Why derivatives?
If we wart to minimize functions, we need to think about derivatives.
If x minimizes $f(x)$, then $\frac{\partial f}{\partial x(i)}=0$ for all i (necessary, but not sufficient)

If this does not hold, then can decrease f.

Recall, derivative of f at a gives a linear approximation of f.

In one variable

$$
f(a+\delta) \approx f(a)+\delta f^{\prime}(a)
$$

\uparrow linear in δ.

Means $\lim _{\delta \rightarrow 0} \frac{f(a+\delta)-f(a)}{\delta} \rightarrow f^{\prime}(a)$

If $f^{\prime}(a)>0$, small negative δ decreases f
<0, small positive"
$f^{\prime}(a)=0$ does not imply a is a minimum

$$
f(x)=x^{3}
$$

$$
f^{\prime}(0)=0
$$

Def
f is continuous if $f(x) \rightarrow f(y)$

$$
\cos x \rightarrow y
$$

f is differentiable if $f^{\prime}(t)$
exists for all x

$$
f(x)=|x|
$$

f is continuously differentiable if $f^{\prime \prime}(x)$ is a continuous function
not continuous

$$
f(x)= \begin{cases}1 & x>0 \\ 0 & x \leq 0\end{cases}
$$

-

$$
f(x)=\left\{\begin{array}{cc}
x^{2} \sin (1 x) & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

strange if continuous \& diffectiable tut not c^{\prime}
C^{1} but not C^{2}
f is in C^{k} if first k derives mes exist and are continuous.

$$
f(x)= \begin{cases}x^{2} & x>0 \\ 0 & x=0\end{cases}
$$

$$
f^{\prime}:
$$

\qquad
Branches and comparizars break continuity. But only at a few points.

$$
f^{\prime \prime}=\left[\begin{array}{l}
2 \\
0
\end{array}\right.
$$

we core about derivatives where they exist

In many variables, $x \in \mathbb{R}^{n}, \delta \in \mathbb{R}^{n}$
Vary $x(i)$ while treating other variables as constants

$$
\begin{aligned}
& f(a(1)+\delta(1), a(2) \ldots a(u))-f(a(1), \ldots, a(a)) \\
& \\
& \approx \delta(1) \frac{\partial f}{\partial \times(1)}(a) \\
& f(a+\delta)
\end{aligned} \begin{aligned}
& \approx f(a)+\sum_{i} \delta(i) \frac{\partial f}{\partial a(i)} \\
& =f(a)+(\nabla f)(a)^{\top} \delta
\end{aligned}
$$

$(\nabla f)(a)$ is the colcimn vector $\left(\frac{\partial f}{\partial \times(1)}(a), \ldots, \frac{\partial f}{\partial \times(a)}(a)\right)$
Called the gradient.
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at a if $\exists g \in \mathbb{R}^{n}$ st.

$$
\lim _{\varepsilon \rightarrow 0} \sup _{\|\delta\|_{2} \leq \varepsilon} \frac{\left|f(a+\delta)-\left(f(a)+g^{\top} \delta\right)\right|}{\|\delta\|} \rightarrow 0
$$

In which case $g=(\nabla f)(a)$
That is, the linear approximation is good, and improves for smaller δ.

Automatic differentiation: Code that computes derivatives Not symbolic, not a numerical approximation

Forward mode
Compute intermediate terms in order, y_{1}, \ldots, y_{m} $y_{i}=f_{i}\left(x_{1}, x_{n}, y_{1, \ldots} y_{i-1}\right)$ depends on previous. Usually f_{i} depens on one or two of these.

Eg. $f(x)=\frac{\exp \left(x^{2}-x\right)}{x}$ connate $\frac{d y_{i}}{d x}$ in order,

$$
\begin{aligned}
& x \widetilde{y_{1}=x^{2}} \\
& \downarrow \\
& y_{2}=y_{1}-x \\
& \downarrow \\
& y_{3}=\exp \left(y_{2}\right) \\
& y_{y}=y_{3} / x
\end{aligned}
$$ using previous.

$$
\begin{aligned}
& \frac{d y_{1}}{d x}=2 x \\
& \frac{d y_{2}}{d x}=\frac{d y_{1}}{d x}-\frac{d x}{d x}=2 x-1 \\
& \frac{d y_{3}}{d x}=\frac{d \exp \left(y_{2}\right)}{d x}=\exp \left(y_{2}\right) \cdot \frac{d y_{2}}{d x}
\end{aligned}
$$

and so on.

