}{\| X \|} \right\}$
Example Fix invertible matrix A, and let $f_A(b) = \{\gamma : A\gamma = b\}$
That is, $f_A(b) = A^{-1}\gamma$. Is is playing the role of X
If our algoreturns $\tilde{\gamma}_1$
for word error is $\| \gamma - \tilde{\gamma} \|$
backward error is $\| \gamma - \tilde{\gamma} \|$
backward error is $\| b - A^{-1} \tilde{\gamma} \|$
because if $\tilde{b} = A^{-1} \tilde{\gamma}_1$, $f_A(\tilde{b}) = \tilde{\gamma}$
Advantage of backward error is that
we can compute it.
To compute for word error we would need
to know γ .

Fast approximate solutions to
$$Ax=b$$
 by
gradient descent. Assume A square $(n-by-n)$, invertible.
let $f(x) = \frac{1}{2} ||Ax-b||_2^2$ $f(x) = 0$ iff $Ax=b$,
so try to minimize f .
 $f(x) = \frac{1}{2} (Ax-b)^T (Ax-b) = \frac{1}{2} x^T A^T A x - b^T A x + \frac{1}{2} \overline{b}^T b$
 $\frac{1}{2} x^T M x - c^T x + \frac{1}{2} \overline{b}^T b$, for $M = A^T A$ and $c = A^T b$
note: M is symmetric

$$\frac{\int e^{im}}{P \cos f} \nabla c^{T}x = c \quad because \quad \frac{\partial}{\partial \times (j)} \sum_{i} c(i) \times (i) = c(j)$$

$$\nabla x^{T}Mx = Mx \quad because \quad x^{T}Mx = \sum_{i,j=1}^{n} M(i,j) \times (i) \times (i)$$

$$A = \frac{\partial}{\partial \times (i)} \sum_{i,j=1}^{n} M(i,j) \times (i) \times (i) = \frac{\partial}{\partial \times (i)} \left(M(k_{1}k_{1}) \times (i_{1}) \times (i$$

When
$$\nabla f = 0$$
, $Mx = c \iff A^T A x = A^T b$
 $\iff A \times = b$,
because A^T is invertible.

If
$$\nabla f \neq 0$$
, move in direction of ∇f
That is, move to $\hat{X} = X - \alpha (\nabla f)(X)$ for some $\alpha \in \mathbb{R}$
Will choose the α that minimizes $f(\hat{X})$
For general f this is called a line search.
For this problem, we can compare H directly.
Let $g = (\nabla f)(x)$
 $f(\hat{X}) = \frac{1}{2}(X - \alpha g)^T M(X - \alpha g) - c^T(X - \alpha g) + \frac{1}{2}b^T b$
 $= \frac{1}{2}x^T M X - \alpha g^T M X + \frac{1}{2}\alpha^2 g^T M g - c^T X + \alpha c^T g + \frac{1}{2}b^T b$
Is quadratic in α_i so can minimize by taking deriv
in α and setting H to zero.
Deriv in d is:
 $-g^T M X + c^T g + \alpha g^T M g = \alpha g^T M g - g^T (M X - c)$
 $= d g^T M g - g^T g$
So, set $\alpha = \frac{g^T g}{g^T M g}$

And, improvement is
$$f(x) - f(x - \alpha g)$$

= $\alpha g^{T}Mx + \alpha g^{T}c - \frac{1}{2}\alpha^{2}g^{T}Mg$
= $\alpha g^{T}g - \frac{1}{2}\alpha^{2}g^{T}Mg$
= $\frac{1}{2}\frac{(g^{T}g)^{2}}{g^{T}Mg} = \frac{1}{2}\frac{(q^{T}g)^{2}}{(A_{g})^{T}(A_{g})}$, so is positive.

To get a nice expression,

$$\frac{\text{Claim}}{\text{Claim}} = \frac{1}{2}g^{T}M^{-1}g$$

$$\frac{\text{Proof}}{\text{Proof}} g = A^{T}A \times -A^{T}b \qquad M = \overline{A}^{T}A \qquad M' = A^{T}(A^{T})^{-1}$$

$$\text{So}, \quad g^{T}M^{-1}g = \left((A^{T})^{-1}g\right)^{T}\left((A^{T})^{-1}g\right)$$

$$= \left(A \times -b\right)^{T}\left(A \times -b\right) = 2f(A^{T}).$$

So, write
$$\frac{f(x) - f(\hat{x})}{f(x)} = \frac{(g^T g)^2}{(g^T M g) (g^T M^{-1} g)}$$

$$\mathbb{O}_{r}, \quad f(\hat{x}) = f(x) \left(\left| - \frac{(g_{\bar{y}})^{2}}{(g_{\bar{y}}M_{\bar{y}})(g_{\bar{y}}M_{\bar{y}})} \right) \right)$$

$$\frac{g^{T}g}{g^{T}Mg} = \frac{g^{T}g}{(Ag)^{T}(Ag)} \ge \frac{1}{||A||_{2}^{2}} \quad \text{and} \quad \frac{g^{T}g}{g^{T}M^{-1}g} \ge \frac{1}{||(A^{T})^{-1}||_{2}^{2}}$$

So,
$$f(\hat{x}) \leq f(x) \left(\left| - \frac{1}{\left\| A \right\|_{2}^{2} \left\| (A^{T})^{-1} \right\|_{2}^{2}} \right)$$

Next lecture we will show $\|A^{T}\|_{2}^{2} = \|A\|_{2}^{2}$, and define $K(A) = \|A\|_{2} \|A^{-1}\|_{2}$ to be the condition number of A.

If start with xo and let x_t be result of t iterations, $f(x_t) = f(x_0) \left(\left| - \frac{i}{\kappa(A)^2} \right|^t \right)$

$$\leq f(k_0) e^{k_0} \left(\frac{-t}{k(a)^2} \right), as 1-z \in e^{-z}$$

This algorithm is fast if
$$K(A)$$
 is small.
operations per iteration \approx # nonzeros in A.
Standard alternative is Gaussian elimination,
which takes time ~ n³ (or n^{2.37...})

Note: The Conjugate Gradient is an improvement
of this algorithm that makes improvement
like
$$\left(1 - \frac{1}{\kappa(A)}\right)^{t}$$
, which is much better.

Bounds for these are usually stated in terms of K(M)=K(A)2.