How to minimize a convex function over an interval in \(\mathbb{R} \), \([a, b]\)

Idea: evaluate \(f \) at \(a, a + \frac{1}{3}(b-a), a + \frac{2}{3}(b-a), b \)

If the minimum is at \(p_1 \), look in \([a, p_2]\)
- is at \(p_2 \), look in \([p_1, b]\)
- is at \(a \), look in \([a, p_1]\)
- is at \(b \), look in \([p_2, b]\)

Decreases the width by \(\frac{2}{3} \).

With more care (see Fibonacci or Golden Section Search) can reduce it by a factor of \(\phi = \frac{1 + \sqrt{5}}{2} \) per evaluation.
Minimizing smooth convex functions by gradient descent.

Recall from last lecture that for a convex function f:
1. x^* is a minimizer of f iff $\nabla f(x^*) = 0$
2. For all y and x, $f(y) = f(x) + \nabla f(x)^T (y-x)$

The latter provides a useful lower bound on f.

In this lecture, we will show that GD converges nicely if the gradients of f are "smooth". That is, if they don't change too quickly. We measure this in two ways.

1. We say that ∇f is L-Lipschitz if $\forall x, y$
 $$\|\nabla f(x) - \nabla f(y)\|_2 \leq L \|x-y\|_2$$

2. We consider the gradient of the gradient - the Hessian $\nabla^2 f$ which we recall is the matrix with entries
 $$\frac{\partial^2}{\partial x_i \partial x_j} f(x)$$

 For small vectors δ, $\nabla f(x+\delta) - \nabla f(x) \approx (\nabla^2 f(y)) \delta$
 So, we may upper bound changes in gradient by
 $$\|\nabla^2 f(x)\|$$
Note: neither approach can handle piecewise linear functions like

for which gradients are discontinuous.

They work well for $f(x) = \|Ax-b\|_2^2$,
which has $\nabla^2 f = A^TA$,
and $\nabla f(x) = 2A^TAx - 2A^Tb$,
so $\nabla f(x) - \nabla f(y) = 2A^TA(x-y)$
and $\|\nabla f(x) - \nabla f(y)\|_2 \leq 2\|A\|_2^2 \cdot \|x-y\|_2$.
So, it is $2\|A\|_2^2$-Lipschitz.

Note: we can have $f(x) = f(x^*)$, but x far from x^*.
Implications of L-Lipschitz: the gradient provides both upper and lower bounds.

The lower bound is \(f(y) \geq f(x) + \nabla f(x)^T (y-x) \)

Lemma \(f(y) \leq f(x) + \nabla f(x)^T (y-x) + \frac{1}{2} \| y-x \|^2 \)

Proof

Let \(z(t) = (1-t)x + ty \). \(z'(t) = y-x \)

\(\frac{d}{dt} f(z(t)) = z'(t) \cdot \nabla f(z(t)), \) so

\[
\begin{align*}
f(y) - f(x) &= f(z(0)) - f(z(1)) = \int_0^1 \nabla f(z(t)) dt \\
&= \int_0^1 (y-x)^T \nabla f(z(t)) dt \\
&= \int_0^1 (y-x)^T \nabla f(z(t)) dt + \int_0^1 (y-x)^T (\nabla f(z(t)) - \nabla f(x)) dt \\
&\leq \int_0^1 \| y-x \| \| \nabla f(z(t)) - \nabla f(x) \| dt \\
&\leq \int_0^1 \| y-x \| \cdot L \cdot \| z(t)(y-x) \| dt \\
&= \frac{1}{2} L \| y-x \|^2
\end{align*}
\]

Corollary \(f(x) \leq f(x_*) + \frac{1}{2} \| x-x_* \|^2 \)

Proof: apply Lemma with \(y=x \), \(x=x_* \), \(\nabla f(x_*) = 0 \).
Gradient Descent: move from x to
$$\hat{x} = x - \nabla f(x),$$ where ∇ is the "step size".

Can choose ∇ many ways. For $\nabla = \frac{1}{L}$ we show

Lemma 2 For $\hat{x} = x - \nabla Df(x)$, $\nabla = \frac{1}{L}$
$$f(\hat{x}) \leq f(x) - \frac{1}{2 \nabla} \|\hat{x} - x\|_2^2$$

proof:

LEM 1 \Rightarrow
$$f(\hat{x}) \leq f(x) + Df(x)^T (x - \frac{1}{L} Df(x)) + \frac{1}{2} \|\frac{1}{L} Df(x)\|_2^2$$

$$= f(x) - \nabla (\frac{1}{L} \|Df(x)\|_2^2)$$

$$= f(x) - \nabla ((1 - \frac{L}{2}) \|Df(x)\|_2^2)$$

$$\leq f(x) - \frac{1}{2} \nabla \|Df(x)\|_2^2 \quad \text{(using $\nabla \leq \frac{1}{L}$)}$$

$$= f(x) - \frac{1}{2 \nabla} \|\hat{x} - x\|_2^2$$

Lemma 3 For $\hat{x} = x - \nabla Df(x)$ with $\nabla = \frac{1}{L}$
$$f(\hat{x}) - f(x^*) \leq \frac{L}{2} \left(\|x - x^*\|_2^2 - \|\hat{x} - x^*\|_2^2\right) \quad (\star)$$

proof LEM 2 \Rightarrow
$$f(\hat{x}) - f(x^*) \leq f(x) - f(x^*) - \frac{L}{2} \|\hat{x} - x^*\|_2^2$$

