Will prove the following are NP-complete
Exact Cover
Solving most linear equations
Sparse solutions to linear equations
Then discuss
Low-tank matrix completion
Non-negative matrix factorization
Subset Sum
3-colarability

Exact Cover
Algebraic statement:
input is a $m-b_{y}-n$ matrix A with $\left\{\theta_{1}\right\}$ entries.
answer is "yes" if $\exists x \in\left\{O_{1}\right\}^{n}$ sit. $A x=\mathbb{1}$

Combinatorial statement:
Given sets $A_{11} \ldots, A_{n}$, each a subset of $\{1, \ldots k\}$ does there exist $S \subseteq\{1, \ldots, n\}$ sit.
$\forall i \in\{l . . k\}$ there is exactly one $j \in S$ sit. $i \in A_{j}$

That is, a collection of sets that covers each element exactly once

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Is NP-complete. Clearly in NP. will prove hardness later.
$k-L_{\text {in : }}$ given $a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}, b_{1}, \ldots, b_{m} \in \mathbb{R}_{1} \quad k \in \mathbb{N}$ does there exist an $x \in \mathbb{R}^{n}$ st.
\# $\left\{i=a_{i}^{\top} x=t_{i}\right\} \geq k$.
Is there an x that satisfies at least k of the equations?

Note: is easy when $k=m$.

Exact Cover $s_{p} k$-Lin
We will reduce Exact lover to $k-L i n$, thereby proving that k-lin is Np-hord.

Let A be the input to Exact Cover, and let its dimensions be $m-b y-n$.
Let a_{i} be the $i^{\text {th }}$ row of A.
The list of equations will include $a_{i}^{\top} x=1$

But, we also need equations to force the entries of x to be in $\{0,1\}$.
So, add in equations $e_{j}^{\top} x=1$ and $e_{j}^{\top} x=0$, for all $(\leqslant j \leq n$, i.e. $x(j)=1$ and $x(j)=0$

There we now $m+2 n$ equations.
set $k=m+n$.
$A \in$ Exact Cover \Rightarrow equations, $k \in k-L_{\text {in }}$
if $A x=1$ and $x \in\{0,1\}^{n}$,
then the m equations $a_{i}^{\top} x=1$ are satisfied, as are n of the equations $e_{j}^{\top} x=1, e_{j}^{\top} x=0$
equations, $k \in k-L i n \Rightarrow A \in$ Exact Cover.
It is only possible to satisfy one of the equations $e_{j}^{\top} x=1$ and $e_{j}^{\top} x=0$
So, at least n equations must be unsatisfied. As there are $m+2 n$ equations and at least $k=m+n$ are satisfied,
it must be the case that for ever $1 s i s n$, $a_{i}^{\top} x=1$
and for every j, are of the equations $e_{j}^{\top} x=1$ and $e_{j}^{\top} x=0$ is satisfied.

$$
\Rightarrow x \in\left\{0_{1}(\}^{n}\right.
$$

Sparse-Lin: Sparse solutions to linear equations, Given $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, k \in \mathbb{N}$
Does there exist $x \in \mathbb{R}^{n}$ sit. $A x=b$
and \# $\{j: x(j) \neq 0\}=k$?
That is, x has exactly k non-zeros.

Sparse-Lin is NP-complete.
Is in NP because can check if $A x=b$
in polynomial time, and x can not be to big. Is VP-hard because Exact (over \leqslant Sparse-Lin

Let \hat{A} be the matrix that is input to Exact Cover.
We will, of course, require $\hat{A} x=\mathbb{1}$
But, we need to force $x \in\left\{0_{1} 1\right\}^{n}$.
To do so, we add a vector of n variables, y,
and equations $x(j)+y(j)=1$, for $1 \leq j \leq n$. We then set $k=n$.

$$
A=\left(\begin{array}{ll}
\hat{A} & 0 \\
I & I
\end{array}\right) \quad b=\binom{\mathbb{I}}{\mathbb{1}}
$$

$\hat{A} \in$ Sparse-Lin \Rightarrow equations have k-sparse solution
proof: let $x \in\{0,1\}^{n}$ satisfy $\hat{A} x=\mathbb{1}$,
and set $y C_{j l}=1-x(j)$.
Exactly n variables are 1 and n are 0 .

$$
(k=n)
$$

equations have a k-sparse solution $\Rightarrow \hat{A} \in$ Sperse-Lin.
As $k=n$, this means that n variables must te zero.
As we can not have $x(j)=0$ and $y(j)=0$, it must be the case that for every $j \quad x(j)=0$ and $y(j)=1$
or $x(j)=1$ and $y(j)=0$
So, $x \in\left\{0_{1},\right\}^{n}$, and $\hat{A} x=\mathbb{1}$

Exact Cover is NP-hard. because C-SAT \leqslant_{p} Exact Cover.

Recall C-SAT: given a circuit, is there an input that makes the output 1 ?

To ease description, we will give better names to elements of the set than $\{1.1 k\}$.

Let g_{1}, \ldots, g_{k} be the AND, OR, NOT gates. Create an element for each, called G_{1}, \ldots, G_{k} Call the arrows connecting gates (and inputs) wires $\omega_{1}, \ldots, \omega_{m}$, and make an element for each, $\omega_{1 . . .} \omega_{m}$

Finally, for each wire we create 4 more elements $I_{j}^{0}, I_{j}^{\prime}, O_{j}^{0}$ and O_{j}^{\prime}, which stand for in and out on wire j.