Can turn (almost) cay program into this form, for cony input.
Will get different circuits/graphs for different inputs because of branches.
Continuous when brach conditions are not tight.
\# of steps here is \# of operations

Example fund (x, k)

$$
z=1
$$

for i in 1 to k

$$
z=x+\frac{1}{z}
$$

return z
Only differentiable in x.
If call with fund $(x, 3)$ get

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=1 / y_{1} \\
& y_{3}=x+y_{2} \\
& y_{4}=1 / y_{3} \\
& y_{5}=x+y_{4} \\
& y_{6}=1 / y_{5} \\
& y_{7}=x+y_{6}
\end{aligned}
$$

Key idea: for each function y_{i} only need to compare $y_{i}(a)$ and $y_{i}^{\prime}(0)=\frac{d}{d x} y_{i}(a)$

Examples: If

$$
\begin{array}{ll}
y_{k}=y_{i}+y_{j} & y_{k}^{\prime}=y_{i}^{\prime}+y_{j}^{\prime} \\
y_{k}=y_{i} \cdot y_{j} & y_{k}^{\prime}=y_{i} y_{j}^{\prime}+y_{j} y_{i}^{\prime} \\
y_{k}=\frac{y_{i}}{y_{j}} & y_{k}^{\prime}=\frac{y_{i} y_{j}^{\prime}-y_{i}^{\prime} y_{j}}{y_{j}^{2}} \\
y_{k}=\exp \left(y_{i}\right) & y_{k}^{\prime}=\exp \left(y_{i}\right) y_{i}^{\prime}
\end{array}
$$

Chain rule says $(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

$$
\text { so } y_{k}=g\left(y_{i}\right) \quad y_{k}^{\prime}=g^{\prime}\left(y_{i}\right) \cdot y_{i}^{\prime}
$$

In fact, can handle a multi-input g

$$
y_{k}=g\left(y_{i}, \ldots, y_{j}\right)
$$

By multivariate chain rule

$$
\begin{aligned}
\frac{d}{d x} y_{k}(x) & =\frac{d}{d x} g\left(y_{i}\left(x, \ldots, y_{j}(x)\right)\right. \\
& =\sum_{h=i}^{j} \frac{\partial g}{\partial y h} \frac{d y_{h}}{d x}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x \\
& y_{3}=y_{2} \\
& y_{4}=y_{1} \cdot y_{2} \cdot y_{3}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y_{4}}{d x} & =\frac{\partial y_{4}}{\partial y_{1}} \cdot \frac{d y_{1}}{d x}+\frac{\partial y_{4}}{\partial y_{2}} \cdot \frac{d y_{2}}{d x}+\frac{\partial y_{4}}{\partial y_{3}} \cdot \frac{d y_{3}}{d x} \\
& =y_{2} y_{3} \cdot \frac{d y_{1}}{d x}+y_{1} y_{3} \frac{d y_{2}}{d x}+y_{1} y_{2} \frac{d y_{3}}{d x} \\
1 & \frac{d y_{3}}{d y_{2}} \cdot \frac{d y_{2}}{d x}=1
\end{aligned}
$$

$$
=y_{2} y_{3}+y_{1} y_{3}+y_{1} y_{2}
$$

$$
=3 x^{2}
$$

Let's see why is true.
First, in ane variable

$$
\begin{aligned}
f(y(a+\delta)) & \approx f\left(y(a)+\delta y^{\prime}(a)\right) \\
& \approx f(y(a))+f^{\prime}(y(a)) \cdot \delta y^{\prime}(a) \\
& =f(y(a))+\delta \cdot f^{\prime}(y(a)) \cdot y^{\prime}(a)
\end{aligned}
$$

In many

$$
\begin{aligned}
& f\left(y_{1}(a+\delta), \cdots, y_{n}(a+\delta)\right) \\
& \approx f\left(y_{1}(a)+\delta y_{1}^{\prime}(a), \ldots, y_{n}(a)+\delta y_{n}^{\prime}(a)\right) \\
& \approx f\left(y_{1}(a), \cdots y_{n}(a)\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial y_{i}} \cdot \delta y_{i}^{\prime}(a)
\end{aligned}
$$

If $y: \mathbb{R} \rightarrow \mathbb{R}^{n} a \rightarrow\left(y_{1}(a), \ldots, y_{n}(a)\right)$

$$
y^{\prime}(a)=\left(y_{1}^{\prime}(a), \ldots, y_{n}^{\prime}(a)\right)
$$

can write as $(\nabla f)(a)^{\top} y$
Forward mode: compute $f(a)$ and $f^{\prime}(a)$ in essentially 3 times as many operations as to compare $f(a)$ alone.

For $\quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad f\left(x_{1}, \ldots, x_{n}\right)$
compute $f(x)$ and $\frac{\partial f}{\partial x_{1}}$
then $f(x)$ and $\frac{\partial f}{\partial x_{2}}$
etc.
Get $f(x),(V f) C x$ in $3 n$ times as may steps as for $f(x)$.
Car reduce cost by computing all simultaneously.
But uses more memory.
Reverse mode saves a factor of n
Reverse mode uses two parses.
forward: compute $y_{i}(a)$ for every i, as casual.
and $\frac{\partial y_{j}}{\partial y_{i}}(a)$ for every i that is an input to j (usually 1 or 2)

Then, a reverse pass to compute $\frac{\partial f}{\partial y_{i}}$ for each i, from m down to 1 and then $\frac{\partial f}{\partial x_{i}}$

What does this mean?

