Max Cut: We will use convex programming (linear programming over semidefinite matrices) to get a 0.878... approximation of maxcat. This is a famous result of Gromars \& Williamson

Input: graph $G=(U, E)$.
For $S \subset V$, $\operatorname{define} \operatorname{cut}(S)=\#\left\{(a, b)\right.$ st. $\left.\left|\left\{a_{a} b\right\} \cap S\right|=1\right\}$ $\operatorname{maxcat}(G)=\max _{s} \operatorname{cut}(s)$.

Ex.
 $\operatorname{maxcat}(G)=4$.

In our previous notation, $\operatorname{cut}(s)=|\partial(s)|$
Easy results first. Define $m=\mid E l$.
Lem maxcut $(G) \geq m / 2$
proof Consider choosing S uniformly at radom.
$\operatorname{Pr}[a \in S]=\frac{1}{2}$ for every $a \in U$.
For each edge (a, t)

$$
\begin{aligned}
\operatorname{Pr}[(a(b) \in \partial(S)] & =\operatorname{Pr}[a \in S \text { add } b \notin S]+\operatorname{Pr}[a \notin S a d b \in S] \\
& =\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

So, $\frac{\mathbb{F}}{s}\left(u t(s)=\sum_{(a, b) \in E} \operatorname{Pr}[(a, b) \in \partial(s)]=\frac{m}{2}\right.$
As max \geq average, $\exists S$ st. $\operatorname{cut}(s) \geq m / 2$.

Can turn this into an algorithm. But there's a simpler algorithm.

Let's describe it in terms of $\{ \pm i\}^{n}$ vectors, where $a=|U|$.
local Search
Start with any $x \in\{ \pm 1\}^{n}$ (like $\mathbb{1}_{1}$ or random) while \exists a st. $x(a) \sum x(b)>0$ (most neighbors on same side)

$$
\begin{aligned}
& x(a)=-x(a) \\
& \text { Return } \left.x \quad \text { (or } S_{x}=\{a: x(a)=1\}\right)
\end{aligned}
$$

Idea: if moving a into or out of S increases the cat, do it.
$\underline{C(a i m 1} \operatorname{cut}\left(S_{x}\right)=\frac{1}{2} \sum_{(a, t) \in E} 1-x(a) \times(t)$
proof $x(9)+(0)=-1$ if $(a, t) \in \partial\left(s_{x}\right)$

$$
=10 . \omega
$$

Claim 2 If \hat{x} is vector after moving a,

$$
\operatorname{cut}\left(s_{\tilde{x}}\right)=\operatorname{cut}\left(s_{x}\right)+x(a) \sum_{b=(a, b) \in E} x(b)
$$

Can turn this into an algorithm. But there's a simpler algorithm.

Let's describe it in terms of $\{ \pm i\}^{n}$ vectors, where $a=l u l$.
local Search
Start with any $x \in\{ \pm 1\}^{n}$ (like $\mathbb{1}_{1}$ or random) while $\exists a$ st. $x(a) \sum_{b:(a, 0) \in E} x(b)>0 \quad \begin{gathered}\text { (most neighbors on } \\ \text { same side) }\end{gathered}$

$$
x(a)=-x(a) .
$$

Return x (or $S_{x}=\{a: x(a)=1\}$)

Idea: if moving a into or out of S increases the cat, do it.

Can turn this into an algorithm. But there's a simpler algorithm.

Let's describe it in terms of $\{ \pm 1\}^{n}$ vectors, where $n=|U|$.
local Search
Start with any $x \in\{ \pm 1\}^{n}$ (like $\mathbb{1}_{1}$ or random) while $\exists a$ st. $x(a) \sum_{b=(a, b) \in E} x(b)>0 \quad \begin{gathered}\text { (most neighbors on } \\ \text { same side) }\end{gathered}$

$$
x(a)=-x(a) .
$$

Return x (or $S_{x}=\{a: x(a)=1\}$)

Idea: if moving a into or out of S increases the cat, do it.

Claim $\operatorname{cut}\left(S_{x}\right)=\frac{1}{2} \sum_{(a, t) \in E} 1-x(a) \times(t)$
proof $x(a)+(x)=-1$ if $(a, x) \in \partial\left(s_{x}\right)$

$$
=10 . \omega
$$

Claim 2 If \hat{x} is vector after moving a,

$$
\operatorname{cut}\left(S_{\hat{x}}\right)=\operatorname{cut}\left(S_{x}\right)+x(a) \sum_{b=(a, b) \in E} x(b)
$$

$\underset{\cot \left(S_{x}\right)=0}{(1)} \rightarrow\left(\underset{\operatorname{cat}\left(5_{x}\right)=1}{\longrightarrow}\right.$
lem 2 local Search terminates, and returns x with cat $\left(S_{x}\right) \geqslant \frac{m}{2}$
\int proof Claim 2 implies $\operatorname{cut}(S x)$ increases by at least 1 at every step.
When algorithm stops, $\forall a \sum_{b=(a, 0) \in E} x(a)+(b) \leq O$.

$$
\begin{aligned}
& \operatorname{cat}\left(s_{x}\right)=\frac{1}{2} \sum_{(a, b) \in E} 1-x(a) x(b)=\frac{m}{2}-\frac{1}{2} \sum_{(a, b) \in E} x(a) x(b) \\
& \text { and, } \sum_{(a, b) \in E} x(a) \times(b)=\frac{1}{2} \sum_{a \in U} \sum_{b=(a, t) \in E} x(a) x(b) \leq 0
\end{aligned}
$$

