
 

1 Logistics Material in
Gray was not

2 Overview of the class and covered

a few definitions and examples

3 Issues with real computers

floating point
memory hierarchy

S DS 631 Dane Spielman or Prof Dan

is a graduate course

Compared to undergrad courses is

Cruder
less well organized
assumes more maturity
students can survive my mistakes

Goes double because this is the first offering

Plans will change

Pre regs Multivariate Calc Linear Algebra

Probability probably
Exposure to programming

Materials will draw on free materials
and produce notes like this

Examples in Julia But no programming assignments

TF Tracey Xinyi Zhong
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Work Semi regular homework math problems

Midterm in class on Tuesday March 21

Final May 6 at 2pm last time slot

Why I created this course

A lot of work in S DS involves

Optimization and numerical algorithms

Many advanced classes assume a basic understanding

So want to create an elementary systematic

introduction
If we can't compute it we can't do it

Need to know about what we can and cannot

solve efficiently
NP completeness
How to measure running times of algorithms

Other S DS courses will eventually assume this one

Might turn it in to continuous CS 365 366

Programming Wanted to but couldn't fit it



Motivating optimization problems

least squares
M At blk Holle quip

2

Should say argmin because usually want

Ridge regression Min HAE HE NINE X O

also least squares but faster

Linear Programming Main tax Hla Hulks meax Infill

min Ktx bae Hull I WIN

b penalized myin
MAX HI t 111 11 LASSO

Conicprogramming

to sparse main Hair Hit Hkko 1146 1 i Kitto 31

Is NP hard So approximate by l

Regularized Empirical Fist minimization logistic Neural Nets

min RCH t Ifi CH
X i

0 constrained Min Efi CH
St get E O

i



Convex problems can always solve

Will cover linear programming and its geometry

Will explain simple method
and first order optimization methods
Not the fastest but an introduction

SVD and semidefinite programming

Nonconvex often NP Hard
2 weeks on hard problems

sometimes solvable when inputs satisfy
nice properties we will study

Examples lo regularized least squares
Matrix Completion by Nuclear Norm

minimization

How you know when you've
solved a problem

Duality Lagrange Multipliers KET conditions



Measuring runtime count of operations

t I L Z branch goto memory reference

For many numerical algs just count arithmetic

ops when their cost dominates

But memory access takes much longer

Modern computers employ multiple caches

fast small memories with a speed size tradeoff

Result is that recently accessed memory is faster

First measure run time as a function of

the size of the input n

Size of parameters numbers or bits

Worry most about scaling

That allows you to extrapolate from small trials



Express using O notation

If time is TCM I write TCM Offal
if F C St t n z 1 Tcu E Cfcn

Warning the standard is
to write OH

I am trying to fix that

But other parameters are important
life accuracy e

Say want and I St HAE DIL E E

Might write 1 ne t 0 fcn 41

meaning Fc Eo 0 no 0 sit

An no e so Tcn e e C f n e

Here n would be lengthof 1st product of
dimensions of A

Will often measure her time in terms of

parameters of the input like the

condition number of the problem

Might examine how tardon noise impacts these parameters

Usually want f to be a polynomial in n cud le

NP nondeterministic polynomial
probably not polynomial time



Accuracy Say our problem is to compute CCx

and our code outputs IN

absolute Federer is HFCH fall
For now I leave the norm unspecified

if CCHE IR then HGH is a good choice

relative Forward error is HEH FAH
411

Error could result from time accuracy tradeoff

Or floating point
Tep numbers as I b et e 1023

b E 252

So I lo
t 1

Smallest u sit I U 1 is machine precision

Backwarderrore is 11 x IK sit HEI ICH

the closest problem for which fCE
is the right answer

Relative Backwards error is 1 11
11 4



E Fix matrix A and let faCbl y Ay b

Assume A invertible so fACH A b

If our alg returns 7
forward error is Hy TH

backward error is 1lb A TH can measure

this one

The condition numbers

Measure how output cleanses uher make a small

change in the input

View problem as a function f x

let 8x be small change and

of f Ox fCx

Absolute condition number at
x is

118ft
IF Lim sup

E so 110 11 ee 11041

forwards error
backwardsetroT

In our example I Hy TH
yT

11dL
HAIdyll

setting Ob Aoh this is HA SHI
TE



The operator norm of a matrix A is

HAIL
M 8 FIL how much A car blow up a vector

So If HAH

This norm is different from the
Frobenius norm of A little Ej Aci.jp

2

Which treats the matrix as a vector

I f f i IR IR is differentiable then

if 11 Of 11 where Of 8

More on this later

We will usually work with the

Relative Condition Number It

Liao iii Effi



The relative condition number of multiplication by A

at x is thus k A If

aioli to i t
E HAHHA II

This is tight if we choose

a sit HAartsIl HAK HAK and

y sit Kitty Il HA'll Kyll