The idea is that if a wire is transmitting abitb, then that corresponds to elements I_{j}^{b} and O_{j}^{b}

We now need to describe the sets.
These will correspond to allowable input/output relations at the gates and the wires.

If ω_{a} and ω_{b} are the wires going in to gate g_{j} and ω_{c} is the wire going out, and $\alpha \in\{0,1\}, \beta \in\{0,3, \gamma \in\{0,1\}$ are values st. $g_{j}(\alpha, \beta)=\gamma$
then we include set $\left\{O_{a}^{\alpha}, O_{b}^{\beta}, I_{c}^{\gamma}, G_{j}\right\}$

For example, if g_{j} is an AND we create sets

These we the only 4 sets containing G_{j}
This may be clearer if I draw the circuit, skip names, and jest highlight elements in the set

If g_{j} is a NOT, it gets 2 sets like

Similarly, an OR gate gets 4 sets like

$$
\begin{aligned}
& \left\{O_{a}^{0}, O_{b}^{0}, O_{c}^{0}, G_{j}\right\} \\
& \left\{O_{a}^{\prime}, O_{b}^{0}, O_{c}^{\prime}, G_{j}\right\} \\
& \left\{O_{a}^{0}, O_{b}^{\prime}, O_{c}^{\prime}, G_{j}\right\} \\
& \left\{O_{a}^{\prime}, O_{b}^{\prime}, O_{c}^{\prime}, G_{j}\right\}
\end{aligned}
$$

If a gate has many outputs, we indude all of them.
For the output gate we only include the sets in which the output is true.

For each gate, we should choose the set that corresponds to the values on the wires attached to it.

For wire ω_{i}, we create two sets $\left\{I_{i}^{0}, \omega_{i}, O_{i}^{0}\right\}$ and $\left\{I_{i}^{1}, \omega_{i}, O_{i}^{1}\right\}$ we include in the exact cover the one of these that does NOT correspond to the values on the wire.

For input x_{i}, with outputs on wires $\omega_{a_{1}}, \ldots \omega_{c}$, we create two sets:

$$
\left\{x_{i}, O_{a}^{0} \ldots, O_{c}^{0}\right\} \text { and }\left\{x_{i}, O_{a}^{1}, \ldots, O_{c}^{1}\right\}
$$

I now claim, and sketch, that this system has an exact set cover iff the circuit is sat is fable.

I'll just sketch the correspondence between a satisfying assignment and an exact cover.

5 am color means same set.

Just the gate sets

If each element is in exactly one set:
the wire sets guarantee exactly one value, O/1, is unused or each wire.

The gate sets guarantee that the used values on wires obey the ruler of the gates.

More NP-complete problems (until time runs out)

Subset Sum.
Input integers a_{1}, \ldots, a_{n}, t, where t is "target"
Answer "yes" if $\exists S \leqslant\left\{l_{1} \ldots, n\right\}$ sit. $\sum_{i \in S} a_{i}=t$
Algebraic version: Given $a \in \mathbb{Z}^{n}$ and t is there an $x \in\{0,1\}^{n}$ st. $a^{\top} x=t$?

Exact Cover \leqslant_{p} Subset Sum

Exact lover asks if $3 x \in\left\{0_{1} 1\right\}^{n}$ sit. $A x=\mathbb{1}$

This holds iff for all $y, y^{\top} A x=y^{\top} \mathbb{1}$
Think of $a=y^{\top} A$ and $t=y^{\top} \mathbb{1}$.
But we want one y for all x.
Note $A_{x} \in\{0,1, \ldots m\}^{n}$
So, set $y=\left(1, m+1,(m+1)^{2}, \ldots,(m+1)^{n-1}\right)$
C (aim $A x=\mathbb{1}$ iff $y^{\top} A x=y^{\top} \mathbb{1}$
proof: for $z \in\{0,1, \ldots, m\}^{n}$,
$y^{\top} z$ uniquely determines z

NMF: (non-negative matrix factorization)
Given a matrix $A \in \mathbb{R}_{+}^{m \times n}$ of tank K
"Yes" if there exist $U \in \mathbb{R}_{+}^{m \times k}$ and $\cup \in \mathbb{R}_{+}^{k \times n}$ sit. $U U V=A$
(Vavasis 'OQ, maybe Shitou '16)

Low-tenk matrix completion:
Given $A \in \mathbb{R}^{m \times n}$, integer K, and

$$
S \subseteq\{1 \ldots m\} \times\{1 \ldots n\}
$$

"Yes" if $\exists B \in \mathbb{R}^{m \times n}$ of tank $\leq k$ s.t.

$$
A(i, j)=B(i, j) \text { for all }(i, j) \in S \text {. }
$$

Consider entries not in S unknown.
Can we fill in the unknown entries to get tank $\leq k$,
(Deters '96)

Both can be proved NP-hard by reductions from k-color. Given $G=(U, E)$, a k-coloring of G is a

$$
c: U \rightarrow\left\{l_{1, \ldots}, k\right\} \quad \text { (colors) }
$$

sit. for all $(a, t) \in E \quad c(a) \neq c(t)$

K-color: Given G and K, does G have a k-coloring?

Is hard even for $k=3$.

For every $\delta>0$, if can distinguish n^{δ} colorable from
$n^{1-\delta}$ colorable,
then NP \subseteq ZPP (zero-etror rodomized polynomial time)

