Today: The following are NP-hard:
Maximizing a convex function over a convex set.
Finding the point of largest norm in a polytope ($A x \leq b$)
Computing a matrix p-norm, $\|M\|_{p,} 2<p<\infty$
All will follow from reductions from Max-Cut.
This is a graph problem.
Recall that a graph G, usually written $G=(U, E)$, consists of a set of vertices (aka "nodes"), U, and edges E connecting pairs of nodes.
Each edge is a subset of V of ste?, bat we write the pair in pwentheres, like (a, b) Ex 1 Social network
Ex 2

A "cut" is a subset of the vertices, $s \subset V$.
We count the size of the boundary of $S, \partial(S)$
= edges from inside to outside S

The maximum cut is $\max (u t)(G)=\max _{S \subset V}(\partial(S) \mid$
To make into a decision problem, we give G ad k aces input.
$(G, k) \in \operatorname{Max}$ Cut if $\exists S \subset V$ sit. $|\partial(S)| \geqslant K$
answer is "yes" if G has a cut of size $\geqslant k$

Max Cut is in NP: S is the witness And, it is NP-complete.

One can not even approximate its value.
Hastad 'OI proved is UP-hard to even approximate within a factor 18/17.
That is, for every problem $Y \in N P$,
\exists a polynomial time algorithm A that outpats G, K sit. $q \in Y \Rightarrow G$ has a cut of size $\geq k$
$q \notin U \Rightarrow$ all cuts in G are smaller than $\frac{17}{18} K$

The result is a little tighter than this: $\frac{17}{16}+\varepsilon$
Is a very deep and complicated result building on a decade of research by many luminaries.

Degree of a vertex is \# of attached edges:

$$
d_{a}=|\{b:(a, b) \in E\}|
$$

Degree 3-Graphs: Berman \& Karpinsti 'O2 reduce to graphs in which every vertex has degree 3 and

$$
\begin{aligned}
& q \in U \Rightarrow \operatorname{maxcut}(G) \geq k \\
& q \notin U \Rightarrow \operatorname{maxcut}(G) \leq \frac{332}{333} K=\left(1-\frac{1}{333}\right) k
\end{aligned}
$$

Will we this for p-norms.

Maximizing convex functions over convex sets

The maximum will be on the boundary, and values inside wont be very helpful.

Claim: the maximum will be at a "corner".

Def x is an extreme point of a convex set C if there do NOT exist $y, z \in C$ and $\lambda \in(0,1)$ sit.

$$
x=\lambda y+(1-\lambda) z .
$$

Equivalently, for $\delta \neq 0, x+\delta \in C \Rightarrow x-\delta \notin C$. When C is a polytope like $A x \leq 6$, the extreme points are the corners.

Idea of proof for $\left\{x=\|x\|_{\infty} \leq 1\right\}$
Let $y=(1, x(2), \ldots, x(n)) \quad z=(-1, x(2), \ldots, x(n))$

$$
x \in \overline{y z}
$$

Convexity $\Rightarrow \max (f(y), f(z)) \geq f(x)$.
So, go to one of y ad z.

Repeat for each coordinate Eventually hit a corner

Proof. (for polytopes) let x_{*} be the maximum. By Corathedorys theorem, y Crathedorys theorem,
\exists corners v_{0}, \ldots, v_{d} sit. $X_{*}=\sum_{i=0}^{d} \lambda_{i} v_{i}$

$$
\lambda_{i} \geq 0, \quad \sum \lambda_{i}=1
$$

Convexity $\Rightarrow f\left(x_{*}\right) \leq \sum_{i=0}^{d} \lambda_{i} f\left(v_{i}\right)$

$$
\Rightarrow \exists v_{i} \text { sit. } f\left(v_{i}\right) \geq f\left(x_{*}\right) \text {. }
$$

A convex relaxation of maxcut.
First, need to write algebraically.
let $n=|V|$. For a set S, let $x_{S}(a)=\left\{\begin{array}{r}1 \\ 1 \\ -1\end{array} a \notin S\right.$
Then, for $(a, b) \in E$

$$
\left|x_{s}(a)-x_{s}(b)\right|=\left\{\begin{array}{ll}
2 & \text { if }(a, 0) \in \partial(S) \\
0 & \text { o. w. }
\end{array} \text { (} \begin{array}{l}
a \in S, b \in S \\
\text { or } a \notin S, b \in S
\end{array}\right.
$$

So, $\frac{1}{4} \sum_{(a, b) \in E}\left(x_{s}(a)-x_{s}(t)\right)^{2}=|\partial(\delta)|$
Let $Q(x)=\frac{1}{4} \sum_{(a, b) \in E}(x(a)-x(t))^{2}$
Is a sum of squares, so it is convex.
Claim $\max _{\|x\|_{\infty} \leq 1} Q(x)=\operatorname{maxcat}(G)$

$$
\|x\|_{\infty} \leq 1
$$

So, have a polynomial time reduction from maxcut to problem of maximizing Q over $\|x\|_{\infty} \leq 1$, ce convex set.
\Rightarrow maximizing convex quadratics over $\|+\|_{\infty} \leq 1$ is NP hard.

