How to minimize a convex function over an interval in $\mathbb{R},[a, b]$

Idea: evaluate f at $a, \frac{a+\frac{1}{3}(b-a)}{P_{1}}, \frac{a+\frac{2}{3}(b-a)}{P_{2}}, b$

If the minimum is at p_{1}, loot in $\left[a_{1} p_{2}\right]$
is at P_{2}, loot in $\left[P_{1}, b\right]$
is at a_{1} look in $\left[a_{1} p_{1}\right]$
is at b_{1} look in $[P, b]$

Decreases the width by $^{2} / 3$.
With more care (see Fibonacci or Golden Section Search) can reduce it by a factor of $\phi=\frac{1+\sqrt{5}}{2}$ per evaluation.

Minimizing smooth convex functions by gradient descent.
Recall from last lectwe that for a convex function f :

1. x_{*} is a minimizer of f iff $\nabla f\left(x_{*}\right)=\overline{0}$
2. For all y and $x, f(y) \geq f(x)+\nabla f(+)^{\top}(y-x)$

The latter provides a ceseful lower bound on f.

In this lecture, we will show that GD converses nicely if the gradients of f are "smooth".
That is, if they don't change too quickly. We measwe this in two ways.

1. We say that of is L-Lipsclitz if $\forall x, y$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

2. We consider the gradient of the gradiat the Hessian $\nabla^{2} f$ which we recall is the matrix with entries $\left(\frac{\partial^{2}}{\partial x(i) \partial+(j)} f(x)\right) i, j$

For small vectors $\delta, \quad \nabla f(x+\delta)-\nabla f(x) \approx\left(\nabla^{2} f(x)\right) \delta$ So, we may upper tocend changes in gradient by $\left\|\nabla^{2} f(x)\right\|$

Note: neither approach can hound le precewre linear functions lite

for which gradients are discontinuous.
They work well for $f(x)=\|A x-b\|_{2}^{2}$, which has $\nabla^{2} f=A^{\top} A$, and $\sigma f(x)=2 A^{\top} A x-2 A^{\top} b$, so $\quad \nabla f(x)-\nabla f(y)=2 A^{\top} A(x-y)$
and $\|\nabla f(t)-\nabla f(y)\|_{2} \leq 2\|A\|_{2}^{2} \cdot\|x-y\|_{1}$,
So, it is $2\|A\|_{2}^{2}$ - Lipschitz

Note: we can have $f(x) \approx f\left(x_{*}\right)$, bat x for from x_{*} :

Implications of L-Lipschitz: the gradient provides both upper and lower bounds.

The lower bound is $f(y) \geq f(x)+\nabla f(x)^{\top}(y-x)$ Lem 1 $f(y) \leqslant f(x)+\nabla f(t)^{\top}(y-x)+\frac{L}{2}\|y-x\|_{2}^{2}$
proof
Let $z(t)=(1-t) x+t y . \quad z^{\prime}(t)=y-x$
$\frac{d}{d t} f(z(t))=z^{\prime}(t) \cdot f^{\prime}(z(t))$, so
$f(y)-f(x)=f(z(1))-f(z(d))=\int_{0}^{1} f^{\prime}(z(t)] d t$
$=\int_{0}^{1}(y-x)^{\top} \nabla f(z(t)) d t$
$=\underbrace{\int_{0}^{1}(y-x)^{\top} \nabla f(x) d t}_{(y-x)^{\top} \nabla f(x)}+\frac{\int_{0}^{1}[y-x)^{\top}(\nabla f(z(t))-\nabla f(x)) d t}{\int_{0}^{1}\|y-x\| \| \nabla f(z(t)-\nabla f(x) \| d t}$
$\leq \int_{0}^{1}\|y-x\| \cdot L \cdot\|t(y-x)\| d t$

$$
=\frac{1}{2} L\|y-x\|^{2}
$$

Cor $1 f(x) \leq f\left(x_{*}\right)+\frac{L}{2}\left\|x-x_{*}\right\|^{2}$
proof: apply lem with $y=x, x=x *$,

$$
\nabla f\left(x_{*}\right)=\overline{0}
$$

Gradient Descent: move from x to $\hat{x}=x-\eta \nabla f(x)$, where η is the "step swiz".