How to do better?
Goemars \& Williamson '95: relax $x(a) \in\{ \pm 1\}$
replace with $v_{a} \in \mathbb{R}^{n},\left\|v_{a}\right\|_{2}=1$

$$
\begin{aligned}
& x(a) x(b) \rightarrow v_{a}^{\top} v_{b} \\
& \sum_{(a, b) \in E}\left(-x(a) x(b) \rightarrow \sum_{(a, b) \in E} 1-v_{a}^{\top} v_{b}\right.
\end{aligned}
$$

Solve the vector problem

$$
V P(\theta)=\max \sum_{(a ;() \in E} 1-v_{a}^{\top} v_{b} \quad \text { sit. } \quad\left\|v_{a l}\right\|_{2}=1
$$

Ex.

$$
v_{a}^{\top} v_{b}=\cos \left(\frac{4 \pi}{5}\right) \approx-0.81
$$

for all $(a, D) \in E$

$$
\frac{1}{2} \sum_{(a, B) \in E} 1-v_{a}^{\top} v_{b} \approx 4.52>\operatorname{maxcat}(G)=4
$$

1. We can turn the solution into an approximate solution to maxcut.
2. We can approximately solve UP in polynomial time.
C (aim $3 U P(G) \geqslant \operatorname{maxcot}(G)$
proof consider $V_{a}=u \cdot x(a)$ for can unit vector u.
Now, $\quad v_{a}^{\top} v_{b}=x(a) \times(t)$.
Bat we can choose va differently, and get a larger value.

To round vectors $N_{a_{1}}, \ldots, V_{n}$ into $\pm 1 x(1), \ldots x(n)$: choose a random unit vector u, set $x(a)=\left\{\begin{aligned} 1 & \text { if } u^{\top} N_{a} \geq 0 \\ -1 & \text { o. } w \text {. }\end{aligned}\right.$

(is equivalat to use Gaussian random u)

Claim $\quad \operatorname{Pr}\left[(a, f) \in \partial\left(S_{x}\right)\right]=\frac{1}{\pi} \operatorname{ang}\left(v_{a}, v_{b}\right)$
proof First, lookat the 2D case

In general, project u to $\operatorname{span}\left(v_{a}, v_{b}\right)$, and apply this cualysis.

Claim $\frac{\mathbb{E}}{u} \operatorname{cut}\left(S_{x}\right)=\frac{1}{\pi} \sum_{(a, b) \in E} a \cos \left(v_{a}^{\top} v_{b}\right)$
P Proof $v_{a}^{\top} v_{b}=\cos (\theta)$, so $\theta=a \cos \left(v_{a}^{\top} v_{b}\right)$
$C\left(\operatorname{aim} 6 \min _{-1 \leqslant t \leqslant 1} \frac{\frac{1}{\pi} a \cos (t)}{\frac{1}{2}(1-t)} \geqslant 0.878\right.$

Theorem $\frac{\mathbb{E}}{u} \operatorname{cut}\left(S_{x}\right) \geq 0.878 \cdot \operatorname{maxcat}(G)$

$$
\text { proof } \begin{aligned}
\mathbb{E}\left(u t\left(S_{x}\right)\right. & \geq \frac{1}{\pi} \sum_{(a, b) \in E} a \cos \left(V_{a}^{\top} N_{b}\right) \\
& \geq 0.878 \cdot \frac{1}{2} \sum_{(a, b) \in E} 1-v_{a}^{\top} V_{b} \\
& =0.878 \cdot v P(G) \\
& \geq 0.878 \cdot \operatorname{maxcat}(G)
\end{aligned}
$$

proof of claim 6

1. Change variables to $t=\cos (\theta)$.

Set derivative in θ to 0 .
Find minimum where $\cos (\theta)+\theta \sin (\theta)=1$.
or, 2 . plot it.

3. Use the plot to derive the bound. (see GUI)

here, ratio is convex. So rose a supporting plane to get a lower bound

here, Teflon ≥ 1

How to solve UP:

$$
\max _{v_{1}, \ldots, v_{n}} \frac{1}{2} \sum_{(a, b)} 1-v_{a}^{\top} N_{b} \text { sit. } v_{a}^{\top} v_{a}=1 \text {, for all } a \text {. }
$$

This problem is linear in the Gram matrix:

$$
M(a, b)=V_{a}^{\top} v_{b} \quad M=V^{\top} V \text { where } V=\left(\begin{array}{cc}
1 & 1 \\
U_{1} & U_{u} \\
1 & \\
l
\end{array}\right)
$$

problem becomes $\max \frac{1}{2} \sum_{(a, b) \in E} 1-M(a, b)$ s.t. $\mu(a, a)=1, \forall a$ and M is a Gram matrix.

Claim:
M is a Grow matrix iff M is positive semidefinite. proof $M=U^{\top} U \Rightarrow x^{\top} M x=x^{\top} U^{\top} U x \geqslant 0, \forall x$ and if M is psd, can find a Clulesty Factorization,

$$
M=L L^{\top},
$$

so, M is the Gran matrix of $U=L^{\top}$.

So, solve

$$
\max \frac{1}{2} \sum_{(a, b) \in E} 1-M(a, b) \text { sit. } M \geqslant 0, M(a, a)=1, \forall_{a}
$$

Cholesty factor $M=L L^{\top}$ $x=\operatorname{sign}\left(u^{\top} U\right)$ for a random vector u

