(Review)
KHT conditions provide a way to cortify optimality.
Lagrange turns them into an optimization problem.
For convex opt. problem (
$$p^{**}$$
-value of primal)
 $p^{*} = \min f(x)$ st. $g_i(x) \leq 0$ ($\epsilon i \leq k$, (1)
KHT conditions are
1. $g_i(x^*) \leq 0$ for $| \leq i \leq k$
2. $\lambda^*(i) \geq 0$ for $| \leq i \leq k$
3. $\lambda^*(i)g_i(x^*) = 0$ for $| \leq i \leq k$
4. $\nabla f(x^*) + \sum \lambda^*(i) \nabla g_i(x^*) = 0$
There can help us solve (i):
trade the min, which is hard to chect,
for conditions that can test.
Then I if f, g..., g_F are convex and x^* , λ^* satisfy 1.4,
then λ^* is optimal. If the g_i are linear or
if exists strictly feasible x_0 ($g(x_0) < 0$ g_i)
then there exist x^* and λ^* that satisfy 1.4.

Question: could we replace
$$g_1...g_k$$

with $G(x) = \max_{i} g_i(x)$?
• $G(x) = 0$ (=> $g_i(x) = 0$ $\forall i$ \vee
• the max of convex functions is convex \vee
• But, max is NOT differentiable X
consider $\max(x_i, x_2)$, at (0,0)
and try to compate derivative in direction $t = (1,0)$
 $\max(x+st) = \int \xi \xi s = 0$
 $\int 0 \xi = 0$
So, can not approximate by a linear function.

- · And, trading X Le for one perameter would be less informative anyway.
- lesson: reformulation can helpis good to replace G by givingk

Lagrange: create function in
$$\lambda$$
 that gives a lower bound.
Define $L(x, \lambda) = f(x) + \frac{7}{2} \lambda(i) g_i(x)$
And $q(\lambda) = \inf_{x} L(x, \lambda)$
 q is the lagrosse Dual, and has clual value
 $d_x = \max_{x} q(\lambda)$ st. $\lambda \ge 0$
Surprisingly, can compute $q(\lambda)$ for many nice problems
issue is "inf"
helped by lack of constraints. and, can be $-\infty$
 $\underbrace{\operatorname{Lem} I \quad q(\lambda) \leq f(x) \quad \text{for all } \lambda \ge 0 \text{ and } \operatorname{Consiste} x, \\ \operatorname{So}, d^* \leq p^*. \quad (\text{weate duality})$
 $\underbrace{\operatorname{Proof}_{x} \quad \operatorname{For feasible}_{x}, \quad g_i(x) \leq 0.$
So, $\lambda \ge 0 \implies \sum_{i} \lambda(i) g_i(x) \leq 0$
This implies $L(x, \lambda) = f(x) + \frac{7}{2} \lambda(i) g_i(x) \leq f(x)$
On the other hand, $q(\lambda) = \inf_{x \geq 0} L(x_0, \lambda) \leq L(x, \lambda),$
 $\overline{\operatorname{berause}} \quad \inf_{x \geq 0} \quad \operatorname{gives}$ the minimum.

Also note for every
$$x \quad l(x, \lambda)$$
 is livear in λ .
As $q(\lambda)$ is the inf of linear functions,
it is concave.
So, maximizing q is reasonable.
Them 2 (Strong deality)
If fig..., g_{k} are differentiable and convex,
and either g_{k} gre differentiable and convex,
and either g_{k} gre differentiable and convex,
and either g_{k} gre differentiable and convex,
 $and either g_{k}$ gre differentiable and convex,
 $and either g_{k}$ gre differentiable and convex,
 $d^{*} = p^{*}$
proof By ktkT theorem,
 $\exists x^{*} and \chi^{*}$ st. x^{*} is feasible, $\chi^{*} = 0$ st...
 $let h(x) = L(x, \chi^{*}) = f(x) + \sum \chi^{*}(i)g_{i}(x)$
 $as \chi^{*} \geq 0$, $h(x)$ is convex.
 $ktr Y = \sum \nabla h(x^{*}) = 0$
 $so x^{*}$ is a global minimizer.
And, $q(\chi^{*}) = \inf_{x} L(x, \chi^{*}) = \inf_{x} h(x) = h(x^{*})$
 $ktr 3 = \sum h(x^{*}) = f(x^{*}) + \sum_{i} \chi^{*}(i)g_{i}(x^{*}) = f(x^{*})$
So, $q(\chi^{*}) = f(x^{*}) = > d^{*} = p^{*}$
Combined with lem $l = > d^{*} = p^{*}$

For general x, $\lambda = f(x) - q(\lambda) = p - d$ is the duality gap

Before doing examples, let's generalize to add
equality constraints.
(an write
$$h(x)=0$$
 (EIR) as $h(x)=0$ and $-h(x)=0$
Each gets own Lagrange multiplier, λ_{+} and λ_{-}
So, add in
 $\lambda_{+} h(x) + \lambda_{-}(-h(x)) = (\lambda_{+} - \lambda_{-})h(x)$

For $\lambda_{+}, \lambda_{-} \ge 0$, can write any real as $\lambda_{+} - \lambda_{-}$ So, replace by ν .