Can choose η many ways. For $\eta=1 / L$ we show

Lemma 2 for $\hat{x}=x-\eta \nabla f(x), \eta \leqslant 1 / L$

$$
f(\hat{x}) \leqslant f(x)-\frac{1}{2 \eta}\|\hat{x}-x\|_{2}^{2}
$$

proof:
Lem $1 \Rightarrow$

$$
\begin{aligned}
f(\hat{x}) & \leq f(x)+\nabla f(x)^{\top}(-\eta \nabla f(x))+\frac{1}{2} L\|\eta \nabla f(x)\|_{2}^{2} \\
& =f(x)-\left(\eta-\frac{L \eta^{2}}{2}\right)\|\nabla f(x)\|_{2}^{2} \\
& =f(x)-\eta\left(\left(-\frac{L n}{2}\right)\|\nabla f(t)\|_{2}^{2}\right. \\
& \leq f(x)-\frac{1}{2} \eta\|\nabla f f+\|_{2}^{2} \quad(u \operatorname{sing} \eta \leq 1 / c) \\
& =f(x)-\frac{1}{2 \eta}\|\hat{x}-x\|_{2}^{2}
\end{aligned}
$$

Lemma 3 For $\hat{x}=x-\eta \nabla f(x)$ with $\eta=1 / L$

$$
f(\hat{x})-f\left(x_{*}\right) \leq \frac{L}{2}\left(\left\|x-x_{*}\right\|_{2}^{2}-\left\|\hat{x}-x_{*}\right\|_{2}^{2}\right) \text { (z) }
$$

proof len $2 \Rightarrow$

$$
\begin{aligned}
& f(\hat{x})-f\left(x_{*}\right) \leqslant f(x)-f\left(x_{*}\right)-\frac{L}{2}\left\|\hat{x}-x_{*}\right\|_{2}^{2} \\
& \operatorname{Cor} 1=> \\
& f(\hat{x})-f\left(x_{*}\right) \leqslant \frac{L}{2}\left\|x-x_{*}\right\|-\frac{L}{2}\left\|\hat{x}-x_{*}\right\|_{2}^{2}
\end{aligned}
$$

Thun
Let x_{0} be the initial vector, and x_{k} be vector after k steps. Then for $\eta=1 / L$,

$$
f\left(x_{k}\right)-f\left(x_{*}\right) \leq \frac{\llcorner }{2 k}\left\|x_{0}-x_{*}\right\|_{2}^{2}
$$

Proof: Summing lem 3 gives

$$
\begin{aligned}
\sum_{i=1}^{k}\left(f\left(x_{i}\right)-f\left(x_{*}\right)\right) & \leq \frac{L}{2} \sum_{i=1}^{k}\left\|x_{i}-x_{*}\right\|_{2}^{2}-\left\|x_{i-1}-x_{*}\right\|_{2}^{2} \\
& =\frac{L}{2}\left(\left\|x_{k}-x_{*}\right\|_{2}^{2}-\left\|x_{0}-x_{*}\right\|_{2}^{2}\right) \\
& \leq \frac{L}{2}\left\|x_{k}-x_{*}\right\|_{2}^{2}
\end{aligned}
$$

As $f\left(x_{i}\right)$ is motonically decreasing in i_{1} $f\left(x_{k}\right)-f\left(x_{*}\right)$ is the smallest term, and so

$$
f\left(x_{k}\right)-f\left(x_{*}\right) \leq \frac{L}{2 k}\left\|x_{k}-x_{*}\right\|_{2}^{2}
$$

So this converges, if not quickly. of course, choosing the optimal n at every step improves.