$$
f=y_{m}, \text { so } \frac{\partial f}{\partial y_{m}}=1
$$

When I say $\frac{\partial f}{\partial y_{i}}$ I mean to view f as a function of $x_{1 \ldots} x_{n}$ and $y_{1} \ldots y_{i}$ treating all of those as varrabler.
And, for $j>i \quad y_{j}=f_{j}\left(x_{1}, x_{n}, y_{1} \ldots y_{i}\right)$
Formally, let $F_{i}\left(x_{\ldots}, x_{m}, y_{1}, \ldots, y_{i}\right)$
be the function determined by $(*)$, output is $y_{m}=f$. we compute $\frac{\partial F_{i}}{\partial Y_{i}}$, and finish with $\frac{\partial F_{0}}{\partial x_{i}}$ for each i

To compare $\frac{\partial F_{i}}{\partial y_{i}}$, treat $x_{1} . x_{n}, y_{1} . y_{i-1}$ as fixed, so $F_{i}=h\left(f_{k}\left(\bar{x}, y_{1 .}, y_{i}\right)\right.$ for f_{k} taking i as input $)$

The chain rule tells us that

$$
\frac{\partial F_{i}}{\partial y_{i}}=\sum_{k \text { st. } i \text { is input to } k} \frac{\partial F}{\partial y_{k}} \frac{\partial y_{k}}{\partial y_{i}}
$$

$\frac{\partial_{Y_{k}}}{\partial y_{i}}$ was computed in forward pass
$k>i$, so $\frac{\partial F}{\partial y k}$ computed earlier in backward pass.

Example $\quad f\left(x_{1}, x_{2}\right)=x_{1} \cdot \exp \left(x_{2}\right)-x_{1}$

$$
\begin{aligned}
& y_{1}=\exp \left(x_{2}\right) \\
& y_{2}=x_{1} \cdot y_{1} \\
& y_{3}=y_{2}-x_{1}
\end{aligned}
$$

forwards, with input a_{1}, a_{2}
compute $\quad y_{1}=\exp \left(a_{2}\right) \quad \frac{d y_{1}}{d x_{2}}=\exp \left(a_{2}\right)$

$$
\begin{array}{rlrl}
y_{2}=a_{1} \cdot \exp \left(a_{2}\right) \quad \frac{d y_{2}}{d y_{1}} & =a_{1} \quad \frac{d y_{2}}{d x_{1}} & =y_{1} \\
& =a_{1} & & =\exp \left(a_{2}\right) \\
y_{3}=a_{1} \cdot \exp \left(a_{2}\right)-a_{1} \quad \frac{d y_{3}}{d y_{2}} & =1 \quad \frac{d y_{3}}{d x_{1}} & =-1
\end{array}
$$

Backwards: $\frac{\partial f}{\partial y_{3}}=1$

$$
\begin{aligned}
& \frac{\partial f}{\partial y_{2}}=\frac{\partial f}{\partial y_{3}} \cdot \frac{\partial y_{3}}{\partial y_{2}}=1 \cdot 1=1 \\
& \frac{\partial f}{\partial y_{1}}=\frac{\partial f}{\partial y_{2}} \cdot \frac{\partial y_{2}}{\partial y_{1}}=1 \cdot a_{1}=a_{1} \\
& \frac{\partial f}{\partial x_{2}}=\frac{\partial f}{\partial y_{1}} \frac{\partial y_{1}}{\partial x_{2}}=a_{1} \cdot \exp \left(a_{2}\right) \\
& \frac{\partial f}{\partial x_{1}}=\frac{\partial f}{\partial y_{2}} \frac{\partial y_{2}}{\partial x_{1}}+\frac{\partial f}{\partial y_{3}} \frac{\partial y_{3}}{\partial x_{1}}=1 \cdot y_{1}+1 \cdot(-1)=y_{1}-1 \\
& \exp \left(a_{2}\right)-1
\end{aligned}
$$

Problems: have to store everything, so memory use is proportional to time. Are ways to make that better.

Stopped Here

Comparing derivatives in one variable.
Could use definition

$$
f^{\prime}(a)=\lim _{\delta \rightarrow 0} \frac{f(a+\delta)-f(a)}{\delta} \text { tor some } \delta \text {. }
$$

Precision issues, Let \tilde{f} be ult we compute in floating point, and a be precision.
So, $|f(a)-\tilde{f}(a)| \approx u|f(a)|$

$$
|f(a+\delta)-\tilde{f}(a+\delta)| \approx u|f(a+\delta)| \approx u|f(a)|
$$

let L best.

$$
f(a+\delta) \approx f(a)+\delta f^{\prime}(a)+\delta^{2} L \quad \text { (taylor series) }
$$

So, $\left|\frac{\tilde{f}(a+\delta)-\tilde{f}(a)}{\delta}-f^{\prime}(a)\right|$

$$
\begin{aligned}
& \approx\left|\frac{f(a+\delta)-f(a)}{\delta}-f^{\prime}(a)\right|+\frac{2 u|f(a)|}{\delta} \\
& \approx \frac{L \delta^{2}}{\delta}+\frac{2 u|f(a)|}{\delta} \approx L \delta+\frac{2 u|f(a)|}{\delta}
\end{aligned}
$$

minimized when $\delta^{2}=\frac{u|f(a)|}{L} \quad \delta^{2} \sim \sqrt{u}$

