






Note: the treatment I give of the KKT conditions roughly follows that in Chapter 10 (sections 1-3) of Lauritzen’s book 
Undergraduate Convexity.  But, I really only focus on the convex case, which is simpler.  Most treatments of the KKT 
conditions, and Lagrange multipliers, begin with the case of general functions and general (or convex) constraints, and then 
observe that the convex case is special.  Treatments of this form appear in Chapter 5 of BV, and Chapter 12 of LW.  The 
treatment in LW is probably closer to the one I give here.



In the next class, we will introduce Lagrange multipliers and duality.



I am going to skip most proofs this week so that I can instead cover more examples. 

















































































































































































































































A general constrained convex optimization problem is

min f X such that gift 0 for l e i e k XE RY
cud f g g are convex functions

Our goal for today is to learn how to certify a
solution That is the KKT Karush Kuhn Tucker

conditions

We covered the case of E 0 unconstrained
X E Arg min fCH iff f X I 0

For continuous differentiable f the following
condition is very helpful

lemmat let C be a closed convex set
e.g giCHeo Eid

and let the differentiable on C
Then X C argnfein FA a

implies Of IT y Xxl O Uy E C 2

If f is convex then also 2 l

Note if X is a global minimizer Of D

in which case 2 must hold






































































































































Picture level sets of f

Xi

AH

proof D 2 Prove not 2 notCD

If F y e C sit Of T y Xxl O

then moving in direction y decreases f
but stays inside C

For small d f x to f A OffxTJ
Setting D E y x for E 0 but small gives

fCX 5 fCx
As C is convex X to I E At EY C C

contradicting 1

2 and f convex CD

Recall convexity f y effx It Off y x

2 yet Of T y o_O so fly zfCxH VyEC






































































































































Xx

H y OfCx Ty Off The
is a hyperplane that separates C from y fateful

We will now do some examples

la For a convex function f consider the problem
min fCH St Ax b where XE kn b CIRK Ken

A is k by n

can think of as Aref and Axe b

A x b defines an Cn H dimensional hyperplane so

think of it like this

Ii
X






































































































































At the solution x we have Ofa T
y Xxl o_O

for all y sit Ay b

As A 2 y 2b b D

DfCX Tf2x y x Z O
Of T H Y o_0

Off T y H O Hy sit Ay b

This is A y Xxl O Of T
y 4 1 0

So for all Z St Az 0 Off E O

Off E tow span A

if g f row sparCA 3 2 sit A E 0 but gtz 101

That is I v nu l C IRK sit Of Atv

Xx is the solution iff Ax b

aid F u sit Of t ATV 0

v v1

I'm introducing this odd notation to be consistent
with what comes later






































































































































2 Consider min fly St XE 1124 x XEIR and to

That is we have constraints Xlitzo Vi

B I lemma't X is optimal iff X ZO

cud t y o_0 Off y XH 20

For convenience I will write D AAH

XZO
o

C 1124 OTC x 20 X E O u

2X ER4 OTG Heo so
TX't O G

So Hy CRF OTCl x 20 Fy 20 GERI

020 if Ciao Fei LO G

Conversely CD and 2 Uy E IR't
0fCx T y Xxl Of Ty 70






































































































































SO X C 1124 is optimal iff

Of ZO and 0fCX TX O

Complementary slackness X i Of il O ti

3 min fat St gCHEO
where f cud g are differentiable and convex

Q

T
X is optimal iff gCxHc0 and TfCxH O

or gCx l O and Off X0gCxH for some X 0

First understand condition OfKH X0gCX X 0

Use tight case for Cauchy Schwartz lutul Hull Hull
with equality only when a Xv some X






































































































































Claim For nonzero vectors u and u

u Xu for some X 0

if theredoes not exist z sit UTZ LO and Utz 0

puff if a Xv then sign Utz sign utz
otherwise

consider 2 Et Fk
T U

a EIl 4h04Hull Yt

at Ya Eat Hull t YI Hull Hull

by Cauchy Schwartz
And Yt Hull only if u is a multiple of u

proofofoptimalitycondition
If F a direction z s't Of Tz LO

cud Dgc Tz 20

Then for small E 0 f X t E't t f Xx
and g CHEA a gGH EO

contradicting the optimality of X






































































































































That is x optimal f such z
Ofc xOgCx I

Conversely if Of 10g xx and gCxH 0

consider hyperplane H ET Pty 0

convexity of f and g tells Us f is bigger on
one side and g is bigger on the other

We write this as OfCx ItXgCX I O X

Xx



