We car get faster convergence if we assume more.
f is m-strongly convex if $\sigma_{n}\left(\nabla^{2} f(x) \geq m\right.$ for all x.
If g is any convex function, $g(x)+\frac{m}{2}\|x\|_{2}^{2}$ is m-strongly convex.

Thu 2 for such f with $\eta=\frac{1}{L}$

$$
f\left(x_{k}\right)-f\left(x_{*}\right) \leq\left(1-\frac{m}{L}\right)^{k}\left(f\left(x_{0}\right)-f\left(x_{*}\right)\right)
$$

This generalizes our analysis for least squares / lin equations.
Lem 4 For all $x_{1} y$

$$
\begin{equation*}
\frac{m}{2}\|y-x\|_{2}^{2} \leq\left[f(y)-f(x)-\nabla f(x)^{\top}(y-x)\right] \tag{3}
\end{equation*}
$$

proof
let $h(t)=f(t x+(1-t) y)$. Lagrange's form of Taylor's theorem gives $h(1)=h(0)+h^{\prime}(0)+\frac{1}{2} h^{\prime \prime}(t)$ for some $t \in(0,1)$.
So $\exists z$ on $\overline{x y}$ st.

$$
f(y)-f(x)-\nabla f(t)^{\top}(y-x)=\frac{1}{2}(y-x)^{\top} \nabla^{2} f(z)(y-x),
$$

and this latter term is at least $\frac{m}{2}\|y-x\|_{2}^{2}$

Cor 2 As $\nabla f\left(x_{* *}\right)=0$, $\operatorname{lem} 4 \Longrightarrow f(x)-f\left(x_{*}\right) \geq \frac{m}{2}\left\|x-x_{*}\right\|_{2}^{2}$
So, x for from $x_{*} \Rightarrow f(x)$ for from $f\left(x_{*}\right)$

We can also obtain an upper bound
Cor $3 f(x)-f\left(x_{*}\right) \leq \frac{1}{2 m}\|\nabla f(x)\|_{2}^{2}$
Note: combining with Cor 2 gives $\left\|x-x_{*}\right\|_{2}^{2} \leq \frac{1}{4 m^{2}} \|$ Vf $+\|_{2}^{2}$
proof:

$$
(3) \Rightarrow \forall x, y, \quad f(x)-f(y) \leq \nabla f(x)^{\top}(y-x)-\frac{m}{2}\|y-x\|_{2}^{2}
$$

Let $g=\nabla f(x), \quad z=y-x$, and consider $g^{\top} z-\frac{m}{2}\|z\|^{2}$
$\nabla_{z}\left(g^{\top} z-\frac{m}{2}\|z\|^{2}\right)=g-m z$, so this is maximized when $z=\frac{1}{m} g$, at which point its value is $\frac{1}{2 m}\|g\|^{2}$
So, $\forall x, y \quad f(x)-f(y) \leq \frac{1}{2 m}\|\nabla f(t)\|^{2}$.
We apply this with $y=x_{+}$

Proof of Theorem 2
Now, consider setting $\hat{x}=x-\eta \nabla f(x)$
We should pick η to minimize $f(\hat{x})$.
To prove such an η exists, we show $\eta=\frac{1}{L}$ is $O K$.
This choice gives

$$
\begin{aligned}
f(\hat{x}) & \leq f(x)+\nabla f(x)^{\top}(\hat{x}-x)+\frac{L}{2}\|\hat{x}-x\|_{2}^{2} \\
& =f(x)-\frac{1}{L}\|\nabla f(x)\|_{2}^{2}+\frac{1}{2 L}\|\nabla f(x)\|_{2}^{2} \\
& =f(x)-\frac{1}{2 L}\|\nabla f(x)\|_{2}^{2}
\end{aligned}
$$

Cor 3 gives $f(\hat{x}) \leq f(x)-\frac{m}{L}\left(f(x)-f\left(x_{*}\right)\right)$

$$
\Rightarrow f(\hat{x})-f\left(x_{*}\right) \leq\left(f(x)-f\left(x_{*}\right)\right)\left(1-\frac{m}{L}\right)
$$