The decision problem is: given $Q, t, \exists x:\|+\|_{\infty} \leq 1, Q(x) \geq t$? Is in $N P$.
proof If S_{*} maximizes $1 \partial(S)\left(, Q\left(x_{S_{*}}\right)=\max (u t(G)\right.$
So, $\max Q(x) \geq \operatorname{maxcut}(\epsilon)$.
The maximum X_{*} is at a corner, ad so $x_{*} \in\{ \pm 1\}^{n} \Rightarrow x_{*}=x_{s}$ for some S
And so, $Q\left(x_{*}\right)=Q\left(x_{s}\right)=|\partial(s)| \leq \operatorname{maxcut}(G)$

Note: Turned arbitrary maxcut problem into special convex quadratic.
If don't expect to solve maxcut, slouldr't expect to maximize convex quadratics.

It is a very special quadratic: the Laplacian $Q(x)=\frac{1}{4} x^{\top} L x$ where $L(a, b)=\left\{\begin{array}{cl}\text { degree of } a & \text { if } a=b \\ -1 & \text { if }(a, b) \in E \\ 0 & 0.00 .\end{array}\right.$

$$
\int(L x)(a)=d_{a} x(a)-\sum_{b=(a, b) \in E} x(a) x(b)
$$

So,

$$
\begin{aligned}
x^{\top} L x & =\sum_{a} d_{a} x(a)^{2}-\sum_{a} \sum_{b:(a, b) \in E} x(a) x(b) \\
& =\sum_{(a, b) \in E}\left(x(a)^{2}+x(b)^{2}\right)-2 \sum_{(a, b) \in E} x(a) x(b) \\
& =\sum_{(a, A) \in E}(x(a)-x(b))^{2}
\end{aligned}
$$

Thu The problem $\max _{x}\|x\|_{2}^{2}$ s.t. $A x \leq b$ is Np-hard
proof We will reduce the problem
(1) $\max _{x} x^{\top} L x$ sit. $\|x\|_{\infty} \leq 1$ to this one

Consider $x^{\top}(L+I) x=x^{\top} L x+x^{\top} x$
(2) $\max _{x} x^{\top}(L+I) x$ sit. $\|x\|_{\infty} \leqslant 1=(1)+n$

So, (2) is NP-hoerd
$L+I$ is positive definite.
So, $子$ invertible, symmetric B sit. $B^{\top} B=L+I$.

$$
x^{\top}(L+I) x=x^{\top} B^{\top} B x
$$

Set $y=B x, x=B^{-1} y$

Then, $(2)=\max _{y} y^{\top} y$ sit. $\|B y\|_{\infty} \leq 1$

$$
\|B y\|_{\infty} \leq 1 \Leftrightarrow b_{i}^{\top} y \leq 1 \text { and }-b_{i}^{\top} y \leq 1
$$

where $b_{1} . . b_{n}$ are rows of B.
So, can express $\left\|B_{y}\right\|_{\infty} \leq 1$ in form $A x \leq b$.

Matrix Norms for $p>2$.

$$
\|M\|_{p}=\max _{x} \frac{\left\|M_{x}\right\|_{p}}{\|x\|_{p}}=\max _{\|x\|_{p} \leq 1}\left\|M_{x}\right\|_{p}
$$

$p=2$ is max singular value
$P=\infty$ is $\max _{i}\|M(i, \cdot)\|_{1}$
$P=1$ is $\max _{i}\|M(\cdot, i)\|_{1}$
after we correct minor mistakes
For all other P is NP-hard.
Bhaskara \& Vijayaraghavan show is UP-hard to approximate within any constant.

Write $(M, t) \in$ Matrix p-norm if $\|M\|_{p} \geq t$
The For all $p>2, c>1$, and $Y \in N P$,
\exists poly time algorithm A that outputs Mat sit.

$$
\begin{aligned}
& q \in Y \Rightarrow\|M\|_{p} \geq c t \\
& q \notin Y \Rightarrow\|M\|_{p} \leq t
\end{aligned}
$$

Note $=A$ depends on C.
$\|M\| p$ is convex in M. But, it is hard to evaluate.

How prove this for all $c>1$?
First show for some $c>1$, and then amplify.
Recall the Kronecter product:

$$
A \otimes B=\left(\begin{array}{ccccc}
a_{11} B & a_{12} B & \cdots & a_{1 n} B \\
\vdots & & & & \\
a_{n 1} B & \cdots & & & a_{n n} B
\end{array}\right)
$$

Thu $\|A \oplus B\|_{p}=\|A\|_{p} \cdot\|B\|_{p}$.
proof sketch:

1. for vectors x and y,

$$
\|x \otimes y\|_{p}=\|x\|_{p} \cdot\|y\|_{p}
$$

and $(A \otimes B)(x \otimes y)=(A x) \otimes\left(B_{y}\right)$

$$
\Rightarrow \quad\|A \otimes B\|_{p} \geqslant\|A\|_{p}\|B\|_{p}
$$

2.

