
 

Outline
How to solve most convex optimization problems IRL

Polynomial time
Convex problems we can solve in polynomial time

To solve Mein fCH s't gG to

where fadg are convex

Can turn this into an unstrained problem
Last lecture we learned 32 0 sit

the solution is the global minimizer of

hcg fCH t XgCx
So can try to solve this unconstrained problem

How choose

If X O are just minimizing f
If X A just minimize g
As vary X from 0 to N let x be solution
fKY gets bigger and g xx gets smaller

Would like to do binary search on it to fingd CH O

or rather E eg x x e O which we hope isgoodenough



As we can not binary search on 0

instead consider U HAH tgCH for tin 0,13

and binary search on t

That is X

Interior Point Methods aka Batrier Methods
see Lauritzen 10.5

d release Consider mein fCH t E sit gCx E 0

Is constrained and looks more complicated
But is useful if can start at an to sit gcto LO

GCA is concave so GA is again convex
But as GCA o A

So any sort of local search like gradientmethods
will stay inside tegion where gCH 0

Usual idea is to first solve it when E is

big and then lower E Each time using
previous solution as starting point



B release Instead use fCH E log fget

As before logCget is convex for GCA a 0

And logGCHI 0 as gCH O Cfrombelow

This combination works better in practice

Version 1.0 Solve minfCH sat g.CH g H EO

by min fCH E logC gilt

Barrier Function

Start with a big
Decrease E on a multiplicative schedule like

a e I You

Don't need high accuracy solutions until E 0

Solve each problem starting from solution to

previous

Usually do solves using Newton's method or

a line search in Newton direction instead of
Gradient



Newton locally approximate F by Taylor expansion
to second order

F Extol FCA OFCATS EST 02 A on
where TFA is the Hessian the matrix

of OFOxi8xj

The 8 that minimizes this is FAI OFG
so step there or to a point along the line to it

Solves quadratics in one step

Usually needs very few steps
But each step requires solving a system of
linear equations which can be slow

Karmakar proved this method
solves linear Programs in polynomial time

A lot of fast code is based on this

Are extensions that work for many other
nice convex optimization problems
such as those specified by generalized inequalities
when the cores are well understood

e.g Positive Semidefinite Matrices



Polynomial Time what do we mean by this

An algorithm runs in polynomial time if
on inputs of size h it always performs E 0Cn4
Operations for some fixed Constanta

For example Gaussian Elimination of k by K
matrices has n K2 numbers as input and
teens in time EOCKS Ocn3k

There is an issue with how we measure input size
To do this light we should use bits

This usually doesn't change much
adding and comparing b bit s takes time to

Multiplying two b bit s takes time cOCblogb
thats a recent breakthrough

But during the factorization the s we encounter

require more bits
If we want to do it exactly we need to count
those

xn 32
Problems are life X 3 XE Xi T grows very quickly

Need to be careful if just want to approximate
or use floating point



g
we will see that IU factorization is polynomial time

even when count bits

Linear Programming is as well
But the of arithmetic operations grows
with the of bits

This is one difference between LU which requires
OCn 4 arithmetic ops regardless of the

numbers in the input and LP where for every
known poly time algorithm the of
arithmetic 0ps can grow with the of bits
in the input

This is rarely an important distinction

khat's going on with LP is that the of steps
depends on the log of the condition number

and this can grow with the number of fits

Approximately solving LP given c A b and e 0

We can find an sit Axe b

and CTX a Ctx E

In time polynomial in bits used to write GA b e



Once E is small enough we can round to

an exact Evolution
And this is polynomial time too



In order for exact LP to be in polynomial time
the size of the answer must be bounded
by a polynomial in the size of the input
We will verify that this holds

We first needto do it for systems of linear equations
like Ax b following Korte 4 1

Since we are talking about exact solutions
we will assume that each real number is a

tational We won't use floating point because we
want 3 1 to be solvable and you can't write 43
in floating point

You can write an integer between 0 ad 2 1

Using b bits But you first have to announce how

many bits you will use And how many bits you
will use to do that
Thesolution is to use Elias r codes

A simpler solution uses It Agathb bits

We will just use the fact that an integer x
can be represented with E 1 217 117 bits

Let's define Sitek to be the of bits we need
to write x



For x tt where y and z are integers
size G E size yl c size z

For integers Yi Y n l
size II Yi

c

I size Gil because

1 log it 4,7 E I Ttog y il

For rationals xi Yitzi

size II x il I sizeGil

because I Xi I
it Zi

Size C ti t 2 sizeAil

proof I Xi Ift i Iff i
IT 2 i
j c

which has size e JE sizeC il e size ti

for the denominator

and the numerator has absolute value at most

EHit Itzil

which again has size C 7 size Xi



We represent an n vector X Xu by writing n
followed by Xi Xu So its size is at most

sitecult If size a

tear For an n by n matrix A
size detCAM e 2 size A

proof Recall detCAI pz.fi sNHeITACi.tCil

write A i.jl J Iti.j for integers
Then detCA Plot is rational with
denominator 9 E ITCZi it and

ldetCAIIEIICHHi.it

As size KIA i jl E 2 size Ai.jl
the result follow from the productformula above



tem If Ax b then sizeCHE 4n sizeCA t size Dl

proof Cramers rule says that Hit detail
DetCA

where Ai is the matrixobtained by replacing the ith
column of A by b
So sizeCHIME 2 Size Att sizeA t size lb
And size G e size n t 4hsizeCA t 2hsizeCbl

4h size A t size Dl



One can push this further to confirm that LU
factorization is polynomial time

Thin The LP max Ex set Axe b
has a solution vector x of size 4d size Site M

for n by d A

proofsket If there is a strictly feasible to

then there exists a set S of d constraints

such that ACS x bCsl We then apply
the previous lemma

Approximate solutions to convex optimization problems

Say we want to solve Min fat sit X E C

for convex f and C

Want an E approx solution x sit F X sit

Il X X HEE

Need to be able to tell if XEC
Call a function that does this a Membership Oracle



and we count how many times we call it

A separation oracle returns a separating hyperplane
when Etc and is even more useful

Also need to be able to evaluate f
This is all simpler if CCH Ctx

If not need to worry about a FunctionOracle
and the size of numbers it returns
One detail assume can ask for low precision

on input f or it returns a rational t

sit It fCHI e T

We will just count of times need to evaluate f
so whole algorithm is polynomial if f is

To use C we need to know Xo EC and
numbers T and R sit BCxo H E C E B Xo R

Then are algorithms that give an e approx
solution in time polynomial in

logCyd log RH size Kot cud n



See Ellipsoid Algorithm in Grotschel Lovatz Schrijuer 93
or Random walk approach of BertSimas Ueupalq 04
or Recent paper of Lee Sidford Wong 45

One can even weaken the notions to

approximate membership etc


