NP = Non-deter-mnistic Polynomial Time is a large family of problems expect some are <u>not</u> solvable in polynomial time.

- I dea behind NP: (motivation before definition) Problems for which it might be hard to find the answer. But once found is easy to check.
- Like Systems of equations: takes work to find solution, but easy to check.
- Linear equations are in polynomial time, but systems of Polynomial Equations are hard. Abbreviate SPE.

We go with Problem 2, which has just yes (no answers. If "yes", is an x that you can (try to) check. If "no", there might not be.

Problems with res/no answers are called decision problems An NP- complete problem: 20,13-SPE Does there exist XE 20,13" sit. Pi(x)=0, Vi?

Now, the solution can not be tig: is in £0,11ⁿ. (an evaluate $P_i(X)$ in time polynomial in size(P_i), so can check x efficiently.

For yes assuers and x proving assuer is "yes" $P_{\overline{i}}(x) = 0$ ($\leq \overline{i} \leq k$, call x a witness, certificate, or proof.

For no answers there does not need to be,

Def A problem I (like
$$\{0,1\}$$
-SPE) is in NP
if $\exists a pdynomial - time algorithm A (witness checker)$
and constant c governing answer size
such that for all q (problem instances)
if $q \in I$ (valid and yes answer)
 $\exists w (witness) \quad s.t. \quad A(q, w) = \text{ res}^n$;
and $size(w) \leq c size(q)^c$
if $q \notin I$, $\forall w \quad s.t. \quad size(w) \leq c size(q)^c$
 $A(q, w) = \text{"no"}$

Sould-SPE is in NP

Def. A problem I is in P if

$$\exists a \text{ polynomial-time algorithm } A = st.$$

 $q \in Y \implies A(q) = "yes"$
 $q \notin Y \implies A(q) = "no"$

Linear feasibility: Ix s.t.
$$Ax \leq b$$
? is in P
Can turn optimization problems into decision problems:
ask if $\exists x \text{ s.t. } f(x) \leq t$ and $g(x) \leq 0$.
Then do search on t.
Can learn x by asking about its bits.
All this is in NP.

How do we prove something is NP-hard?

A binary boolean circuit has gates numbered link st. each is either a. on input (True (False 1/0) b. the negation (NOT) of a lower numbered gate L. the AND or OR of two lower numbered gates. Grate to the output.

Wolog inpats are gates I through n, and EZM.

Observation: can view every gate g; as a function of the imports. If all these equations are sat is field, t; = g; (x,..., xn), for all j.

Now, want to prove EOII3-SPE is NP-complete and SPE is NP-band.

We already argued $\xi_{0,1}$, SPE $\in NP$. Nul Now need to prove C-SAT $\leq p \xi_{0,1}$, SPE

> Let q be an input to C-SAT. That is a circuit. We need to translate into an instance of \$0,13-SPE

let g... gre be the gates in q, with g.....gu being the inputs, X1,..., Xn

Our instance of
$$\underbrace{10}, ij - SPE$$
 will have variables
 $y_{11}, y_{K,j}$ and $k - n + l$ equations.
If $g_j = Not(g_i)$ we add equation $y_j = l - y_i$
 $g_j = AND(g_{h}, g_i)$ " " $y_j = y_h y_i$
for $y_h, y_i \in \underbrace{10}, lj + y_i = is$ satisfied iff
 $y_j = AND(y_h, y_i)$
 $g_j = OR(g_{h}, g_i)$, add equation $y_j = y_h + y_i - y_h y_i$
To ensure g_K outputs true, add equation $y_k = l$
To pat these in proper form, rewrite as
 $NoT = y_j + y_i - l = 0$
 $AND(y_i - y_h y_i = 0$
 $OR = y_j - y_h - y_i + y_h y_i = 0$
 $Otiput y_k - l = 0$

So, if
$$\exists x_{1,...,X_n}$$
 st. $\Im_{E}(X_{1...,X_n}] = 1$,
setting $Y_{ij} = \Im_{ij}(X_{1...,X_n}]$, and $Y_{ij} = X_{ij}$ is is no
results in $Y_{1...,Y_{E}}$ satisfying all equations.
Conversely, if $Y_{1...,Y_{E}}$ satisfy all equations
 $\Im_{E}(Y_{1...,Y_{N}}) = 1$
We have reduced any circuit into a very
special system of quadratic equations.
This sort of system is hard to solve.
Thus sort of system is hard to solve.
Thus 2 for $SPE \leq_{P} SPE$
so SPE is NP -hard
proof use some equations on $x_{1...,X_{N}}$,
but add $X_{i}(1-X_{i}) = 0$, H_{i}
is satisfied iff $H \times i \in IO(1)$
SPE is hard, and probably not in NP ,
(in fact, we know is not).