$$
A \otimes B=(A \otimes I)(I \otimes B)
$$

so $\|A \otimes B\|_{p} \leq\|A \otimes I\|_{p}\|I \otimes B\|_{p}=\|A\|_{p}\|B\|_{p}$
think about $I \otimes B=\left(\begin{array}{cccc}B & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & B & \\ & & \ddots & B\end{array}\right)$

So, if is hard to distinguish $\|M\|_{p} \leq s$ from $\geq b$ is hard to distinguish $\|M \otimes u\|_{p} \leq s^{2}$ from $\geq b^{2}$

This squares the inoproximability factor. Can do this any constant number of times, and still be a polynomial time reduction.

To get some constant:
Idea: want $\sum_{(a, a) \in E}|x(a)-x(b)|^{p}$
Bat, cant force $x(a) \in \pm 1$.

So, add terms to penalize $|x(a)| \notin\left(1-\varepsilon_{l}(+\varepsilon)\right.$

Claim: let $F(x)=\frac{|x+1|^{p}+|x-1|^{p}}{1+|x|^{p}}$
a. $F(\pm 1)=2^{P-1}$
b. $\forall x, F(x) \leq 2^{p-1}$
c. $\forall \varepsilon>0 \quad \exists \delta>0$ sit. $|x| \notin(1-\varepsilon, 1+\varepsilon)$

$$
\Rightarrow F[x] \leq 2^{p-1}-\delta
$$

Claim 2: $\forall \varepsilon>0 \quad \exists C>0$ st. for $F(x, y)=\frac{|x-y|^{p}+C\left[|x+1|^{p}+\left|x-u^{p}+\left|y+\left|\left.\right|^{p}+|y-1|^{p}\right]\right.\right.\right.}{2+|x|^{p}+|y|^{p}}$
if $x y<0$ and $x, y \in\left(1-\varepsilon_{1}(+\varepsilon)\right.$

$$
F(x, y) \leq C 2^{p-1}+\frac{(1+\varepsilon)^{p} 2^{p-1}}{2+|x|^{p}+|y|^{p}}
$$

If $x y \geq 0, x \notin(1-2,(t z)$ or $y \notin(l-\varepsilon,(+\varepsilon)$

$$
F(x, y) \leqslant C 2^{p-1}+\frac{(2 \varepsilon)^{p} 2^{p-1}}{2+|x|^{p}+|y|^{p}}
$$

For a 3 -regular graph G_{1} set

$$
g(x)=\frac{\sum_{(a) \in \in \in \in}|x(a)-x(p)|^{p}+3 C\left[|1+x(a)|^{p}+|1-x(a)|^{p}+|1+y(a)|^{p}+|1-y(a)|^{p}\right]}{3 n+3 \sum_{a}|x(a)|^{p}}
$$

Lem let $\operatorname{maxat}(G)=|\partial(S)|=\gamma \frac{3}{2} n$.

$$
\begin{aligned}
& g\left(X_{s}\right)=C 2^{p-1}+\gamma 2^{p-2}, \text { and } \\
& \forall x \quad g(x) \leq C 2^{p-1}+(2 \varepsilon)^{p} 2^{p-2}+\gamma(1+\varepsilon)^{p}(1-\varepsilon)^{p} 2^{p-2}
\end{aligned}
$$

For any $O<\gamma_{0}<\gamma_{1}$, is a small enough ε so that computing $\max _{x} g(x)$ allows one to distinguish

$$
\operatorname{maxcut}(G) \leq \gamma_{0} \frac{3}{2} n \text { from } \geq \gamma_{1}, \frac{3}{2} n
$$

So, is NP-hard to compute $\max _{x} g(x)$ to within some constant

To turn into a matrix, introduce new variable $x(0)$, which wont to have value $n^{1 / p}$ so $x(0) / n^{1 / p}=1$, and consider

$$
\frac{\left.\begin{array}{l}
\sum_{(a, b) \in E}|x(a)-x(b)|^{p} \\
+ \\
+3 C\left[\left|\frac{x(0)}{n^{1 / P}}-x(a)\right|^{p}+\left|\frac{x(0)}{n^{1 / P}}+x(a)\right|^{p}+\left|\frac{x(0)}{n^{1 / P}}-x(b)\right|^{p}+\left\lvert\, \frac{x(0)}{\left.n^{\frac{1}{1 / P}}-\left.x(0)\right|^{p}\right]}\right.\right.
\end{array} 3 \right\rvert\, x\left(\left.0\right|^{p}+3 \sum_{a}|x(a)|^{p}\right.}{}
$$

Show its max value is same aces max of g.
Denominator $=3\|x\|_{p}^{p}$ and
Numerator $=\|M \times\|_{p}^{p}$ for some matrix M.

So, is hard to compute $\max _{x} \frac{\|M x\|_{p}}{\|x\|_{p}}=\|M\|_{p}$,
and to approximate it up to some constant.