For min
$$f(x) = 4$$
. $g_{\tilde{i}}(x) \neq 0$ $|ei \in E$
 $h_{\tilde{i}}(x) = 0$ $|ei \in \tilde{j}$
 $L(x, \lambda, v) = f(x) + \tilde{z} \lambda(i) g_{\tilde{i}}(x) + \tilde{z} v(\tilde{v}) h_{\tilde{i}}(x)$
 $q(x, v) = \inf_{x} L(x, \lambda, v)$
 $d^{*} = \max_{x} q(\lambda, v) \quad \lambda \in \mathbb{R}^{k}_{+} \quad v \in \mathbb{R}^{j}$

$$LP \max c^{T} \times s_{H} \cdot q_{i}^{T} \times s_{H}^{i}$$

$$rewrite (by changing c) as$$

$$\min c^{T} \times s_{H} \cdot q_{i}(x) \neq 0, \quad q_{i}(x) = a_{i}^{T} \times b_{i}$$

$$L(x, \lambda) = c^{T} \times + \frac{1}{2} \lambda_{i} (a_{i}^{T} x - b_{i})$$

$$= c^{T} \times + \lambda^{T} A \times - \lambda^{T} b$$

$$= (c^{T} + \lambda^{T} A)_{X} - \lambda^{T} b$$

$$q(\lambda) = \inf (c^{T} + \lambda^{T} A)_{X} - \lambda^{T} b$$

$$if c^{T} + \lambda^{T} A \neq 0, \quad \inf (c^{T} + \lambda^{T} A) \times = -\infty$$

$$so_{i} q(\lambda) = \begin{cases} -\infty & \text{if } c^{T} + \lambda^{T} A \neq 0 \\ -\lambda^{T} b & \text{ow}. \end{cases}$$

$$\max q(\lambda) = \max -\lambda^{T} b \quad \text{st.} \quad A^{T} \lambda = -c$$

$$\max q(\lambda) = \max -\lambda^{T} b \quad \text{st.} \quad A^{T} \lambda = -c$$

Is some dual as derived before Not a new proof, as KET proof telies on (P duality

Other forms of LP: min
$$C^T X$$
 s.t. $A X = b$, $X \ge 0$
 $g_i(X) = -X_i$

$$L(X_{i}, \lambda, v) = C^{T}X + \sum_{i=1}^{n} \lambda(i) (-X(i)) + \sum_{i=1}^{k} V(i) (a_{i}^{T}X - b_{i})$$

$$= C^{T}X - \lambda^{T}X + \sqrt{T}(Ax-b)$$

$$= (C - \lambda + A^{T}v)^{T}X - v^{T}b$$

$$= (C - \lambda + A^{T}v)^{T}X - v^{T}b$$

$$= C^{T}\lambda + A^{T}v = 0$$

$$Can eliminate \lambda = 0 : = 3\lambda = 0 \quad \text{s.e.} \quad C + A^{T}v = \lambda$$

$$= \lambda = 0$$

so, max
$$q(\lambda, v) = \max -b^T v$$
 s.t. $A^T v + C \ge O$
 λ, v v

lowest norm point on hyperplane
min
$$\||X\|_{\ell}^{2}$$
 st. $Ax = b$
 $L(x, v) = \||x\|_{\ell}^{2} + \sqrt{T}(Ax - b) = \||x\|_{\ell}^{2} + \sqrt{T}Ax - \sqrt{T}b$
 $q(v) = \inf L(x, v)$ find this by setting $Tx = 0$
 $Tx L(x, v) = 2x + A^{T}v$ so, $x = -\frac{1}{2}A^{T}v$
which gives $\frac{1}{7}\sqrt{T}AA^{T}v - \frac{1}{2}\sqrt{T}A^{T}v - \sqrt{T}b$
 $= \frac{1}{7}\sqrt{T}AA^{T}v - \sqrt{T}b$
every v gives a lower bound

Far arbitrary norms min 11411 st. Ax=b

Need notion of a dual norm:

$$\|Y\|_{*} = \max_{X} x^{T}y \quad s.f. \quad \|X\| \leq 1$$

(will achieve with $\|X\| = 1$)