LEM 1 \Rightarrow
$$f(\hat{x}) - f(x^*) \leq \frac{L}{2} \|x - x^*\|_2^2 - \frac{L}{2} \|\hat{x} - x^*\|_2^2$$
Thm 1

Let x_0 be the initial vector, and x_k be vector after k steps. Then for $L = \|
abla f(x_0)\|_2$,

$$f(x_k) - f(x_\star) \leq \frac{L}{2k} \|x_0 - x_\star\|_2^2.$$

Proof: Summing lem 3 gives

$$\sum_{i=1}^{k} f(x_i) - f(x_\star) \leq \frac{L}{2} \sum_{i=1}^{k} \|x_i - x_\star\|_2^2 - \|x_{i-1} - x_\star\|_2^2.$$

$$= \frac{L}{2} \left(\|x_k - x_\star\|_2^2 - \|x_0 - x_\star\|_2^2 \right)$$

$$= \frac{L}{2} \|x_k - x_\star\|_2^2.$$

As $f(x_i)$ is monotonically decreasing in i,

$f(x_k) - f(x_\star)$ is the smallest term, and so

$$f(x_k) - f(x_\star) \leq \frac{L}{2k} \|x_k - x_\star\|_2^2.$$

So this converges, if not quickly.

Of course, choosing the optimal n at every step improves.
We can get faster convergence if we assume more.

A function f is m-strongly convex if $\sigma_0(\nabla^2 f(x)) \geq m$ for all x.

If g is any convex function, $g(x) + \frac{m}{2} \| x \|_2^2$ is m-strongly convex.

Thm 2. For such f with $\sigma = \frac{1}{L}$,

$$ f(x_k) - f(x^*) \leq (1 - \frac{m}{L})^k (f(x_0) - f(x^*)) $$

This generalizes our analysis for least squares / linear equations.

Lem 4. For all x, y

$$ \frac{m}{2} \| y - x \|_2^2 \leq [f(y) - f(x) - \nabla f(x)^T (y - x)] $$

Proof.

Let $h(t) = f(tx + (1-t)y)$. Lagrange's form of Taylor's theorem gives $h(t) = h(0) + h'(0) + \frac{1}{2} h''(t)$ for some $t \in (0, 1)$.

So, $\exists \zeta$ on $[t \theta] s.t.$

$$ f(y) - f(x) - \nabla f(x)^T (y - x) = \frac{1}{2} (y - x)^T \nabla^2 f(\zeta) (y - x), $$

and this latter term is at least $\frac{m}{2} \| y - x \|_2^2$.

Cor 2. As $\nabla f(x^*) = 0$, Lem 4 $\Rightarrow f(x) - f(x^*) \geq \frac{m}{2} \| x - x^* \|_2^2$

So, x far from $x^* \Rightarrow f(x)$ far from $f(x^*)$.
We can also obtain an upper bound

Cor 3 \[f(x) - f(x^*) \leq \frac{1}{2m} \|\nabla f(x)\|^2 \]

Note: Combining with Cor 2 gives \(\|x - x^*\|_2 \leq \frac{1}{4m^2} \|\nabla f(x)\|^2 \)

proof:

(3) \(\Rightarrow \) \(\forall x, y \), \(f(x) - f(y) \leq \nabla f(x)^T(y - x) - \frac{m}{2} \|y - x\|_2^2 \)

Let \(g = \nabla f(x) \), \(z = y - x \), and consider \(g^T z - \frac{m}{2} \|z\|_2^2 \)

\[\nabla_v (g^T z - \frac{m}{2} \|z\|_2^2) = g - mz, \] so this is maximized when \(z = \frac{1}{m} g \), at which point its value is \(\frac{1}{2m} \|g\|_2^2 \)

So, \(\forall x, y \) \(f(x) - f(y) \leq \frac{1}{2m} \|\nabla f(x)\|^2 \).

We apply this with \(y = x^* \)

Proof of Theorem 2

Now, consider setting \(\hat{x} = x - \eta \nabla f(x) \)

We should pick \(\eta \) to minimize \(f(\hat{x}) \).

To prove such an \(\eta \) exists, we show \(\eta = \frac{1}{\nabla f(x)} \) is OK.

This choice gives

\[f(\hat{x}) \leq f(x) + \nabla f(x)^T(\hat{x} - x) + \frac{L}{2} \|\hat{x} - x\|_2^2 \]

\[= f(x) - \frac{1}{2} \|\nabla f(x)\|_2^2 + \frac{1}{2L} \|\nabla f(x)\|^2 \]

\[= f(x) - \frac{1}{2L} \|\nabla f(x)\|^2 \]

Cor 3 gives \(f(\hat{x}) \leq f(x) - \frac{m}{L} \left(f(x) - f(x^*) \right) \)

\[\Rightarrow f(\hat{x}) - f(x^*) \leq (f(x) - f(x^*)) \left(1 - \frac{m}{L} \right) \]