



































































































































How to minimize a convex function over an

interval in IR Taib

Idea evaluate f at a at'zCb al at b al b
a Pz

f

A b

If the minimum is at p look in a Pz

is at Pz look in Pi b

is at a look in a PD
is at b look in Rib

Decreases the width by 43

With more care see Fibonacci or GoldenSection Search

can reduce it by a factor of 0 t
per evaluation



Minimizing smooth convex functions by gradient descent

Recall from last lecture that for a convex function f
I X is a minimizer of f iff Off O
2 For all y and X fly z HH t DFAT y x

The latter provides a useful lower bound on f

In this lecture we will show that GD converses nicely
if the gradients of C are smooth

That is if they don't cleanse too quickly
We measure this in two ways

I We say that Of is L Lipschitz if u x y
11OHH OfcMlk E L Ux Hla

2 We consider the gradient of the gradient
the Hessian OF which we recall is the matrix
with entries aol.io yfCx7 i.j

For small vectors 8 OfGtd Off 741 8
So we may upper bound cleanses in gradient
by H O f CAH



Note neither approach can handle piecewise
linear functions like

µ
for which gradients are discontinuous

They work well for fCH LAXHK
which has 04 ATA

and OHH 2ATAx 2 Atb
so OffA Ofc 1 2ATA X y
and 11OHH OHHH z E 2 HAKE 11 74

so it is 2HAKE Lipschitz

Nole we can have fCH a FAH bat farfrom X



Implications of L Lipschitz the gradientprovides both

upper and lower bounds

The lower bound is fCH z f CH t Off y x

Leoni fCyl Effy Of Effy H t Ily HII
proofe
Let 2 Itt C titty Htt y x

Itf Htt Z'ft f LECH so

fCyl tch HIM HzColl If'Hthdt

Cy xF OHHH dt

Jo Cy HTOffx dt t fo't'tFlotCHA Offhdt

Cy Total filly 4111OHHH DHAHdt

e filly HI L 11th 411 dt

Iz L Hy 412

Cort f x e fCx Ell X x 112

proof apply Lem 1 with yet x X

Off O



Gradient Descent move from to

I X q DFA where 2 is the stepsize

Can choose 2 Mary ways For 2 YL we show

lemma2_ For f X NOAH RE IL
C E e fCx IT HE HE

proff
Lem I
f I Effy Pfaff 20ft EL 1 2OHHH

fat n IE KAHNE
fly nu E HOHNE

c fat ECHOFCAKE using re k

fat IT HE HE

lemma 3 For I X 20th with a YL
f CII fl I e z Hx x HE HE 162 4

proof I ye fat fC Elli Alli
or 1
fCEI fl e Hx H E III X Hi



Thud
et to be the initial vector and Xt be vector
after k steps Then for 2 4L

f he fCx E 11Xo X lE

Proof Summing Lem 3 gives

II fail far HE HXi Alk Iho i t HI

Htt HE Iko X HE

E HH Hi

A s fail is motonically decreasing in I
f Hel fHH is the smallest term and so

the fGH the Axe X Hi

So this converges if not quickly
Of course choosing the optimal n at every step improves



s p l
We can get faster convergence if we assume more

f is m strongly convex if on 07k112m for all x

I 2
If g is any convex function gCA t 21kHz is

m strongly convex

ThmI for such f with 2 T
f Xk fCx e l Z k thro fGH

This generalizes our analysis for least squares Liuequations
Lem4 For all y
Elly HE E fly HH OHH y x 3

proof
let htt f txt G H y LagrangeI formofTaylor's theorem
gives htt h o th lol Eh t for some t C oil
So F z on xT St

f y HH Df Tty x Ily xp04Gt y x

and this latterterm is at least MEHyHE

Cerz As Off O Lem4 5 ICH f I FIH X HE

SO K far from x fly far from fCHI



We can also obtain an upper bound
core fCH FAH E Tm Hof It

Note combining with Cor2 gives Kx X KEE HOME
proofi
3 fx y fCH f y e OHHH x Elly HE
Let g OHH 2 Y X and consider gTz Mz112112

Dz gtz mzHzH4 g MZ so this is maximized

when 2 tmg at which point its value is Em119112
So f x y f H Hy E LmkOf 4
We apply this with y X't

Proofofthearen2y
Now Consider setting I X q Dfa
We should pick 2 to minimize FCI
To prove such an 2 exists we show f Lt is Ok
This choice gives
f I EffHt Office At 2 HE HE

fCH Ell of.CHKtzTllOfCHlk2
ffx zTH0fCHH

Cor 3 gives HI effx f fCH FAH
HEI FAH HA FAH l E