Examples dual of
$$\|\cdot\|_2$$
 is $\|\cdot\|_2$
because Cauchy-Schwartz $x^{T}y \in \|x\|_2 \|y\|_2 \in \|y\|_2$
with equality only when $y = \lambda x$, $\lambda > 0$
so, set $x = \frac{Y}{\|y\|_2}$ to get
 $x^{T}y = \frac{T^{T}y}{\|y\|_2} = \|y\|_2$

dual of
$$\|\cdot\|_{to}$$
 is $\|\cdot\|_{1}$
given y_{1} set $x = \begin{cases} 1 & y(i) \ge 0 \\ \vdots & \vdots \\ -1 & y(i) \le 0 \end{cases}$
and $x^{T}y = \sum_{i} x(i) y(i) = \sum_{i} |y(i)| = \|y\|_{1}$
In finite dimensions, $\|\cdot\|_{*} = \|\cdot\|$

For
$$\frac{1}{P} + \frac{1}{q} = 1$$
, $[1:1|p \text{ and } [1:1|p \text{ are dual}]$,
where $[1 \times ||p = (\Sigma |x \otimes ||^{P})^{VP}$
Follows from Hölder's Inequality
 $x^{T}y \in [1 \times ||p|| |y||q]$, with equality for positive X, y
when $y(i)^{q} = x(i)^{P}$
Back to min $||X|| \text{ srt. } Ax=b$
 $q(v) = \inf ||x|| - v^{T}Ax - v^{T}b$
if $||v^{T}A||_{x} \leq 1$, then $||x|| \geq v^{T}Ax$
and so $\inf ||x|| - v^{T}Ax = 0$
if $||v^{T}A||_{x} > 1$, $\exists u \text{ srt. } ||u||=1$,
 $v^{T}Au = ||v^{T}A||_{x} > 1$
Considering $x = cu$ $C \to 00$ shows
 $\inf ||x|| - v^{T}Ax = -60$
So, $q(v) = \begin{cases} -b^{T}v \quad \text{if } ||v^{T}A||_{x} \leq 1 \\ -\infty & 0.u_{v} \end{cases}$
Dual is $\max -b^{T}v \quad \text{srt. } ||A^{T}v||_{x} \leq 1$

Generalized inequalities and cones. Issue: not all convex sets have simple description $as g_i(x) \in O$ for differentiable convex g_i

Use fact is a proper cone.

K is a <u>cone</u> if $x \in k \Rightarrow t \times k \notin \forall t \ge 0$ is proper if c_{\cdot} is convex b_{\cdot} is closed c_{\cdot} solid - has an interior d_{\cdot} pointed: $\chi \in k, \times \neq 0 \Rightarrow - \times \notin k$

The dual cone is $k^* = \{x: x^T y = 0, \forall y \in k\}$ dual of \mathbb{R}^n_+ is \mathbb{R}^n_+

v Isualize

In finite dimensions, K*= K

The dual cone of
$$S_{+}^{h}$$
 is S_{+}^{n}
inner product of matrices X, Y obtain by
writing as vectors. Get Trace $(X^{T}Y)$

So, can write convex programs like

$$\min f(x) = 0$$
 level
 $\max f(x) = 0$ level
 $\max f(x) =$

The Lagrange dual is

$$L(x, \lambda_0, \lambda_{1,...}, \lambda_j) = f(x) + \sum_{j=1}^{d} \lambda_0(j)g_j(x) + \sum_{j=1}^{c} \lambda_j^T x$$

All the same stuff holds.

let's us handle semidefinite programming problems, lite
min
$$Tr(F^TM)$$
 s.t. $M \in S_+^n$
 $g_i(M) = 0$ for $| \leq i \leq d$.

proof
$$S_{\pm}^{n}$$
 is self-dual
That is $\operatorname{Tr}(X^{T}Y) \ge 0$ for all $X \in S_{\pm}^{n}$ iff $Y \in S_{\pm}^{n}$
1. if $Y \notin S_{\pm}^{n}$, $\exists x \text{ s.t. } x^{T}Y_{x} \ge 0$
let $X = xx^{T}$
 $\operatorname{Tr}(X^{T}Y) = \operatorname{Tr}(xx^{T}Y) = \operatorname{Tr}(x^{T}Y_{x}) = x^{T}Y_{x} \ge 0$
2. If $Y \in S_{n}^{+}$ and $X \in S_{n}^{+}$, write $X = \sum_{i} x_{i}x_{i}^{T}$
 $\forall_{Y} X = \sum_{i} \lambda_{i} v_{i} v_{i}^{T}$, $X_{i} = 5\lambda_{i} v_{i}$
Sood because $\lambda_{i} \ge 0$
 $So_{i} \operatorname{Tr}(X^{T}Y) = \operatorname{Tr}(\sum_{i} x_{i}x_{i}^{T}Y) = \sum_{i} \operatorname{Tr}(x_{i}x_{i}^{T}Y) \ge 0$